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Abstract

We study fuzzy Topological spaces. We show some topological and
Algebraic of a fuzzy subset topology. We obtain some topological
properties of fuzzy anti normed linear spaces. We mention some
applications of topological properties of fuzzy anti normed linear

spaces.
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Chapter 1
On Fuzzy Topological Spaces and Finite Dimensional Intuitionistic
Fuzzy Normed Linear

Section (1-1) On Fuzzy Topological Spaces

Introduction(1.1.1)[2] After Zadeh introduced the concept of fuzzy
sets, Chang developed the theory of fuzzy topological spaces, based on
Zadeh's concept. From then on, quite a number of research have been
published dealing with various aspects of such spaces. Gantner,
Steinlage, and Warren have defined the Hausdorff separation axiom as
well as subspace topology for only crisp points and crisp subsets of
fuzzy spaces. Again, subspace topology has been defined by Foster for
fuzzy subsets as well. We have defined the Hausdorff separation axiom
as well as some of the other separation axioms by taking the fuzzy
elements also into consideration. It is seen that the definitions
essentially agree with these in the crisp case. Since the definition of
compactness is not quite meaningful in our Hausdorff spaces, we have
defined proper compactness and have shown that in a Hausdorff space
(i) properly compact sets as well as sets of finite supports are closed and
(i) supports of properly compact sets are finite, if the countable union of
closed sets is closed, in addition. We recall that Hutton also has defined
separation axioms in fuzzy topological spaces, but his approach is
entirely different from what we have adopted here. F-k spaces have been
defined in terms of subspaces (as in general topology) and hereditariness
of some of the separation properties are established, where Foster’s
definition of subspace topology has been followed. A few examples
have been provided to indicate differences between fuzzy topology and

ordinary topology.



Preliminaries(1.1.2)[2] We give a few definitions valid in fuzzy spaces,
while some others are included in the relevant sections. For those not
given anywhere.

Let X be a set of points {x: x € X}. A fuzzy set A in X is characterized
by a membership function ,u,., from X to [0, 1], while a real subset of X
(also called a crisp set) is identified with its characteristic function.

A fuzzy point or a fuzzy singleton p in X is a fuzzy set with membership
function, p,, defined by, p, (X) =y, for x =Xx,, = 0 otherwise

where y € (0, 1). X, is called the support of p and y its value.

Also, p isin afuzzy set A or peA if and only if, p, (Xo) < pa(Xo).

S0P & A S iy (Xo) > Palxo).

A real point x; is called a crisp point and is identified with its
characteristic function. x, belongs to the fuzzy set A if, p, (X;) = 1.

By points (subsets) of X, we mean both crisp and fuzzy points (subsets).

The fuzzy topological space (X, 1) is as usual written as fts.

Definition (1.1.3)]2] Let (X, 1) be an fts, Y a set of points, and f: X + Y
a surjection. The F-quotient topology for Y is the fuzzy topology whose
open fuzzy sets are {B: f '[B] e 7). If f: X—Y is an F-continuous
surjection of X to Y and Y has the F-quotient topology U, then
f: (X, ©) — (Y, U) is called an F-quotient map.

We have always assumed that the support of the fuzzy point p is X,
unless stated otherwise. R and N as usual denote respectively the set of
real numbers and the set of natural numbers.

Definition (1.1.4)[2] An fts (X, 1) is defined to be Hausdorff or F —T, if
and only if the following conditions hold:

If p, g are any two points in X, then (1) if X, # X, there exist open sets V,

and Vg, suchthatp € Ve, q ¢ V, andq e Vg, p ¢ V,;
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(1) if xp, = Xq and p, (Xo) < pg (Xo) , then there exists an open set Vp such
thatp € V,, butq ¢ V,.

So if (X, t) is Hausdorff, then (I) follows immediately.
Example(1.1.5)[2] Let (I,, (a0 € A) be the usual interval base of the
relative topology on [0, 1] induced by R. We define a fuzzy topology on
[0, 1] generated by the base consisting of ¢, X and
lpacAB 0L}

where

w, (x)=p for all xel,= 0 otherwise.
Then (X, t) is a Hausdorff fts, which is not discrete.
Definition (1.1.6)[2] A set A is open if and only if for each point p €A,
there exists an open set G, such thatp € G c A.
Definition (1.1.7)[2] An fts (X, 1) is F-T, if and only if singletons are
closed.
Theorem (1.1.8)[2] An F-T;-space is an F-T,-space.
Proof. Let p be a fuzzy point in X. Then any point g € {p}' belongs to
an open set Vq such that pgy(Xp) > pg, (x, ). So Vg {p}"

If, on the other hand, p is crisp, let x, € X — {X,} be arbitrary. If

{agn, n € N} be a sequence of fuzzy points, where Xq, = X, foralln e N

and the sequence {p, (Xq), N € N} is decreasing and converges to zero,

Then there exists a sequence of open sets {Vpq, N € N}, such that p €

Vg and g, ¢ qu, for all n € N, as (X, 1) is Hausdorff.
Therefore, if P = Ny V,q, then P is a closed set, wherep (x,)=0

and p,(x,)=1



So P' is an open set contained in {p}' and containing the crisp point g
and hence any fuzzy point with support. The definition of compactness
does not seem very natural in an fts, especially when it is Hausdorff, as
Is shown by the following proposition.

Proposition(1.1.9)[2] No subset of a Hausdorff- fts can be compact
(countably compact).

Proof. Let A be a subset of the f, (X, 7) such that pa(xa) >0, for some

Xa € X. Choose a sequence {p,, n € N} of fuzzy points, each having

support Xa, such that ppn(Xa) < pa(xa) for all n-and {u, (xa),n € N}, is

an increasing sequence which converges to ua(Xa).

Then from the Hausdorff property, there exists a sequence of open sets,

{V,, ., neN} wherep, e V, andp,ieV,, .

This sequence together with the complement of the crisp point at xa
forms an open cover of A, which has no finite subcover.
Corollary(1.1.10)[2] Singletons in an F-T,-space are not compact
(countably compact).

We therefore define open cover of a set in a slightly different way, so
that the compactness arising from this definition is more meaningful in
our Hausdorff fts.

Definition (1.1.11)[2] A collection U = {V,, a € A, V, € 1} is said to be
a proper open cover of the set A in the fts (X, 1) if and only if for each

X e X, there exists Ve U, such that p, (X) > pa(x), U is a countable

(finite) proper open cover if A is countable (finite). A subcollection U,
of U is a proper open subcover of U if it is a proper open cover of A in
its own right. Clearly, a proper cover of A is always a cover of A, but

not conversely.



Definition (1.1.12)[2] A set A is properly (countably) compact in the fts
(X, 1) if and only if every (countable) proper open cover of A has a
proper open finite subcover. It can be seen that the crisp set (X, 1) is
I-compact in the sense if and only if it is properly compact.
Proposition(1.1.13)[2] Every singleton (hence a subset with finite
support) in an fts is properly compact.

Proposition (1.1.14)[2] Let (X, 1) be an fts and A a properly compact set
in X. If f: (X, 7) + (Y, U) is an F-continuous subjection, then f [A] is a
properly compact set in Y.

Theorem(1.1.15)[2] A properly compact set in an F-T,-space is closed.
Proof: Let A be a properly compact set in (X, t) and p a point in X, such
that

1 (%5 )> 1a (%, ) (1)
Then, by the Hausdorff property, there exists V, € t such that

Ha(Xp ) < (%, ) 2)
and

Mo (X5 )2 1y (X)) (3)

Therefore, to each point p satisfying (I), there corresponds a collection of

open sets {Vpq, X, € X3, such that p, (x, )>p, (%, ) forall x, € X
(if, however, p,(x, )= 1, then we must have
Ha (Xq)z Ky, (Xq) 4)
and
M (X, )= 1y (X, ) forall g: x, € X. (5)
Hence

HalXg)S v Hv,, (Xq)

Xq eX
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=Ac UV, =A UV,, asAisproper compact

Xq eX Xq, €X

k=l1,..,n
=>Ac UV,, =F say (so that F, is closed)
k=1,.,n
= palxg)< qu(xq) for all x, € X (6)

This is of course accompanied by

06 )2 e, (X, ). (M
Now taking into consideration all points p satisfying (I), we get the
collection {F,, Fy, € t}, such that (6) and (7) hold. Then clearly
HA(Xq)Z ApMHg (Xq), for all X, € X by (6) and (7). Hence A = n, F, =>A

Is closed.

Definition (1.1.16)[2] (X, 1) is a fuzzy P-space if the countable union of
closed sets is closed.

Theorem(1.1.17)[2] Fuzzy Lindelof sets in a Hausdorfl fuzzy P-space
are closed.

Proof. Proceeding as in Theorem (1.1.8), the open cover (Vpq, Xq € X)

will have a countable subcover {Vpq,, n € N) and then F, = Uncn qun

will be a closed set.

The rest of the proof is exactly the same as in Theorem (1.1.17).

As in Gillman and Jersion, we have the following corresponding
theorem for fuzzy P-spaces.

Theorem(1.1.18)[2] Properly compact sets in an F-T;, P-space have
finite supports.

Proof: Let A be a set in the F-T,;, P-space (X, t), having at least a
countable support {x,..., X,... }.

The set F, defined by p (X)=1, X =Xy,...X, 3, X,q,-.X,,... = 0 otherwise

Is closed by Theorem (1.1.18) and because (X, 1) is a P-space.
6



If now G, =F', then {G,, n € N) is a proper open cover of A, which has
no finite subcover. Hence the result follows.
Corollary(1.1.19)[2] Properly compact sets in a Hausdorff fuzzy P-
space have finite supports. In ordinary topology, a closed subset of a
compact (countably compact, Lindelof) set is compact (countably
compact, Lindelof). The following example shows that such may not be
the case in fts’s, whichever definition of open cover we may follow.
Example(1.1.20)[2] Let X be an uncountable set of points and r the
fuzzy topology generated by the base formed by
¢ X {A,acli 2]} and B xeX |

where paq(X) =aforall x € X and

g (x)=%,=0 otherwise.
Then X is (properly) compact, (properly) countable compact, and
Lindelof. But the (proper) open cover {B,, X € X} of the closed set
A, has no countable (proper) open subcover. So A;y4 is neither
(properly) compact nor Lindelof.
Again, let X be partitioned into a countable number of subsets
(Xh, n € N}. Then {B,, n E N and B, = U,.x, By} is a countable (proper)
open cover of A, which has no (proper) finite subcover. So A, 4 is not
(properly) countably compact.
We now consider some of the other separation properties of an fts and
analyze the interrelations among them.
Definition (1.1.21)[2] (X, 1) is regular ( normal) if and only if for each
point p € X (closed set K in X) and V € 1, where p € V(K c A) there
exists G etsuchthatpe Gc G cV(KcGc G cV).

In the above, we have retained the definition of a normal.



Definition(1.1.22)[2] (X, 1) is F-T; (F-T,) if and only if it is F-T; and
regular (normal).

Theorem(1.1.23)[2] An F-T;-space is an F-T,-space.

Proof Let p, g be two fuzzy points, where X, # X, and let w be a third
fuzzy point, where x, = X, and p,, (x,)>1—p(x, ).

Then{w}' is open and p,,, (X)=1—p,, (x, )< p, (X, ) for x=x,=1
otherwise.

Therefore g € {w}, but p ¢ {w}. Now since (X, T) is regular, there
exists V, € tsuch that q € V,c Vq < {w}'. Obviously then, p ¢ Vq.

Similarly, an open set V, can be determined such that peV, and q¢ Vq.

The other cases can be similarly handled.

Theory (1.1.24)[2] An F-T4-space is an F-T;-space. The converse results

(as usual) are not true in general.

Remark(1.1.25)[2] It can be easily seen that the fuzzy space of

Example(1.1.20) is an F-T4-space.

Fuzzy Subspace(1.1.26)[2]

We first define subspace topology on a subset of X, following.

Definition (1.1.27)[2] Let A be a subset of the fts (X, t). The collection
1, ={V,,V, =VNA Ver}

constitutes a fuzzy topology on A. Consequently, (A, t) is called a

fuzzy subspace of (X, 1) and V, is an open subset of A in ta.

Remark(1.1.28)[2] The subspace topology defined for crisp subsets of

X essentially agrees with this definition.

Definition (1.1.29)[2] Let A be a subset of X. Then the set B, where

ue(X) = ua (X) — (uan pa) (X), for some Ve and for all x € X, is called

a closed subset of A in ta.



Remark(1.1.30)[2] It can be shown without much difficulty that closed
subsets of A are not obtained from those of X, as they are in ordinary
topology, which again is a variation of fuzzy topology from ordinary
topology.

Definition(1.1.31)[2] A property P in an fts (X, 1) is said to be
hereditary if it is satisfied by each subset of X. The following theorem
shows that at least one of the separation properties is hereditary.
Theorem(1.1.32)[2] F — Ty, is a hereditary property.

Proof Let A be a fuzzy set in (X, 1) and p a fuzzy point in A. Let (X, 1)

be F-T,. If w be the fuzzy point, where x,, = X, and
“A(Xp)_ “Ap(xp): 1- “w(xp)’
then, (pa A Ry (X)=1—p,,(X,) forx =X, =p,(x) otherwise So

[;,LA — U A u{w}.kx) = pp(xp) for x=x, =0 otherwise.
Hence {p} is closed in ta.

If, on the other hand, p is crisp and A is fuzzy (or crisp), then

[;,LA —Ua /\u{w}.kx) :;,Lp(xp) for all x e X.

This completes the proof.

Definition (1.1.33)[2] The fts (X, t) is an F-k-space if and only if any
subset A of X is open if and only if A n C is open in tc, for each
compact set C in X.

Christoph, however, has defined (X, r) to be an F-k-space if a fuzzy set
A is closed if and only if A n C is closed in X, for each compact fuzzy
set C in X.

Theorems (1.1.23) and (1.1.32) depend for their proofs on the arguments
that (i) if A is a fuzzy set and p a fuzzy point where p € A' then p €A,

and (ii) if A'is closed, then no p € A' can be such that every V e t where



p € V, satisfies the condition V N A = ¢. The following example shows

that these arguments are generally not true.
Example(1.1.34)[2] We take a = ;. Each fuzzy point with value < 3}
belongs to A3, although it belongs to A5 as well, which contradicts (i).

Again, A,; is a closed set. But each fuzzy point with value < £ and > %

belongs to A’z (and not to A;;3) and is such that every open set
containing the point intersects A,;. This contradicts (ii).
Remark(1.1.35)[2] It is interesting to note in this connection that the
converse result, namely, if A contains all its accumulation points, then it
Is closed, is not always true, which can be easily shown by examples.
It is however observed that even with our changed definition of an
F-k space. Theorem (1.1.36), is true, if we follow Christoph’s definition
of local compactness.
Theorem(1.1.36)[2] Let(X,t) be a locally compact fts and
f: (X, ©)—(Y, D) an F-quotient map. Then (Y, D) is an F-k-space.
Proof , for ordinary topology. However, we give a complete form of the
proof as applied to fuzzy spaces.
Let A be a subset of Y such that A n C is open in t¢ for each compact set
C in Y. Since (X, 1) is locally compact, there exists U € r such that
U < V where V is compact in X. So f [V] is compact in Y.
= ANF[V] is open in 1,
= ANf[V]=f[V]NG for some G e D.
Therefore, f[A]NF(Ff[V]=f(F[V])Nf[G]. Taking intersection
with U on both sides,
UNfA]=UNT?G] as UcT(f[V])
= UNT[A]is openin (X, 7).
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Now X= U {U, U € t and U c some compact set V of X} as (X, 1) is
locally compact. Therefore

fA]=U{uNf*[A] Uet and U < some compact set VV of X}=open in
X=Aisopenin (Y, D), as f is an F-quotient map.

Corollary(1.1.37)[2] (Christoph). A locally compact fts is an F-k-space.
Definition(1.1.38)[2] An fts (X, 1) is locally Lindelof if and only if each
point in X has a Lindelof neighbourhood.

Definition (1.1.39)[2] (X, 1) is an F--space if and only if a set V is open
if and only if V n L is open in 7., for each Lindelof set L of X.

Since F-continuous image of a Lindelof set is always Lindelof, a result
analogous to Theorem (1.1.36) can be stated as follows.
Theorem(1.1.40)[2] Let (X, 1) be a locally Lindeloffls and

f: (X, 1) — (Y, U) an F-quotient map. Then (Y, U) is an F-o_-Space.
Corollary (1.1.41)[2] A locally Lindelof fts is an F-o,-space.
Corresponding to the properly compact sets in (X, 1), a concept similar
to F - k-space can be defined as follows:

Definition (1.1.41)[2] An fts (X, 1) is a properly F-k-space if a set A in it
is open if and only if A n C is open in tc, for each properly compact set
CinX.

Section (1-2) Finite Dimensional Intuitionistic Fuzzy Normed Linear
T. Bag and S. K. Samanta introduced the definition of fuzzy norm
over a linear space following the definition S. C. Cheng and J. N.
Moordeson and they have studied finite dimensional fuzzy normed
linear spaces. Also the definition of intuitionistic fuzzy n-normed
linear space was introduced and established a sufficient condition
for an intuitionistic fuzzy n-normed linear space to be complete.

Following the definition of intuitionistic fuzzy n-norm, the
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definition of intuitionistic fuzzy norm (in short IFN) is defined
over a linear space. There after a sufficient condition is given for
an intuitionistic fuzzy normed linear space to be complete and also
it is proved that a finite dimensional intuitionistic fuzzy norm linear
space is complete. In such spaces, it is established that a necessary and
sufficient condition for a subset to be compact. Thereafter following the
definition of fuzzy continuous mapping, the definition of intuitionistic
fuzzy continuity, strongly intuitionistic fuzzy continuity and sequentially
Intuitionistic fuzzy continuity are defined and proved that the concept of
Intuitionistic fuzzy continuity and sequentially intuitionistic fuzzy
continuity are equivalent. There after it is shown that intuitionistic fuzzy

continuous image of a compact set is again a compact set.

Definition(1.2.1)[25] A binary operation * : [0, 1] x [0,1] — [O, 1]
Is continuous t - norm if * satisfies the following conditions :

(1) * is commutative and associative ,

(i) * is continuous ,

(liMa*l=avae[0,1],
(ivya*b<c*dwhenevera<c,b<danda,b,c,d [0, 1].
Definition(1.2.2)[25]A binary operation ¢ : [0,1] x [0,1] — [0,1] is
continuous t-co-norm if ¢ satisfies the following conditions :
(i) ¢ is commutative and associative ,

(i) O is continuous ,

(m)avo0=avas|o,1],
(ivyadb<coédwhenevera<c,b<danda,b,c,d e [0,1].

Remark(1.2.3)[25] (a) Foranyr,, r,e(0, 1) with r; > r, , there
exist r;,r,€(0,1)suchthatry*r;>r, andr;>r,0r,.
(b) For any rs € (0,1) , there exist r¢, r; s (0,1) such that rg * rs > r5 and
r,0r,<rs.
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Definition(1.2.4)[25] Let E be any set. An intuitionistic fuzzy set A
of E is an object of the form A = { (X, pua(X) , va(x)) : x € E } , where
the functions pa: E— [0, 1] and va: E — [0,1] denotes the degree of
membership and the non -membership of the element xE respectively
and forevery x € E, 0 < pa(X) + va(X) < 1.
Definition(1.2.5)[25] If A and B are two intuitionistic fuzzy sets of
a on- empty set E , then A < B if and only if for all x ¢ E,
pa(X) < ps(Xx) and va(x) = ve(X);
A =B ifandonly if forall x ¢ E,
ra(X) = pe(X) and va(x) = ve(X) ;
A ={(x,va(X), pa(X)) : X e E };
A N B = {(x, min(pa(x), ue(x)), max (va(x), ve(x))): x € E};
A N B = {( x, max(pa(x), us(x)), min (va(x), ve(x))): x € E};
Definition(1.2.6)[25] Let =be a continuous t-norm, ¢ be a
continuous t- co-norm and V be a linear space over the field
F (= R or C). An Intuitionistic fuzzy norm or in short IFN on V is
an object of the form A={((x,t), N(x, t), M (x, t)): (X, 1) e V x R" },
where N , M are fuzzy sets on V x R" , N denotes the degree of
membership and M denotes the degree of non -membership (x, t)
V x R" satisfying the following conditions :
(i) N(x, ) + M(x, 1) <1V (x,t) e VxR";
(i) N(x, t) > 0;
(i) N(x,t) =1 ifand only if x =0 ;
(iv) N(c x, t) = N(x, ﬁ)c;tO,CsF;

(V) N(X,8) » N(y,t) <Nx+vy,s+1t);

(vi) N (x, - ) is non - decreasing function of R™ andlim N (x, t)=1;

t—oo
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(vii)) M (x,t) >0 ;
(viil) M (x,t) =0 ifand only if x =0 ;
(ix)M(cx,t):M(x,@)c;tO,c(c,F;

XMKXS)OM(y,)>M (x+y,s+1);

(xi) M (x, -) is non - increasing function of R* andlim M (x, t) = 0.

t—o0

Example(1.2.7)[25] Let (V= R, ||-||) be a normed linear space

where||x||=|x|] ¥ x € R. Define a *b=min {a, b}and a ¢ b =max{a, b}

Kl
t+k|x|

foralla, b [0, 1] . Also define N (x,t) =—'— and M (x, t) =

t+k| x|

where k > 0. We now consider

A={((x, t), N(x, t), M(x, t)): (X, t) e VX R"}.Here Aisan IFN on V.
Definition(1.2.8)[25] If Ais an IFN on V (a linear space over the
field F(= R or C)) then (V, A) is called an intuitionistic fuzzy
normed linear space or in short IFNLS.

Definition(1.2.9)[25] A sequence {X,}, in an IFNLS (V, A) is said
to converge to x ¢ Vif givenr >0 ,t>0, 0 <r < 1 there exists an
integer ny € N such that N(x, — x, t) >1 — r and

M(X,—x, t)<r for all n > n,.

Theorem(1.2.10)[25] If a sequence {Xp}, in an IFNLS (V, A) is
convergent, it’s limit is unique.

Proof: Let lim x, =x and lim x, =y . Also lets, t ¢ R+.

nN—o0 nN—aoo

Now,

lim X, =X =

Nn—o0

lim N(x, —x,t)=1
lim M(x, —x,t)=0

n—o0

im x, =y=

N—o0

lim N(x, -y, t)=1
lim M(x,, —y,t)=0

n—o0
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NEx—-y,stt)=NX-—Xp+X,—y,s +1)
>N(X—Xxp,5)*N (X, —y,t)
=N X,—x,8)* N X, —y,t)
Taking limit, we have

NE-y,s+t)>limN(X,—x,s)*= ImNX,—y,t)=1

=>NExX-y,s+tt)=1l=2x—-y=0=>X=Yy

Theorem(1.2.11)[25] If lim x,= x and lim y,=y thenlim x,+y,=x+y

nN—o0

inan IFNLS (V, A) .
Proof: Lets,t&R". Now,

Im X, =x=

n—o

lim M(x, —x,t)=

Nn—o0

lim N(x, —x,t)=1
0

lim N(y, -y, t)=

Nn—o0

1
lim M(y, —y,t)=0

lim y, :y:{
Now,
N((Xnt+yn) —(x+y), s + 1) =N((Xn = %) + (yn—y), s + 1)
>N Xy = x,8) « N (Yn—y, 1)
Taking limit, we have

r|]ir72ON (X0 +Yn) — (X +y),s +1t)

2IimN(Xn_X,S)*N(yn_y,t)zl*lzl

n—oo

ImN ((Xy +Yn) —(x+y),s+t)=1

Again,
M((Xn +yn) = (x +y), s +t) =M((xn = X) H(yn —y), s T 1)
<M(Xn —X%,8) O M(Yn—y, t)
Taking limit, we have
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lim M (X, +Yn) — (X ty), st t) < ImM (Xp— X, S) Olim M (y, —y, t)

=000=0
= ImM((Xp+yn) —(x+y),s+t)=0

Thus, we see that limx, +y,=x+vVy.

n—oo

Definition(1.2.12)[25] A sequence {X,}, in an IFNLS (V, A) is

said to be a Cauchy sequence if lim N(x,tp—x,,t) =1 and
n—o0

M(Xptp—=xn, t)=0,p=1,2,3,---,t>0.
Theorem(1.2.13)[25] In an IFNLS (V,A), every convergent
sequence is a Cauchy sequence.

Proof: Let {x,}» be a convergent sequence in the IFNLS (V, A)

with lim x"=x . Lets,teR"andp=1,2,3, .-, we have

NXpn+p—Xnp,S+t)=NXp+p—x+X—Xpn, S+1t)
>N (Xp+p—x,8) *» N (X —xp, t)
=N X, +p—%,8) * N (Xp — x, t)
Taking limit , we have

Iim N (Xn+p - Xn, S + t)

n—oo

> limN (Xpsp =X, 8) = IIm N(Xp—x,t)=1x1=1

nN—o0

= MmN (Xpsp —xn, S+t)=1Vs,teR"andp=1,2,3,: -

Again,
M (Xnsp = Xn, S+ ) =M Xpsp =X + X — X, S + 1)
<M (Xnsp =X, 8) O M (X — Xp, )
=M Xnsp — X, 8) O M (Xn — X, t)
Taking limit, we have

lim M (Xn+p — Xn, S + 1)

Nn—oo
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<ImM Xpip =%, 8) O MM (Xp —x,t)=000=0

Nn—oo

= limM Xpsp = Xp, S+t)=0Vs,teR"andp=1,2,3, - --

Thus, {x,}, is a Cauchy sequence in the IFNLS (V, A) .
Section(1-3) The converse of the above theorem is not
necessarily true

Example(1.3.1)[25] Let (V, || - ||) be a normed linear space and
define a « b = min {a, b} and a ¢ b =max {a, b} for all a, b ¢ [0, 1].

For all t > 0, define N (x, t) = and M (x,t) = where k>0.

t+k\x\ t+k\
It is easy to see that A = {((x, t), N (x, t), M (X, t)):(x,t) e V x R+}
isan IFN on V. We now show that

(@) {xn}n is a Cauchy sequence in (V, ||- [ if and only if {Xx,}, is a
Cauchy sequence in the IFNLS (V, A) .

(b) {xn}. is a convergent sequence in (V, ||-|]) if and only if {x,}, is
a convergent sequence in the IFNLS (V, A) .

Proof:

(a) Let {xn}n be a Cauchy sequence in (V, ||-||]) and t > 0.

S lim||x,+p—x4/|=0forp=1, 2, ...
Nn—o0
Xn+p_xn

X

n+p  “‘n

K
o lim t _1and lim
- ¢+ K|[X X n—e {4 K|IX

n+p ~ “‘n

< Im N (Xpsp — Xn, 1) =1 and Im M (Xpsp — xp, t) =0

<{Xn}n 1S a Cauchy sequence in (V, A)
(b) Let {x,}n be a convergent sequence in (V, || - ||) andt>0 .

< lim|| X, —x||=0
n—oo
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K
o lim t _1and lim
ot 4+ K X oot 4+ K

X X

n+p ~ “*n

X

n n

Xn+p - Xn+p -

< ImN (X, —x,t)=1and ImM (X, —x,t) =0

<{Xn}n IS a convegent sequence in (V, A).
Theorem(1.3.2)[25] Let (V, A) be an IFNLS, such that every
Cauchy sequence in (V, A) has a convergent subsequence. Then
(V, A) is complete .

Proof: Let {x,}, be a Cauchy sequence in (V, A) and {X.}« be a
subsequence of {x,}, that converges to x ¢ V and t > 0 .

Since {x,}, is a Cauchy sequence in (V, A) , we have

< lim N(xn—nk,%jzland lim M(xn—nk,%jzo

n,k—o0 n,k—o0

Again since {Xnx}x converges to x , we have

lim N(xn—nkéj:land lim M(xn—nk,%)zo

n,k—o0 n,k—o0

Now,

N (X, — X, 1) =N (Xp — Xpx + Xpk — X, t) >

N(xn —nk,ij*M(xn —nk,lj
2 2

n—o0
Again, we see that

M(Xn_X,t):M(Xn_Xnk-l-Xnk_X,t)

< M(xn — nnk,%jOM(xnk —x,%j<:> IimM (X, —x,t)=0

n—oo

Thus, {X,}, converges to x in (V, A) and hence (V, A) is complete.
Theorem (1.3.3)[25] Let (V, A) be an IFNLS , we further assume
that,
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(Xii)N (X, )>0Vt>0=x=0
xXivyM(x,t)>0VvVt>0=x=0

Define|x|. = A {t :N (x, t)>a} and|x| = v{t :M (x, t) < 0, a & (0,1).
Then both {HxHi: a € (0, 1)} and {HXHZ o ¢ (0, 1)} are ascending

family of norms on V. We call these norms as a - norm on V

corresponding to the IFN Aon V.

Proof: Let o £ (0, 1) . To prove HxHi is a norm on V, we will prove
the followings :

() [x[>08x>V;

@) [x[. =0 x=0;

(3) Jexf,=Tel I,

(4) [x+yl, = X[, +¥1,.

The proof of (1), (2),(3) and (4) directly follows from the proof of

the theorem (1.3.2) . So, we now prove (4).

HxHi+HyHi =A{s: N (Xx,s)>a}+A{t: N (y,t) >}
= A{s + t: N(X, 8) >a, N(y, t) > a} = A{s + t: N(X, $)» N(y, t ax a} >
A{s+tN(X+y, s+t)>0a}= Hx+nyx , which proves (4) .
Let 0<a<oo<l1. [x|; =A{t: N (x, t) = oi}and|x], =A{t: N(x, )= 0}.
Sincea; <ay,{t: N(X,t)>a} c{t: N(X,t) > a;}
= A{tN (X 1) >0} >A{tN X t)>0}= HXH;Z HXH; Thus, we
see that {HxHi o€ (0, 1)} is an ascending family of norms on V.
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Now we shall prove that {HxHi o ¢ (0, 1)} is also an ascending
family of normson V. Let a € (0, 1) and x , y € V. It is obvious that
HxHiZO. Let HxHi =0. Now, HxHi=0:>v{t: M (X, t) < a}= 0=
M t)>a>0Vt>0=x=0.Conversely, we assume that
X=0=>M(Xt)=0V1t>0= vi{t M(x,t)Sa}=0:>HxHi=0.
It is easy to see that k [ex|” = |c ||| VceF.

HxHi +HyHi =v{ssM(Xs)<ao}+v{tM(y,t) <a}=v{s+t
M(X,8) <o, M(y,t)<a}=v{s+t: M (X, 8)0M(y,t)<ala}
>{s+tM(x+y, s+ )<a}=|x+y[, thatis |[x+y[. < |X|. +[y[
VX,yeV.

Let 0 < a; < a, < 1. Therefore, HXH;: v{t:M(x,t)<a}and

HXH;: v {t: M (x, t) < a,} . Since a;< o, , we have
{t: M t)<o}c{t: M(x,t) <a,}
=>v{tM X t) <o} v{t: M (X, 1) <a}
= HXH; < HxHi2 Thus we see that {HxHi: o € (0, 1)} is an ascending

family of norms on V.

Lemma(1.3.4)[25] Let (V, A) be an IFNLS satisfying the condition
(Xiit) and {x;, X3, ..., X} be a finite set of linearly independent
vectors of V. Then for each a ¢ (0, 1) there exists a constant C, > 0

such that for any scalars a; , o, , - - -, 0,

n
loy X, + apX, +.+ ochnHiL > CQZ;,‘OH‘
i=

where HHiIS defined in the previous theorem.
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Theorem(1.3.5)[25] Every finite dimensional IFNLS satisfying the
conditions (xii) and (xiii) is complete .

Proof: Let (V, A) be a finite dimensional IFNLS satisfying the
conditions (xii) and (xiii) . Also, let dimV =k and {e;, e, ,..., ek}
be a basis of V . Consider {x,}, as an arbitrary Cauchy sequence in
(V, A).

Let x, = B e; + B e, + - - - +B e wherep!™ ,B,....p" are
suitable scalars. Then by the same calculation of the theorem

(1.3.5) , there exist B, ,B,,...,B. & F such that the sequence {B\"},

k
converges to f3;fori =1, 2,... , k. Clearly x = > B.e,eV. Now, for
i=1

all t >0,
N (X, —x,t) =N (iﬁ(”e —ZB. ’ j
=N (S0 -p ot
=N (( gn)_Bl)eliﬁ)*"-*((ﬁ(kn)—Bl)ek’ﬁ)
Mot )Mo
Since rllmoﬁ:oo we see that r!lirzo N(ei,mjzo

=S ImMNX —x,)>1x---+x1=1Vt>0

N—o0

= MmN, —x,t)=17Yt>0

n—oo

Again, for all t > 0,

M (X, — x, t) = M((B" =B, ey, £ 10..0((B — B, v t)

= M(el’ kBl jo <> M(ek1 B(n —Bkj
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Since lim ——t— =00, we see that lim M| ¢;,——— |=1
n—eo k|| R0 K B

> ImMMX,—x,t)<1lgy---01=1Vt>0

Nn—o0

= MM (X, —x,) =0V t>0

n—oo

Thus, we see that {x,}, is an arbitrary Cauchy sequence that
converges to x € V, hence the IFNLS (V, A) is complete .

Definition (1.3.6)[25] Let (V, A) be an IFNLS. A subset P of V is
said to be closed if for any sequence {X,}, in P convergesto x ¢ P

, thatis, lIm N (x,—x,t)=1,and Im M (x, —x,t)=0 = x ¢ P,

Definition (1.3.7)[25] Let (V, A) be an IFNLS. A subset Q of V is
said to be the closure of P ( < V) if for any x € Q , there exists a
sequence {Xp}n in P such that

lim N (x, —x,t)=1,and limM (x, —x,t) =0 V te R".

nN—o0

We denote the set Q by P.
Definition (1.3.8)[25] Let (U, A) and (V, B ) be two IFNLS over
the same field F. A mapping f from (U, A) to (V, B) is said to be
intuitionistic fuzzy continuous ( or in short IFC ) at X, € U , if for
any givene>0,a¢€(0,1),36=06(a,g)>0,p=Pp(a, €)(0,1)
such that for all x € U,
Ny (X — Xo, 8) > B = Ny (f (x) — £ (x0), €) > @

and

My (X —Xo, 8)<1—B =My (f(x) - f(xq),€)<1- a.
If fis continuous at each point of U , fis said to be IFC on U .
Definition(1.3.9)[25] A mapping f from (U, A) to (V, B) is said to
be strongly intuitionisticfuzzy continuous(or in short strongly 1FC)

at xo e U, if for any given 36 =6 ( a, €) > 0 such that for all x € U,
22



Ny (f (x) — f (x0), €) = Ny (x — %0, 8) and
My (f (x) —f (X0), &) < My (x ~ X0, 3) .

f is said to be strongly IFC on U if f is strongly IFC at each point
of U.

Definition(1.3.10)[25] A mapping f from (U, A) to (V, B) is said
to be sequentially intuitionistic fuzzy continuous (or in short
sequentially IFC ) at xo € U, if for any sequence {Xn}», Xn € U V n,
with x,— X, in (U, A) implies f (x,) —f (Xo) in (V, B), that is,

lim Ny (Xn — X0, ) =1 and lim My (xn — X, t) =0

nN—o0

:>!]imw Ny (f(xn) — f(x0), t) =1 and rI]imOOMV (f(xn) — f(Xp), t) =0

If f is sequentially IFC at each point of U then f is said to be
sequentially IFC on U,
Theorem(1.3.11)[25] Let f be a mapping from (U, A) to (V, B). If
f strongly IFC then it is sequentially IFC but not conversely .
Proof: Letf: (U, A) — (V, B) bestrongly IFC on U and x, e U .
Then for each € >0, 3 6 =& (Xo, €) > 0 such that for all x ¢ U,

Ny (f (x) — £ (x0), €) > Ny (x — X0, 0) and

My (f (x) = f (Xo), &) < My (X — X, d)

Let {x,}, be a sequence in U such that x,, —X,, that is, for all t > 0,

lim Ny (Xn — X0, t) = 1 and lim My (X, — X0, t) = 0

Thus, we see that
Ny (f (Xn) — f (X0), €) > Ny (X — X, ) and
My (f (Xn) — £ (X0), €) < My (Xn — Xg, 9)
which implies that
liinw Ny (f(xn) — f(x¢), €) = 1 and lianMV (f(xn) — f(Xo), €) =0

that is, f (xa) — f (Xo) in (V, B) .
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To show that the sequentially IFC of f does not imply strongly IFC
of f on U, consider the following example.
Example(1.3.12)[25] Let (X= R, ||-||) be a normed linear space
where IIX|| =| x| V¥ x € R. Definea~b =min{a ,b}anda¢b
= max{a, b}
foralla, b ¢ [0, 1] . Also, define

Ni, My, N, My X x RY — [0, 1] by

N ()=t M ()=

¥ T Ct+[X
t Kk|x
N0 Mz(x,t)=t+‘—k“x‘k>0

Let A={((x, t), N;, M)): (x, 1) ¢ X x R"} and
B={((x, t), N;, M,): (X, t) ¢ X x R"}
It is easy to see that (X, A) and (X, B ) are IFNLS . Let us now

define, f (x) = =% ¥V x & X . Let xo € X and {x,}, be a sequence in

1+x?

X such that x, — Xq in (X, A) , that is, for all t > 0,

lim N1 (Xn — X0, t) =1 and lim M1 (Xn — X0, t) =0
n—o0

n—oo

that is, lim —t— =1 and lim 222 —

N300 t+ X —Xo| N300 t+HXn—Xo|
= lim |Xn - Xo‘ =0
n—o

Now, for all t >0, N (f (xn) = f (x0). V) = Gt ey

_t+k

t
4

Xﬁ X

l+xﬁ 1+x§

B t(1+ X§X1+x§)
- t(1+ X§X1+ x§)+ kx;‘(1+ xg)—xg(1+ xﬁ]

24



B t(l+ xﬁX1+ xg)
- t(1+ xﬁX1+ x§)+ k‘(xﬁ +x§Xxﬁ +x§)—xﬁx§(x§ +x§]

= lim N> (f(x0) = £ (xo) , ) = 1.

2 2 2 2,22 2
k(xn +an1+ x0)+ xnxo(xn +xO]

t(1+ xﬁXlJr x§)+ k

=M, (f(x,) — f(xo), t) =

2 2¥,,2 2 2,22 2

lim M (f(xq) = f (x,), 1) = 0.

Thus, f is sequentially continuous on X . From the calculation of
the example, it follows that f is not strongly IFC.
Theorem(1.3.13)[25] Let f be a mapping from the IFNLS (U, A) to
(V, B) and D be a compact subset of U . If f IFC on U then f (D) is
a compact subset of V.

Proof: Let {y,}» be a sequence in f (D). Then for each n, 3 x,¢, D
such that f (x,) = y,. Since D is compact, there exists {Xnx}xa
subsequence of {x,}» and X, € D such that X,x — X, in (U,A).

Since f is IFC at x, if for any given € >0, B (0, 1), 3 6=0 (a, €) > 0,
B =P (a, €) (0, 1) such that for all x ¢ U,

Ny (X — X0, 0) > B = Ny (f (x) — £ (X¢), €) > «a

and
Mu (X — X0, 0) <1 =B = My (f (x)—f (X0), &) < 1—a
Now, X.x — Xo in (U, A) implies that 3 n, € N such that for all
k> n,
Nu (Xnk — X0, 0) > B and My (Xpk — X0, 0 ) <1 — P
= Ny (f (Xn) = f(x0) , &) >0e)<1-a
and My (f (Xok) —f(X0) ,8) <1 -«
I. €. Ny (Yok — £ (X0), €) >aand My (Ynk— T (X0), €) <1 —a V k>n,
=f (D) is a compact subset of V.
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Chapter 2
Fuzzy Anti — Normed Linear Space and Some Properties of
B(X, Y)
Section(2-1) Fuzzy Anti — Normed Linear Space
Fuzzy set theory is a useful tool to describe situations in which the
data are imprecise or vague. Fuzzy sets handle such situation by
attributing a degree to which a certain object belongs to a set. The
idea of fuzzy norm was initiated by katsaras. Felbin defined a
fuzzy norm on a linear space whose associated fuzzy metric is of
kaleva-Seikkala type. Cheng and Mordeson introduced an idea of a
fuzzy norm on a linear space whose associated metric is Kramosil
and Michalek type.
Bag and Samanta gave a definition of a fuzzy norm in such a
manner that the corresponding fuzzy metric is of Kramosil and
Michalek type. They also studied some properties of the fuzzy
norm. Bag and Samanta discussed the notions of convergent
sequence and Cauchy sequence in fuzzy normed linear space. They
also made a comparative study of the fuzzy norms defined by
Katsaras, Felbin, and Bag and Samanta.
After an introduction of fuzzy norms, we introduce a fuzzy anti-
norm linear space depending on the idea of fuzzy anti-norm was
introduced by Bag and Samanta and investigate their important
properties. Then we shall introduce the notions of convergent
sequence, Cauchy sequence in fuzzy anti-normed linear
space. We also introduce the concept of compact subset and
bounded subset in fuzzy anti-normed linear space.
Lastly, we have introduced the definition of intuitionistic fuzzy

normed linear space.
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In, Felbin introduced the concept of a fuzzy norm based on a
kaleva- Seikkala type of fuzzy metric using the notion of fuzzy
number. Let X be a vector space over R (set of real numbers).
Let|| [|: X—R*(I) be a mapping and let the mappings L,U:

[0,1]%[0,1]—[0,1] be symmetric, nondecreasing in both arguments
and satisfying L(0,0) = 0 and U (1,1) =1.Write U\x”]az mxHiRHxHj] for
X €X ,0<a<l and suppose for all xeX , x£0 there exists o €(0,1]
independent of x <such that for all o <a,,

(A) X <0,

(B) inf HX\E1 >0.

The quadruple (X || || ,L,U )is called a Felbin-fuzzy normed linear
space and is a Felbin-fuzzy norm if:

(i) ||x|| = O if and only if x = 0 (the null vector),

@) x| =) r | x|, x € X, reR

(iii) forall x , y €X,

(a) Whenever s> x|, t>]y],, and s+t>|x+yl,

X+ yll (s +6) =L (Ix]| (), llyll (8)).

(b) Whenever s<||x|;, t<|y;, and s+t <[x+y];,

X+ yll (s + ) < U (Ix]| (), llyll (£)).
Fuzzy Norm on A Linear Space(2.1.1)[11]
We devoted to a collection of basic definitions and results which
will be needed.
Definition (2.1.2)[11] Let X be a linear space over a real field F
(field of real/complex numbers). A fuzzy subset N of X XR is
called a fuzzy norm on X if the following conditions, are satisfied

for all x, y eX.
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(N1) Forall t eR witht <0O,N (x ,t) =0,

(N2) For all t eR witht>0,N (x,t) =1 ifand only if x =0,

(N3) Forallt eRwitht>0,N (cx ,t) =N (x ,t/|c|])ifc #0, c €F,
(N4) ForallsteR, N(x+y,s+t)>min{N (x,s ),N(y,t)},
(N5) N(x,.) is a non-decreasing function of R and lim—,N(x,y) =1.
Then N said to be a fuzzy norm on a linear space X and the pair
(X ,N)is said to be a fuzzy normed linear space or in short FNLS.
The following condition of fuzzy norm N will be required later on.
(N6) N (x ,t)>0,vt>0implies x = 0.
Example(2.1.3)[11] Let (X,]|| ||)be a normed linear space. Define

t
N(x, t)=1 t+[x]
0, whent <0.

when t>0, teR, XxeX,

Then (U ,N ) is an FNLS.
Example(2.1.4)[11] Let (X, || ||)be a normed linear space. Define

N(x,t)={

Then (U ,N ) is an FNLS.
Theorem(2.1.5)[11](Let (X ,N )be a fuzzy normed linear space.
Define ||X||, = inf {t :N (x ,t ) > a};a €(0,1). Then {|| ||.: o €(0,1)}is

an ascending family of norms on X. These norms are called

0, if tSHXH, teR, xelX,
1, if t>HXH, teR, xeX.

a— norms on X corresponding to fuzzy norm on X..
Theorem(2.1.6)[11] Let{|| || : « €(0,1)} be an ascending family
of norms on linear space X . Define a function N’ : X xR —[0,1]
as:

supfo. € (0,1): x| < t} when (x,t)# 0,

0, when (x,t)=0.

N'(x,t):{
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Then N’ 1s a fuzzy norm on X.
If the index set (0,1) of the family of crisp norms{|| ||.: o €(0,1]} of

Theorem(2.1.5) is extended to (0,1] then a fuzzy norm N is
generated, satisfying an additional property that N (X, -)attains the
value 1 at some finite value t.
Theorem(2.1.6)[11] Let {|| ||.: a € : (0,1)}be a descending family
of norms on a linear space X. Now define a function
N’: X xR —[0,1] as
N (x, 1) = {sup{a e (01]:|x| < t}, when (x,t)= 0,
0, when (x,t)=0.
Then
(a) N'"is a fuzzy normon X
(b) For each x €X, 3t =t (x) > 0 such that N'(x , s ) =1,Vs >t .
Definition (2.1.8)[11] Let (X ,N ) be a fuzzy normed linear space.
Let{n,} be a sequence in X . Then {n,}is said to be convergent if
dx € X such that lim, ., N (x,— x,t) =1, vt>0.
Definition(2.1.9)[11] Let (X ,N ) be a fuzzy normed linear space.
Let {n,}be a sequence in X . Then {n,}is said to be a Cauchy
sequence if lim, o N (Xpep— Xn, t) = 1, Vt >0 and {ny}, p = 1,2,3,...
Definition(2.1.10)[11] A subset of a fuzzy normed linear space
(U,N") is said to be bounded if and only if 3t > 0 and 0 < r <1such
that N (x, t) >1—r VX EA .
Definition(2.1.11)[11] A subset A of a fuzzy normed linear space
(U,N") is said to be compact if any sequence{n.}in A has a
subsequence converging to an element of A.
Fuzzy Anti-norm on A Linear Space (2.1.12)[11]
We introduce the notion of fuzzy anti-normed linear space and

investigate their important properties.
29



Definition(2.1.13)[11] Let U be a linear space over a real field F.
A fuzzy subset N” of X x R such that for all x ,ueU and ¢ €F:
(N"1) For all t €ER with t <0, N (x, t) =1;

(N2) For all t eER witht>0, N (x,t) =0 if and only if x = 0;
(N"3) Forall t ER witht >0, N™ (cx, t) =N~ (x, t/|c|) if ¢ # 0, ¢ E€F;
(N"4) Forall s,t eER, N (x +u,s+1) <max{N" (x,s) =N (u, t)};
(N"5) N'(x, t) is a non-increasing function of t € R and
lim, _.N" (x, t)= 0. Then N is said to be a fuzzy anti-norm on a
linear space U and the pair (U,N) is called a fuzzy anti-normed
linear space or in short Fa-NLS.

The following condition of fuzzy norm N will be required later on.
(N"6) For all t €R with t > 0, N(x, t) <1 impliesx =0 .
Example(2.1.14)[11] Let (U, || ||) be a normed linear space. Define

— whent>0, teR, xeU,

0, whent <0.
Then (U, N') is an Fa-NLS.
Proof: Now we have to show that N (x, t)is afuzzy anti-norm in U.
(N1) For all t €ER . Ift < 0, we have by definition N (X, t).

(N2) For all t €ER with t > 0, N(x, t)O:@tHLHHHZO(:)x:Q.
+ X
(N*3) For all t € R with t > 0, and <c (# 0)€ F (field of
real/complex numbers), we get
NP I < N(LJ
tafex|  t+lefx| ¢ d

o T
d

(N"4) For all s ,t € R and x ,u € U . We have to show that

N"(x+u, s,t) < max{N'(x, s), N'(u, )}. If () s +t < 0, (b) s =t = 0,
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(c)s+t>0;5s>0,t<0;s<0,t>0, then in these cases the relation
is obvious. If (d) s > 0,t >0,s +t > 0. Then, assume that
: : x|l
N"(x.5) < N (1) = X <
s+t u
=[xt -+ ul) < ul(s +x]) = t)x] < sfu... M

Now

Perul el ]t s
s+tfx+ul teful st fxu] el (st JulXeul)

By (1),

SET I " I Y I
s+t o] = tel s+t ]~ e

N"(x+u, s,t) < max{N (x, s), N'(u, t)}.
(N5) If t; < t, <0, then we have N (X, t;), N(x, t,) = 0. If )< t,< 0
then

XX x|, —t,) . .
< = >0= N"(x,t,)>N"(x,t,)
o]t ] (ks +xXE +x]) 1 2

Thus N'(x ,-) is a non-increasing of R. Again if x # 0 then

lim N"(x, t) = lim M 0.

N g
IF x = 0 then lim N*(x,t)=N"(0,t)=0.

Thus lim N"(x,t)= 1, vx €U. Hence (U ,N") is an Fa-NLS.

t—

Example(2.1.15)[11]Let (U, || ||) be a normed linear space. Define
N™: X x R — [0,1] by

N*(x,t)z{

Then (U ,N") is an Fa-NLS.

Proof: It can be easy verified that (U ,N") is Fa-NLS.
31
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Remark(2.1.16)[11] N is a fuzzy anti-norm on U iff 1- N is a
fuzzy normon U .

Lemma(2.1.17)[11] Let(U,N)be aFa-NLS. Then N'(x-y, t)=
N"(y—x,t) for all x , y in U and t €(0,%).

Proof: For x , yinUandt €(0,00),N* (x —y,)=N (—(y = x) ,t) =
N (y —x,t/]-1)) N’ (y —x.,t).

Definition(2.1.18)[11] Let N” be afuzzy anti-norm U satisfying
(N"6). Define x| inf {t >0: N"(x,t)< a, o € (0]},
Lemma(2.1.19)[11] Let (U ,N°) be a Fa-NLS. For each a €(0,1]

and x €eU. Then we have

(i) X, =[x . for 0<o<a<1.
(ii)ch; =|c]|x a for any scalar c.
Gii)|x +y|. <|x| +[x]..

Proof: (i) For 0 < a;< a, < 1, we note inf{t > 0: N (x ,)< a,}

*

Inf {t > 0: N (X ,t)< oo}= |x

*
> |
o

X

(i) For any scalar ¢ and Yo €(0,1],
X[ + || = inf{t > 0: N"(x ,t)< a}+ inf{s > 0: N" (y ,$)< a}

> inf{t +s>0: N'(x ,8)< a,N(y ,8)< a} =[x +y] .
Theorem(2.1.20)[11] Let (U ,N°) be a Fa-NLS. Then {| H;:O‘

€(0,1]} is a decreasing family of norms on U.

Proof: By Lemma(2.1.19) it can be easy verified that.
Theorem(2.1.21)[11] Let {| H;:a €(0,1]}be an decreasing family
of norms on linear space U. Now define a function

N",: UxR—[0,1]as
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L e @ X <t} when (x,) =0,
s 1 when (x,t) = 0.

Then

(a) N7, is a fuzzy anti-norm on U .
(b) For each x €U, 3r = r (x ) > 0 such that N;(x,t) =1.
Proof: Now we have to show that N; is a fuzzy anti-norm on X .
(N'1) (a) vt €R with t < 0, {aec(01]:|x|. <t}= ¢ V € we have
N;(x,t) = 1.
(b) Fort = 0 and x # 0, {oce(O,l]:HxH;st}: ¢ V € we have
N;(x,t) = L.oe(01:[x] <t
(c) Fort = 0 and x = 0 then from the definition N;(x,t) = 1.
Thus vt €R with N;(x,t) =1,vx €U .
(N"2) vt €R with t >0, N;(x,t) = 0. Choose any ¢ €(0,1). Then for
any t>0,a, e (a]such that HxH;1 <t, and hence|x| <t, since t > 0
is arbitrary, this implies that HxH: = 0.
If x = 0 then for t >0, N;(0,t)=inf {a e (O,l]:HQHZ; <t}= 0. Thus for
all t eR with t > 0, N;(x,t) = 0 if and only if x = 0.
(N"3) For all t €ER with t > 0, and ¢ (# 0)EF, we have

N;(cx,t)=inf {a € (0]]: chH; <t}=inf {ae(0]]: ‘CH‘XH; <t}

= inf {oc e (0]]: chH; < é} = NI(X l} vx e U.

"C
(N"4) We have to show that Vs ,t €R and

vx U €U, Nj(x+u,s+t) <max {Nj(x,s),N;(u,t)}.
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Suppose that vs,teR and vx,ueU, Nj(x + u,s +t)>max {N;(x,s),N; (u,t)}
Choose k such that Nj(x+u,s+t) > k > max {N;(x,s),N;(u,t)}.

N; (X +u,s+1)>k = inf {oce(o,l]:Hx+uH; £s+t}

Now . o
>k=|x+uf <s+t=|x| |u, >s+t.
Again
k = max{N; (x,s), NI(x,s)}:> k> N;(x,s)andk > Nj(u,t)x|, <sand|u, <t
= oy >+t

Thus s+t<HxH; +| Z <s+t, a condition.

u

Hence N;(X+u,s+t)<max{N;(x,s), N;(x,s)}.

Definition (2.1.22)[11] Let (U ,N") be a Fa-NLS. A sequence {x,}
in U is said to be convergent to x €U if givent > 0,0 < r <lthere
exists an integer n €N such that N;(x, —x,t) <r, for all n > n,.

Example(2.1.23)[11] Let (X, || [)be an normed linear space and
N” :X xR— [0,1]. Define

whent>0, teR,

1 whent <0.

Then (X ,N°) is a Fa-NLS (see Example(2.1.16). Let {x,}be a
sequence in X , then

a) {x,} is a Cauchy sequence in (X, || ||) if and only if {X,}is an
Cauchy sequence in (X ,N").

b){x,} is a convergent sequence in (X, || |[|) and only if {X,}is an
convergent sequence in (X ,N).

Proof: a) Let {x,}be a Cauchy sequence in (X, || ||). Then

< lim

N—o0

X, — X

=0, forall p=2123....

n+p
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Jx

n— Xn+p

X, — X

=0, for all t>0.

)= lim

& lim N (x, — X
n—o t 4

N—»00 n+p

n+p

& lim N(x,, - xmp): 0.

< {x,} is an Cauchy sequence in (X ,N").
b) {x, }is a convergent sequence in (X, || |). Then

< lim|x, —x|=0.

N—o0

< lim N (x,, —x) = lim M

=0, for all t>0.
e ], ]

< lim N*(x, —x)=0.

< {x.} is an convergent sequence in (X ,N").
Definition(2.1.24)[11] Let (X ,N") be a Fa-NLS. A subset B of U

is said to be closed if for any sequence {xn} in B converges to X

€B, that is, lim N"(x, —x)=0, vt >0 implies that x € B.

n—o0

Definition(2.1.25)[11] Let (X ,N°) be a Fa-NLS. A subset W of U

is said to be the closure of B cW if for any w €W , there exists a

sequence {x, }in B such that lim N'(x, —x)=0, vt € R", we denote

n—o0

the set W by B.
Definition(2.1.26)[11] A subset A of a Fa-NLS is said to be

bounded if and only if 3t>0 and O<r<1such that N;(x,t)<r, vx €A.
Definition(2.1.27)[11] Let (X ,N) be a Fa-NLS. A subset A of a

Fa-NLS is said to be compact if any sequence{xn}in A has a

subsequence converging to an element of A.
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Intuitition Fuzzy Noem(2.1.28)[11]

We redefine the notion of fuzzy normed linear space using t-norm
and fuzzy anti-normedlinear space using t-conorm then we
introduce the definition of intuitionistic fuzzy norm over a linear
space.

Definition(2.1.29)[11] A binary operation *: [0,1]x[0,1]—[0,1]is
continuous t-norm if * is it satisfies the following conditions:

(a) * is commutative and associative;

(b) * is continuous;

(c) a*1=aforall ag[0,1];

(d) a *b <c *d whenever a<c,and b <d, and a,b,c,d €[0,1].
Examples of continuous t-norm are a *b = ab,a *b = min{a,b} and
a *b =max{a +b —1,0}.

Definition(2.1.30)[11] Let X be a linear space over a real field F
(field of real/complex numbers). A fuzzy subset N of X xR (set of
real numbers) is called a fuzzy norm on X if the following
conditions, are satisfied forall x , y €X :

(N1) Forallt eR witht<O,N (x ,t ) =0,

(N2) ForallteR, N (x,t) =lif and only if x =0,

(N3) Forallt eR witht>0N (cx,t)=N (x,t/c)ifc#0,c €F,
(N4) Foralls teR,N(x+y,s+t)>N(x,s )*N (y.t),

(N5) N (x ,-)s a non-decreasing function of R and lim_,,, N (x,t) =1
Then N is said to be a fuzzy *— norm on a linear space X.
Definition(2.1.31)[11]A binary operation ¢ : [0,1]%[0,1]—[0,1] is
continuous t-conorm if ¢ is it satisfies the following conditions:

(a) ¢ is commutative and associative;

(b) ¢ is continuous;

(c) a00 = a for all a€[0,1];
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(d) a0b < ¢0d whenevera<c,and b <d, and a,b,c,d €[0,1].
Examples of continuous t-conorm are a0b = min{a +b,1},a0b =
max{a,b} and a0b = a +b —ab.

Definition(2.1.32)[11] Let U be a linear space over a real field F .
A fuzzy subset M of X xR such that for all x ,u €U and ¢ €F :
(N"1) For all t €R with t < 0,M (x ,t) =I;

(N"2) For all t €ER with t > 0,M (x ,t) = 0if and only if x = 0;

(N"3) For all t eER witht > 0,M (cx ,t) =M (x .t/ ) ifc #0,c EF;
(N"4) For all s ,t ER, M*(x +u, s +1)< M(x , )¢ N(u ,t);

(N'5) M (x ,t) is a non-increasing function of t € R and
lim_.M(x, t) =0.

Then M is said to be a fuzzy ¢ — antinorm on a linear space U.
Definition(2.1.33)[11] Let*be a continuous t-norm, ¢ be a
continuous t-conorm and V be a linear space over the field F (=R
or C).An intuitionistic fuzzy norm on V is an object of the form
A{((x t),N(X,t)M(x,t)):(x,t)e VxR"} where N, M are
fuzzy setson V x R", N denotes the degree of membership and M
denotes the degree of non membership (x ,t )€ V x R" satisfying
the following conditions:

(1) N is a fuzzy *— norm on a linear space V .

(i) M is a fuzzy ¢ — antinorm on a linear space V .

(DN, t)+M(x,t)el,V(x,t)eVxR"
Definition(2.1.34)[11] If A is an intuitionistic fuzzy norm on V
(a linear space over the field F (= R or C) then (V ,A) is called an
intuitionistic fuzzy normed linear space or in short IFNLS.

Though there are the concepts of fuzzy inner product space but the

concept of fuzzy norm could not be induced by these concepts of
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fuzzy inner product. So, one can develop the concept of fuzzy
inner product which can induce the concept of fuzzy norm. Also,
one can develop the concept of anti fuzzy inner product which

can induce the concept of anti fuzzy norm.

Section (2-2) On Felbin's-Type Fuzzy Normed LINEAR Spaces
and Fuzzy Bounded Operators

An idea of fuzzy norm on a linear space first introduced by
Katsaras. Felbin defined a fuzzy norm (the induced fuzzy metric of
which is of Kaleva and Seikkala’s type), by assigning a non-
negative fuzzy real number to each element of a linear space. A
further developments along this line of inquiry took place in 1994,
when Cheng and Mordeson evolved the definition of a further type
of fuzzy norm having a corresponding metric of the Kramosil and
Michalek’s type. Bag and Samanta considered a fuzzy norm
slightly different from the one defined by Cheng and Mordeson and
for which a suitable decomposition theorem was proved. Based on
this theorem it has been possible to establish four fundamental
theorems of functional analysis, the Hahn-Banach theorem, the
open mapping theorem, the closed graph theorem and the uniform
boundedness principle. Also best approximation in this space is
studied. Fuzzy bounded linear operators in Felbin’s-type fuzzy
normed spaces were introduced by M. Itoh and M. Cho. They
introduced a fuzzy norm for fuzzy bounded operators. Felbin
introduced an idea of fuzzy bounded operators and defined a fuzzy
norm for such an operator which was erroneous as shown in
Example(2.2.1)[17] Xiao and Zhu, studied various properties of
Felbin’s-type fuzzy normed linear spaces and a new definition for

norm of bounded operators was discussed.
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A different definition of a fuzzy bounded linear operator and a
”fuzzy norm” for such an operator was introduced by Bag and
Samanta. The dual of a fuzzy normed space and a Hahn-Banach’s
theorem for fuzzy strongly bounded linear functional were
established.

A comparative study among several types of fuzzy norms on a
linear space defined by various authors, has been made by Bag and
Samanta. They classified these norms into two types, one of which
is Katsaras’s type, and the other is Felbin’s type.
Preliminaries(2.2.2)[17]

According to Mizumoto and Tanaka, a fuzzy number is a mapping
X: R —][0, 1] over the set R of all reals.

x is called convex if x(t) > min(x(s), x(r)) where s <t <r.

If there exists a tyeR such that x(ty)=1, then x is called normal. For
0<a<l, a-level set of an upper semicontinuous convex normal
fuzzy set x of R(denoted by [n].) is a closed interval [a,, b,], where
a,= —oo and b, = +oo0 are admissible.

When a,=—o0, for instance, then [a,,b,] means the interval (-, b,].
Similar is the case when b, = +o0. X iIs called non-negative if for all
t <0, x(t) = 0. Kaleva and Seikkala (Felbin ) denoted the set of all
convex, normal, upper semi-continuous fuzzy real numbers by
E(R(1)) and the set of all non-negative, convex, normal, upper
semi-continuous fuzzy real numbers by G(R™(1)).

As a-level sets of a convex fuzzy number is an interval, there is a
debate in the nomenclature of fuzzy numbers/fuzzy real numbers.
Dubois and Prade suggested to call this as fuzzy interval. They

developed a different notion of a fuzzy real number by considering
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it as a fuzzy element of the real line, each a-cut of this number is
an interval real numbers. From now on ”fuzzy real numbers” are
renamed as “fuzzy intervals”. While refereing to previous results
involving fuzzy real number, the term fuzzy interval is written
within brackets after fuzzy real number to avoid any confusion;
otherwise the new nomenclature i.e. fuzzy interval is used.

We consider the concept of fuzzy real numbers (fuzzy intervals) in
the sense of Xiao and Zhu which is defined below:

A mapping n:R— [0, 1], whose a-level set is denoted by

[n]o:={t: n(t) > a}, is called a fuzzy real number (or fuzzy interval)
if it satisfies two axioms:

(N;) There exists t, € R such that n(ty) = 1.

(N,) Foreach a € (0, 1]; [n]« = [ni,ni], where —oo < ni Sni <c0.
The set of all fuzzy real numbers (fuzzy intervals) is denoted by F.
For each rr € R,

let Te F be defined by 7(t) =1, ift=rand r(t) =0,ift=r,soris
a fuzzy interval and R can be embedded in F.

Let n € F, n is called positive fuzzy real number if for all t < O,
n(t) = 0. The set of all positive fuzzy real numbers (fuzzy interval)
is denoted by F”.

A partial order < in F is defined as follows, n < & if and only if
for all o € (0, 1], n;, < & and n2 < 82 where, [n], = [n.,m2] and
[8]. = [5.,82]. The strict inequality in F is defined by n <_& if

and only if forall o € (0, 1], ), < &, and 0}, < &2,
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Kaleva and Seikkala, proved a sufficient condition for a family of
intervals to represent the a-level sets of a fuzzy real number. In
fact, let [a,, by], 0 <a <1
be a given family of nonempty intervals. If:
(i) forall 0 < o< 0y, [8g, Pu] 2 [Aas, D] -
(1) [limg—, ag, limg—, by] = [a4, b.], whenever {ax} is an
increasing sequence in (0, 1] converging to a, then the family
[a,, b,] represents the a-level sets of a fuzzy real number (fuzzy
interval). Conversely, if [a,, b,], 0 < a < 1, are the a-level sets of a
fuzzy number then the condition (i) and (ii) are satisfied.
According to Mizumoto and Tanaka , the arithmetic operations @,
®, O on F x F are defined by

(X®y)(t) = supser min{x(s), y(t —s)}, t € R,

(X © y)(t) = supsecr min{x(s), y(s —t)}, t € R,

(X O y)() = supgsser Min{x(s), y(; )}, t € R.
We also consider an operation © on n € F and 8(>=0) 2 F" as
follows (n © 6)(t) = supsegr min{n(st), 6(s)}, t € R.
We know that, for n, § € F, if(n],=[n5.n21.[8 «]= [8,8%],0€(0, 11,
Then

[(N®3]e= [, +8,,m,+8,1,
MO8].= [, -8;,n5-32],

furthermore if 1, 8 € F+, then[n O 8],=[n..5,,n>.52], and when

5 >=0,[16 8],= &1 Now one can see that for 5 -0 and n < F.,

[n (8} 8](1_ ﬂu Tla]

62 '8t
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A definition of fuzzy norm on a linear space was introduced by
Felbin. Bag and Samanta, changed slightly this definition to define
a fuzzy norm on a linear space as given below.
Definition(2.2.3)[17] Let X be a linear space over R. Suppose
| " |l: X — F" is a mapping satisfying

(i) || x ||= 0 if and only if x = 0,

) [Iex I=frfll x|l x e X, reR,

(i) forall x,y € X, [[ x +y [[<][ x| & [['y |l

And (A"): x = 0=|| x || (t) =0, 8V <0.

(X, || “ ||) is called a fuzzy normed linear space and || - ||is called a
fuzzy norm on X.

We use the previous definition of fuzzy norm. We note that

(1) condition(A") in Definition (2.2.3) is equivalent to the condition

(A"): For all x(= 0)e X and each a < (0, 11, |x|. >0,

where [[x],Jo= [[x], Ju [[x], J.and

(i) HxH'a i =1, 2, are crisp norms on X.

Let (X, || . ||) be a fuzzy normed linear space. A sequence {x,} in X

Is said to be convergent to x € X if and only if for each a € (0, 1],
limn—. ||X, —tz= 0. In this case we write lim,—., X, = X. Also a
sequence {x,} is called a Cauchy sequence if for each a (0, 1],
limn,m—aX,, —mei= 0. A fuzzy normed linear space (X, || . |) is

said to be complete if every Cauchy sequence in X converges in X.
Proposition(2.2.4)[17]Let {[a,,b,]: a€(0,1]}, be a family of nested
bounded closed intervals and n: R—[0, 1] be a function defined by

nt) = v{ae(0, 1] : t €[a,, b,]}. Then n is a fuzzy real number

42



(fuzzy interval). The fuzzy real number (fuzzy interval) n which is
constructed in Proposition(2.2.4) is called the fuzzy real number
(fuzzy interval) generated by the family of nested bounded closed

intervals {[a,, b,]:ae(0, 1]}. In this case, for

B< o,[nle= [, n.I<[ap, bgl. Now if B> a, then [ag, by] < [, ;-
In fact for t € [ag, bgl, n(t) = v{y € (0, 1]: t € [a,, b,]} =B > «,
which implies that, te [n},n%].

Proposition(2.2.5)[17] If n;, 1 = 1, 2, are the fuzzy real numbers
(fuzzy intervals) generated by the family of nested bounded closed
intervals {[a!,b']: a € (0, 1]}, i = 1, 2, and for each aec (0, 1],
a, <a’,b. <b?, thenn; <n,.

We know that if n is a fuzzy real number (fuzzy interval) with
Mle = [n,.m2], and 0 is the fuzzy number (fuzzy interval)
generated by the family of nested bounded closed intervals
[nL.m2],0<a<1, thenn=n"

Let (X, || . |P) and (Y, || . ||) be two fuzzy normed linear spaces.

A function T: X —Y is said to be weakly fuzzy continuous at

X, € X if foragivene> 0,38 € F', § = 0, such that
[Tx = Tx,|" <& whenever |x—x,| <82,
[Tx = Tx,|* <& whenever [x—x,| <8,
where for & e (0, 1], [8]q = [5.,82].
Also a linear mapping T : X — Y is called weakly fuzzy bounded

if there exists a fuzzy interval n € F', n = 0, such that for each

X(# 0) € X, [[TX||" © [|x][=n.
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In this case the set of all weakly fuzzy bounded operators defined
from X to Y is denoted by B(X, Y). In the sequel, we simply apply
”fuzzy continuous” ©and “fuzzy bounded” instead of “weakly
fuzzy continuous” and "weakly fuzzy bounded”, respectively.

We know that a linear mapping T : X — Y is fuzzy continuous if
and only if it is fuzzy bounded. Also the set B(X, Y) is a linear
space with respect to usual operations.

The following result of Bag and Samanta is essential. Let (X, || . |])
and (Y, ||.k||") be two fuzzy normed linear spaces and T  B(X, Y).
By definition 3n 2 F, n > 0, such that for all x(= 0) € X,

[Tx|" x| <n.
If [n]. = [, 21,0 <a <1, we get
[T <mi-Ix; and [Tx|." <nd- X

Define

and

[T

~2
:;2 — sup {HTXHa } < (ﬂi)

0+xeX HxHi
Then {|| . ||7?: o € (0, 1]} and {|| . ||.: o € (0, 1]} are descending
and ascending family of norms, respectively. Thus
{0 JT%|"1 : & e (0, 1]} is a family of nested bounded closed
intervals in R. Define the function ||T||: R — [0, 1] by
T ()= vie-e : te [T 7}

HTH*is called the fuzzy norm of T. (B(X, Y), ||.|[") is a fuzzy normed
space.
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Section(2-3) Some Properties of B(X, Y)

We present some properties of the space (B(X, Y), |.I). Then
using the recent results of Bag and Samanta, some consequences of
fuzzy linear spaces analogous to the ordinary normed spaces are
established. Despite our expectation, the fuzzy version of some
well-known theorems in functional analysis, such as uniform
boundedness principle, inverse mapping theorem and the Banach-
Stienhaus’s theorem is not valid in this fuzzy setting. These will be
shown with some counterexamples. Next, finite dimensional
normed spaces are considered. The concept of equivalent norms is
defined and it is proved that every two fuzzy norms on a finite
dimensional vector space are equivalent.

First we prove a memorable result for B(X, Y), which has a famous
analogous in functional analysis. A similar result on B(X,C) is
proved.

Theorem(2.3.1)[17] Let (X, ||.|][) be a fuzzy normed space and
(Y, |l.II") be a complete fuzzy normed space, then (B(X, Y), || . I
is a complete fuzzy normed linear space.

Proof Let {T,} be a Cauchy sequence in (B(X, Y ), || . |). So for
all a € (0, 1],

lim IT, - Tal = lim IT, - Tl =0.
From lim [T, =T, | "= 0 we have

n,m-—o0

T,(x) =T (x)
jm [T, —T, | sup o) =Tl _

2
n,m-—>o0 0sxeX Hx”
o

which implies that for each a €(0, 1] and x € X,

lim |T,(x x)ﬂ~l lim |T,(x x)ﬂ

n,n—o0 n,n—o0

45



From the fact that Y is a complete fuzzy normed space, for some
Yy, limp—,, Tr(X) = yy exists in Y,
Let for each x € X, limy—,, T,(x) = T(x). Trivially T is linear. Now

for every a € (0, 1],

I, GO, =T G0,
This implies that for all a €(0, 1],
I, OO, =T G0,

Thus for each a € (0, 1], {HTn(x)ﬂ;l} is a Cauchy sequence of non-

<[T,(x)-To(x)|, —0as n,m —co.

—>0asn,m-— oo

negative real number and so is convergent. Let for all a (0, 1],

lim,—.. |T,(x)

*1
=,

Similarly {HTn(x)ﬂ:} is a Cauchy sequence of non-negative real
number for each ae(0,1], so is convergent. Put
liMn— e HTn(x)ﬂf: b, @ (0, 1]. One can easily verify that

{[a., b,] : o €(0, 1]} is a family of nested bounded closed interval

of real numbers it generates a fuzzy real number, say n.

Now from
T = tim T, 00 < im (I )=,
we have
HTHE:‘Z”;l <a,,Vx(#0)e X, vx e (01]. (1)
Similarly a
% <b,,vx(%0)e X,vx e (0]1]. (2)
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we know

{w\'j JLCIN } B,
I, I,
generates the fuzzy interval |[|[T(X) ||” © || X || <n, ¥X(# 0) € X.
This implies that T eB(X, Y).
We claim that ||Tn — T || —0 as n — . For a given ¢ > 0, and
each a € (0, 1], there exists positive integer N(e, a) such that for
alln, m > N(e, a), [T, —TmH:;1 <e.
Thus for any a € (0, 1] and n, m > N(g, a),

T () -To (), <7, - T,

*1
o

X, <[

Sowhenm — 1, for every o € (0, 1] and n > N(g, a), we have
HTn (X)_ Tn (XX‘: 3 HXHi’

which implies that

v {HTn (X) —Tn (X)H?

0xeX HXH2
o

Hence for n > N(g, o) and a € (0, 1],

} <g Vn2=> N(s,oc).

T,-T[ <s,

ie.asn—landae (0,1] T, —T[;1 — 0.
Similarly we have |T, —TH;2 —0 asn — o and o e (0, 1]. This

follows thatHTn—TH; — 0as n—oo, which implies that (B(X, Y),

II. 1IN is a complete fuzzy normed space.
Example(2.3.2)[17] Let (X, ||.|]|) be an arbitrary Banach space,

define

L =o and HIH;2 = sup e 1 .

I, = sup =
« x|/ i

0=xeX
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Suppose & is the fuzzy real number generated by {[a, L]:ae(0, 1]}.
So [SoT]| =§| =[] =3

On the other hand, [6 05].= [o, ] and [6635].= [o, 2],(16(0, 1].
But non of the relations a < o’ and-; < Zare valid. This shows that

the relations & < 6 © 6 and 6 © 6< & are not correct.
Theorem(2.3.3)[17] Let (X, ||.|) and (Y, ||.|[") be two fuzzy normed
spaces. Then TeB(X, Y) if and only if for every ae (0, 1],

Te B((X, [, (Y. H,)) and T €B(OX, [{.), (Y[

Proof Without loss of generality T is supposed to be non-null. Let
for each ae(0, 11, TeB((X, L), ¢Y, [12°)) 0 B(CX, ). €Y, 7).
We show that Te B(X, Y). For ae(0, 1], there exist §.,52 > 0 such

that for all 0 = x € X,

MO o oy IO
T = 8a ) OL )
[, X,

since T e B((X, [.). (Y, H'H;Z)) n B((X, HHQ) (Y [1:0)-

For each a € (0, 1], define

57 mf{Sz WK <82, Vx(£0)< }

1
o
and

5 mf{&l U | ‘)ﬂ <5L, Wx(£0)< }

‘O(

So for all 0= x € X, by definition of infimum,
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T(x) ™ T(x)™ o o
—H H(Xuzﬂo‘ Sﬁi, and H H(Tg‘a Sﬁt. We know {[Sal,ESQZ] r0e€2(0,1]}isa
X X

family of nested bounded closed intervals of real numbers, so using

Proposition (2.2.4), this family generates a positive fuzzy interval,
n =0, and by Proposition (2.2.5), [T(x)| ©[x| <n.

This means that T € B(X, Y ). The converse is trivial.

This theorem has the following useful corollary which shows that
every linear operator from a finite dimensional fuzzy linear space
is fuzzy continuous. For its proof it is enough to use the previous
theorem and the ordinary version of this corollary in functional
analysis.

Corollary(2.3.4)[17] Let T : X — Y be a linear operator where

X, 1) and (Y, ||.||") are fuzzy normed linear spaces. If X has
finite dimension, then T is fuzzy bounded (so is fuzzy continuous).
We present some counterexamples. The first is a counterexample
for the uniform boundedness principle in this fuzzy structure.
Before stating this example we need the following definition.
Definition(2.3.5)[17] Let (X, || . ||) and (Y, || . ||") be two fuzzy
normed linear spaces. A family {T,} < B(X, Y ) is called point-

wise bounded if for every x(# 0) € X, there exists fuzzy number

Sxe F', 8 = 0, such that for all n >0, |T(x)| ©|x| <3,, and is said

to be uniformly bounded if there exists fuzzy number §e F", § =0,
such that for each n > 0 and x(= 0) € X, [T(x)| ©[x| <8.

For a sequence {T,} of fuzzy bounded operators from a fuzzy
Banach space X to a fuzzy Banach space Y, it is expected that the

point-wise and uniformly boundedness of this sequence are
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equivalent (a fuzzy version of uniform boundedness principle), but
the following example shows that this is not true in general.

Example(2.3.6)[17] Consider X = I', the set of all real valued
sequences whose series is absolutely convergent, we know X with
||| is Banach but with ||.||; is not Banach and |[|.||[oc < ||.||;. Now
suppose |[|x|| is the fuzzy norm generated by the nested family
{Jaf|x|[1, 2 1Ix]l] : @ € (0, 1]} of intervals. Let Y = R with the fuzzy

norm generated by the family {[|x|, |X|]] : a € (0, 1]}. One can see

that (X, ||.|]) and (Y, |.|) are two fuzzy Banach spaces.

Define Tp: X — Y by T,((x,),)= 3%, .

k=1
From Theorem (2.3.2), T, € B(X, Y), n € N. We are going to show
that {T,} is point-wise bounded but is not uniformly bounded. Let

0 # X = (Xken € X. If 04 is the fuzzy number generated by the

family {[o, 251 : & e (0, 1]}, then for any n > 0, IT(x)| ©|X| <3,

 alx],

Now in contrary suppose {T,} is uniformly bounded, so there

exists §e F* such that for each 0 = xe X, and n > 0, [T(x)| ©[x| <3.

Thus for every a € (0, 1] and X = (Xy)ken, With X; = ... = X, = 1 and

T(x),

Il

o

X =0, k> n, <82, this implies that for eachn e N, o < §2.

==

Hence &2 = o, which contradicts the definition of fuzzy real
number. From inverse mapping theorem in ordinary case, we know
iIf X, Y are ordinary Banach spaces and T € B(X, Y) is a bijection
map, then its inverse belongs to B(Y,X). The following example

shows that this is not valid in this fuzzy setting.
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Example(2.3.7)[17] Suppose ||.||' and ||.||, are two ordinary norm
on a vector space X, such that (X, ||.|l;) is not Banach space and
(X, [|-]|2) is Banach space, for which

[IX[[r < [Ix]|2, X € X,

(For example let X = C[0, 1], with ||.]|; and ||.||..). For each X,

trivially {[||x||:, @]: a € (0, 1]} is a family of nested closed
intervals which generates a fuzzy interval |||x]||. Also consider the
fuzzy norm |||x|||” on X generated by the family {[||x||2, ||X||.] : a €
(0, 1]}. One can see that (XX, [|[.||[) and (X, |||.]||~) are fuzzy Banach
spaces. The identity mapping I : (X, [|[.|||)) — O, |l]-]I]) is a fuzzy
bounded linear operator, since if & is the fuzzy number generated
by the family {[1,1] : a (0, 1]}, then

X[ © [lIx][” < 3.
Now we show that I is not bounded. Otherwise, so there exists
ne F' such that for each x e X,

r(x) == lIIxIII™ © [l < n.
It means that for each a < (0, 1], if [n]« = [n..,n2], and
[r(X)]. = [r(X)., r(x)2], then r(x). < nmiand r(x)2< n’. Now let
a, p € (0, 1] with o > B. From the assertion before Proposition
(2.2.4), for each x € X,

{ X, M} e [r(x), v

ol I,

Hence
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This shows that ||x||, < 02 ||x||;, on the other hand by our hypothesis

IIXIl: < |IX||.. This means that ||.||, and ||.||, are equivalent which is a
contradiction.

Theorem(2.3.8)[17] Every two fuzzy norms on a finite
dimensional vector space X are semi-equivalent.

Proof Let ||.||; and ||.||, be two fuzzy norms on a finite dimensional
vector space X and a e (0, 1]. Define I : (X,|II1Z,) — X, |I-115,)
and 1 : (X, |I115,) — X, I 112,) by 1(x) = x. Thus for all o e (0, 1]

there exist positive real numbers &' and &’ such that

1
Mo 5t (e 0)e x.

5 =

and

For each a € (0, 1], define

1
5 =inf {Sfx ; % <&.,vx(20)e x},
X[,

and

2
5.7 =inf {82 ; % <82,vx(=0)e x},
X[,

Now from the fact that {[5,,8.” ]: a e (0, 1]} is a family of nested

o

bounded closed interval of real numbers, using Proposition (2.2.4),

this family generates a positive fuzzy interval 6. By Proposition
(2.2.5),8 > 0 and ||x|]l © ||X||: = 6, YX(# 0) € X.
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Similarly there exists positive fuzzy interval n such that for all
X(= 0) € X, [|X|li ©||X|]l. <n, which implies that ||.||; and ||.||, are
semi-equivalent.

Hahn-Banach Theorem(2.3.9)[17]

Bag and Samanta established a Hahn-Bancah theorem for the
strong dual of fuzzy normed linear space. Here we prove it for the
weak dual of fuzzy Ilinear spaces. Also some interesting
consequences of this theorem are established.We recall that a fuzzy
bounded linear operator from a fuzzy normed space X into R, with
the fuzzy norm ||.||” generated by the family {[|x|, |X|]] : a (0, 1]}
is called a fuzzy bounded functional, and the set of all such a
functional is denoted by X.

Theorem(2.3.10)[17] Let X be a fuzzy normed linear space and Z
be a subspace of X. If f is a fuzzy bounded linear functional on

(Z,]|.I), then for each oe(0,1], there exists a pair of linear
functionals f- and f2over (X,||.]|2) and (X, ||.]|%), respectively, such
that for all x € Z, f% (x) = f2(x) = f(x) and for each

R (O P 1 A T

Proof By definition, there exists 8 € F*, -0 , such that for all
(0 #)x eZ, [[fO)II" O [IX]| <n.

So for each a (0, 1],

2 — Ta!? 1 — Tat
| ],

a

Thus

IF] = sup{“];(—xl)‘ (0#)x e Z} <3,
X



and

This means that f is in the dual of (Z, ||.||5) and (Z, ||.||2), with the

*1
o !

norms ||.||;?and ||.| respectively. Now using ordinary Hahn-
Banach theorem, there exist f'and f in the dual of (X, ||.||?) and
(X, |III% , respectively, such that

If5 115 = IFllS and (15115 = (11l

and for all x € Z, ! (x) = 2 (x) = f(x).
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Chapter 3

Some Topological and Algebraic Properties of a-Level Subsets’

Topology of a Fuzzy Subset
Section (3-1) Fuzzy Anti-Norm and Fuzzy a-Anti-Convergence
During the last few years there is a growing interest in the
extension of fuzzy set theory which is a useful tool to describe the
situation in which data are imprecise or vague or uncertain. Fuzzy
set theory handle the situation by attributing a degree of
membership to which a certain object belongs to a set. It has a
wide range of application in the field of population dynamics,
chaos control, computer programming, medicine etc.
The concept of fuzzy set theory was first introduced by Zadeh in
1965 and thereafter, the concept of fuzzy set theory applied on
different branches of pure and applied mathematics in different
ways, by several authors. The concept of fuzzy norm was
introduced by Katsaras in 1984. In 1992, Felbin introduced the idea
of fuzzy norm on a linear space. Cheng—Moderson introduced
another idea of fuzzy norm on a linear space whose associated
metric is same as the associated metric of Kramosil-Michalek. In
2003, Bag and Samanta modified the definition of fuzzy norm of
Cheng—Moderson and established the concept of continuity and
boundednes of a linear operator with respect to their fuzzy norm.
Later on, Jebril and Samanta introduced the concept of fuzzy
antinorm on a linear space depending on the idea of fuzzy anti
norm, introduced by Bag and Samanta. The motivation of
introducing fuzzy anti-norm is to study fuzzy set theory with
respect to the non-membership function. It is useful in the process

of decision making.
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We generalize the definition of fuzzy anti-norm on a linear space.
Later on we prove Riesz lemma and some important properties of
finite dimensional fuzzy anti-normed linear space. Also, we define
fuzzy o- anti-convergence, fuzzy a-anti-Cauchy sequence, fuzzy
a-anti-completeness and study the relations among them.
Preliminaries(3.1.1)[6]

This section contains some basic definition and preliminary results
which will be needed.

Definition(3.1.2)[6] A binary operation ¢ : [0, 1] x [0, 1] — [0, 1]
Is continuous t-conorm if o satisfies the following conditions:

(1) o Is commutative and associative,

(i1) o is continuous,

(li)ae0=a,vae|[o,1],
(iv)aob<codwhenevera<c,b<danda,b,c,d €0, 1].

A few examples of continuous t-conorm are a ¢ b = a + b — ab,
a o b =max{a, b}, a ¢ b=min{a + b, 1}.

Definition(3.1.3)[6]Let X be a linear space over F (field of
real/complex numbers). Let N* be a fuzzy subset of X xR such that
forall x,ye Xandc e F

(N1) Vt € R with t <0, N*(x, t) = 1,

(N+2) vt € Rwitht> 0, N*(x,t) =0 if and only if x = 0,

(N*3) vt € R witht > 0, N*(cx, t) = N*(x, &) ifc =0,

*ld
(N*4) Vs, t € R with Nx(x +y, s +t) < max {N*(X, s),N*(y, t)},
(N*5) N*(x, -) is a non-increasing of t € R and lim._,,,N*(x, t) = 0.
Then N+ is called a B-S-fuzzy antinorm on X.
We assume that

(N+6) For all t € R witht > 0, N*(x, t) <1 implies x = 6.
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Definition(3.1.4)[6] Let (U,N*) be a B-S-fuzzy antinormed linear
space. A sequence {X,}"€" in U is said to converge to x € U if
givent >0, r € (0, 1) there exists an integer n, € N such that
N*(X, — x, t) <r, Vn > n,.
Definition(3.1.5)[6] Let (U,N*) be a B-S-fuzzy antinormed linear
space. A sequence {X,}nen in U is said to be Cauchy sequence if for
givent >0, r € (0, 1) there exists an integer n, € N such that
N*(Xpsp = Xn, ) <TrVn>ne, p=1,2,3, ...

Definition(3.1.6)[6] A subset A of a B-S-fuzzy antinormed linear
space (U,N*) is said to be bounded if and only if there exist t>0, r
€ (0, 1) such that

N*(x, t) <r, ¥YX € A.
Definition(3.1.7)[] A subset A of a B-S-fuzzy antinormed linear
space (U,N+) is said to be compact if any sequence {X,}nen in A has
a subsequence converging to an element of A.
Definition(3.1.8)[6] Let (U,N*) be a B-S-fuzzy antinormed linear
space. A subset B of U is said to be closed if any sequence {X,}nen
in B converges to x € B, that is

lim N*(x, —x,t) =0, Vt>0 = x € B.

N—o0

Fuzzy anti-normed linear space(3.1.9)[6]
The definition of B-S-fuzzy antinorm is modified, and after
modification it will be termed as fuzzy antinorm with respect to a
t-conorm o. Thereafter some important results will be deduced.
Definition(3.1.10)[6] Let V be linear space over the field
F(=RorC). A fuzzy subset v of V x R is called a fuzzy antinorm on
V with respect to a t-conorm ¢ if and only if for all X,y € V
() Vt € R with t <0, v(x, t) = 1;
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(i) vt e Rwitht >0, v(x, t) = 0 if and only if x = 6;
(iii) Vt € R witht > 0, v(cx, t) = v(x, t

Ic| ) ifc6=0, c € F;

(iv) Vs, t € Rwith v(x +y, s + 1) <v(X, S) ¢ v(y, 1);

(V) !irrgov(x, t) = 0.

The Definition (3.1.11) is more general than the Definition (3.1.9);
since, in (N*4) instead of maximum function we have used more
generalized function, conorm function and in the condition (N*5) it
Is used that N*(x, ) is nonincreasing function of t(€ R), which is
redundant and later on it will be deduced.
Remark(3.1.11)[6] Let v be a fuzzy anti-norm on V with respect to
a t-conorm o, then v(x, t) is non-increasing with respect to t for
each x e V.
Proof. Let t <s. Then k =s —t > 0 and we have

v(X, 1) = v(X, 1) o 0 =v(X, 1) o v(0, k) > v(X, S).
Hence the proof.
Definition (3.1.12)[6] If A* = {((X, t), v(X, 1)) : (X, 1) € V xR} is a
fuzzy antinorm on a linear space V with respect to a t-conorm o
over a field F, then (V,A*) is called a fuzzy antinormed linear
space with respect to the t-conorm o over the field F.
We further assume that for any fuzzy anti-normed linear space
(V,A*) with respect to a t-conorm o,
(vi) vix,t) <1, Vt>0=>x=6.
(vii) v(x, +) is a continuous function of R and strictly decreasing on
the subset {t: 0 < v(x, t) <1} of R.
(viii)aoca=a, va€e [0, 1].
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Example (3.1.13)[6] Let (V, || - ||) be a normed linear space and
consider aob=a+b—ab. Definev:V xR — [0, 1] by

o) {o, it t> x|,

1 i t<|x|

Then v is a fuzzy antinorm on V with respect to the t-conorm o and
(V, v) is a fuzzy anti-normed linear space with respect to the t-
conorm o,

(i) vXx € V and Vt € R, t <0 we have v(X, t) = 1.

(i) vt € R, t > 0 we have v(0, t) = 0. Again

vix,)=0,vVt>0 & ||X||<t,Vi(>0) eR & ||X]|=0 & x = 6.

(i) v(cx, =0 & t>[lex]| & t> [clllx]| & < (x| & vix, &)= 0.

c

v(ex, ) =1 & t<lex]] & t< [ellixl| & L <[]l & vix, L)= 1.

(iv) v(X, 8) o v(y, t) = v(X, S) + v(y, t) — v(X, S)v(y, t).
If s> ||x|| and t > ||y|| then v(x+ Yy, s +t) =0, since s +t > ||x|| + [|y||
and v(x, 8) e v(y,t) =0+ 0—-0=0.So, v(x +y,s+1t) =v(X,s) ¢
v(y, t).
If s> |[x|| and t < [|y|| then v(X,S) ¢ v(y,t)=0+1—-0=1.
If s <||x||and t > ||y|| then v(X, S) ¢ v(y,t) =1+ 0—-0=1.
If s <||x|]| and t < ||y|| then v(X,S) o v(y, t) =1+ 1 —1=1.
Therefore in any of the above three cases

v(X,8) e v(y,t)=1>v(X+Yy,s+1).
Thus

V(X +y, s+ 1) <v(X,8) o v(y, t).

(v) From the definition it is clear that limv(x, t) = 0. Thus v is a

t—o0

fuzzy antinorm on V with respect to the t-conorm ¢ and (V, v) is a

fuzzy antinormed linear space with respect to the t-conorm o.
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Note(3.1.14)[6] The above example satisfes the condition (vi) but
does not satisfy the condition (vii).
Example(3.1.15)[6] Let (V, || - ||) be a normed linear space and
consider ao b =min{a + b, 1}. Definev:V xR — [0, 1] by
0, ift>|x|t>0,
v(x, )= L if t> x|, t>0

tex]?

1, ift<0.

Then v is a fuzzy antinorm on V with respect to the t-conorm ¢ and
(V, v) is a fuzzy anti-normed linear space with respect to the t-
conorm o,
(i) From the definition we have v(x,t) =1ift <0, Vt € R.
(i) Ift>0andt> ||x|| then

vix,t) =0 |X||<t,Vt>0) eR e ||X]|=0e x=06.
Ift> 0 and t < ||X|| then

v(X, t)—0<:> H | =0e ||X|=0e x=6.

t+]x]
(i) viex, =0 e t>||lcx|| et > |c|||xX|| & — ‘ ‘ > ||X|]| © v (x,éj%.
lex|

v(cx, 1) ——@ t<|lcx|| & — ‘ ‘_ < |IX||

t+fex]
@V[X t ]_ Xl _ x|

) g tefex

(1v) v(X, s) ¢ v(y, t) = min{v(X, s) + v(y, t),1}. If ||X|| > s and ||y|| > t
then

L

s+lx] " t+ly]

v(X,s) + v(y, t) =
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(e -+ ] Il + styl)+ ] ]
(K] + ] 1]+ slyf)+st

In this case v(X,8) ¢ v(y,t) =1 >v(X +Vy, s +1t).

> 1 since ||x|| |ly|| = st.

If ||x|| > s and ||y|| < t then either ||x +y||>s + tor [[X + Y]] <s + L.

Now,

X
v(X, 8) + v(y, t) = —SL\HXH +0<1.

Hence

|

v(X, s) o v(y, t) = 3+HXH'

If [[X +y||>s +t then

) _ kvl X
vy, s T = v(X, s) o vy, 1) s+t+|x+y| s+[X|

SO I O
s+telxry] sex] (st x|+ yiks +[x])

st — ]|
(5+ t+[x] +[y|Ns +[x])

<0, since s < [|x|| = st < t||x]].

sin ce y| <t,

Therefore, v(x +y, s + 1) <v(X,S) ¢ v(y, t).

If kx + yk <s + t then

vix+y,stt)=0< —HXH =v(X, S) o v(y, t).
s+

If [|X|]] < s and ||y|| > t then in the similar manner (as in the case
when ||x|| > s and ||y|| < t) we can show that v(x +y, s +t) < v(X, S)

o v(y, ).
If ||X|]| <sand |ly|| <tthenv(x,s)+ v(y,t) =0+ 0< 1. Therefore,
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v(X, S)ov(y, t) = 0. Also ||x+y|| < |IX|]|*]|ly]l| < s + t and hence
v(x+y, s+t)= 0. Hence v(x +y, s + t) = v(X, S) ¢ v(y, t). Thus, in any
case v(x +y,s +1t) <v(x,S) e v(y, t).

(v) If t > ||x|| then from the definition it is clear that lim v(x, t) = 0.

t—w

If X # 6 and t < ||x]| then

!im v(Xx, t) = !im v(0,t) = lim 2.

t—w t

Hence

limv(x,t) =0 Vx € V.

t—oo

Thus v is a fuzzy antinorm on V with respect to the t-conorm o and
(V, v) is a fuzzy anti-normed linear space with respect to the
t-conorm o,

Note (3.1.16)[6] The above example does not satisfy the conditions
(vi) and (vii).

Example(3.1.17)[6] Let (V, ||]|]) be a normed linear space and
consider a o b = max{a, b}. Definev:V xR — [0, 1] by

XL
v(x,t) = {0 if t>0,
1, if t<0.

Note(3.1.18)[6] The above example does not satisfy the condition
(vi) and satisfies the condition (vii).

Example (3.1.19)[6] Let (V, || - ||) be a normed linear space and
considera ¢ b =min{a + b, 1}. Definev:V xR — [0, 1] by

X
v(x,t)= {th , if > x|,

1, ift<|x

Then v satisfies all conditions of Definition (3.1.11). Therefore, v
Is a fuzzy antinorm on V with respect to the t-conorm ¢ and (V, v)

Is a fuzzy antinormed linear space with respect to the t-conorm o.
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Theorem(3.1.20)[6] Let (V,A*) be a fuzzy antinormed linear space

with respect to a t-conorm ¢ satisfying (vi) and (viii). Then for any
a € (0, 1) the function HXH; X — [0,00) defined as
(ix) HxH; =aA{t>0:v(x,t)<1—-0a},a€(0,1)isanormon V.

Proof.
(i) Forx € V, v(x, t) =1 fort <0 =V {t >0 : v(x, t) < l-a} >0,
a€(0,1)= [x|. >0, a€(0,1).
(i) X[ =0=v(x,) <1 -a<1,VtER,t>0= x=0, [by (vi)].
Conversely, X =0= v(x,t) =0, Vt > 0 =V {t >0: v(x, t) < 1-a}= 0,
va € (0, 1) = x| =o.
(iii) If ¢ = 0 then
x| = Afs>0:v(cx,5)<1-a
:/\{s>0:v(x,%) sl—a}
=A{lclt>0:v(x,t)<1—a}

=Alcl{t >0 v(x, ) <1 —a} =[c||x]. .
If ¢ = 0 then chH; = |

(iv) |x
AMt>0:vix,t)<1—0a} +A{s>0:v(y,s)<1—a},Vae(0,1)

6, = 0=0. x|, = el x];.

*
o

+‘y

*
a

*
a

>A{t+s>0:vx, ) <1 —a,v(y,s)<1—a}
>A{t+s>0:v(x+y, t+s)<1—alby(viii)] = [x+y] .
Hence, {HH;} isanormon V.

Remark(3.1.21)[6] The norm defined above is more general than

the norm defined; since instead of v(x, t) <a we write v(x, t) <1— a.
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Theorem(3.1.22)[6] Let (V,A*) be a fuzzy antinormed linear space

*

X| 1.e.,

2

with respect to a t-conorm o. If a; < a,, then HXHal < |

{HHa a € (0, 1)} is an increasing family of norms on V .

Proof a; < a, we have
{t>0:vix, )<l —-o}c{t>0:v(x,t)<1— o}
SA{E>0:vx, t) <1 —a2} 2A{t>0:v(x,t) <1 —al}

*

>

*
(0%} ‘

= |

X

X

In the following theorem we describe another one equivalent
expression for v, which will be useful to describe Riesz theorem in
fuzzy environment.

Theorem (3.1.23)[6] Let (V,A*) be a fuzzy antinormed linear

space with respect to a t-conorm o satisfying (vi), (vii), (viii) and

let V1V x R — [0, 1] be defined by
(%) v'(x,t)= A-at|x, <t} if (x,t)=(6,0),
1 if (x,t)=(6,0).

Then v’ = v, where |x|_is a increasing family of norms given by

(ix).

To prove this theorem we use the following lemma.
Lemma(3.1.24)[6] Let (V,A*) be a fuzzy antinormed linear space

with respect to a t-conorm o satisfying (vi), (vii), (viii) and
{HoH;e(O, 1)} be increasing family of norms of V, defined by (ix).
Then for X¢(#0)€eV,a€ (0,1)ands(>0) € R,

on\\;: s © v(Xp,s)=1-o.
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Proof. Let x| = s, then s > 0. Then there exists a sequence
{Sn}nen, Sn > 0 such that v(Xo, Sp) <1 —a, foralln € Nand s, — s
as n — o0,
Therefore

lim v(Xo, Sn) <1 — a = v(Xp, lims,) <1 — a by (vii)

= v(Xo, [X,|.) <1 - a, Va € (0, 1).
Let o € (0, 1), Xo(# 0) € V and s = x| = A{t : v(Xp, ) < 1 — a}.
Since v(x, -) is continuous (by (vii)) we have
v(Xo, s) <1 —o. (1)
If possible, let v(Xq, s) <1 — a, then by (vii) there exists s’ > s such
that v(Xo, s") < v(Xo, s) < 1 — o, which is impossible since
s=A{t:v(Xyt)<1—a}. Thus
Vv(Xp, 8) > 1 — a. (2)
From (1) and (2) it follows that v(X,, s) =1 — a. Thus
o], == v(xo,8)=1— 0. (3)
Next, if v(Xo, s) =1 —a, a € (0, 1) then by (vii)
| = A {t:v(xo, ) <1 —a} =s. (4)
Hence, from (3) and (4), we have for a € (0, 1), x(# 0) € V and for
s> 0, HX0H; =s o v(Xp,s)=1—a.

Proof of the main theorem. Let (X, ty) € V x R. To prove this
theorem, we consider the following cases:

Case 1: For any Xy € V and t <0, v(Xo, tp) = v'(Xo, to) = 1.

Case 2: If xo =0, to > 0. Then v(Xo, ty) = v'(xo, tg) = 0.

Case 3: Xo # 0, to(> 0) € R such that v(x,, ty) = 1.
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we have, v(Xo, HxH;) = 1-a for all a € (0, 1). Since

v(Xo, to) = 1 > 1-a it follows that v(Xo, [x]) < 1-a < v(xq, to) and
since v(Xo, +) is strictly non increasing t, < HXOHG Ya € (0, 1). So,
V(xo, to) =ALL = a1 X, < to} = 1. Thus, v(Xo, ty) = v'(xo, to) = 1.
Case 4: X, #0, to(> 0) € R such that v(X,, to) = 0. From (ix) it
follows that |x,|. < t, Va € (0, 1). Therefore, || < t
= v'(Xo, to) =0, by (X). Thus, v(Xo, ty) = v'(X¢, to) = 0.

Case 5: Xo # 0, to(> 0) € R such that 0 < wv(Xo, ty) < 1. Let
v(Xo, to) = 1 — B, then from (ix) we have

X, < to. (5)

Using (5) from (x) we get, v'(x¢, to) < 1 — B. Therefore,
V(Xo, to) = V'(Xo, to). (6)

Now, from Lemma (3.1.25) we have v(Xo, to) =1 - B & HxH;: to.

Now, for B <a <1, let HXH;: t’. Then again by Lemma (3.1.25), we
have v(Xo, t') =1 — a. SO, v(Xp, t') =1 —a <1 — B = v(Xo, tp). Since
v(Xo, +) is strictly monotonically decreasing and v(Xo, t") < v(Xo, to)
therefore t' > to. Then for p <a < 1, we have HxH; =t'">t,. SO,
V'(x0, t)) = 1 — B = v(Xo, to). (7)
Thus, from (6) and (7) we have v(Xo, ty) = Vv'(Xo, tp). Since
(Xo, to) € V x R is arbitrary, v'(x, t) = v(X, to) for all (x,t) € V x R,
Lemma (3.1.25)[6] In a fuzzy antinormed linear space (V,A*) with
respect to a t-conorm o satisfying (vi), (vii) and (viii), every
sequence is convergent if and only if it is convergent with respect

to its corresponding a-norms, a € (0, 1).
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Proof. = Part: Let (V,A*) be a fuzzy antinormed linear space
satisfying (vi) and (vii) and {X,}.en be a sequence in V such that

Xp — X lImv(x, —x,t) =0, Vvt > 0.

N—o0

Choose 0 < a < 1. So, lmv(x, — x,t) =0 <1 — a = there exists
No(t) such that
v(Xp — X, 1) <1 —a, Vn > ny(t, o). (8)
Now,
I, —xH; =A{t>0:vX,—x,t)<1 -0}
= |x, —XH; <t, Vn>n(t, o).
Since t > 0 is arbitrary,

%, —XH; — 0asn — oo, Ya € (0, 1).

< Part: Next we suppose that, |x, —xH;—> 0asn — o, Yo € (0, 1).
Then for a € (0, 1), € > 0 there exists n0(a, 0) such that
[%, = x| <& Vn=>noa, ¢), a € (0, 1). (9)
Now,
v(Xn — X, 8) = A{l —a: X, —XH; <e}
=>v(Xhn—x,&)<1—a, Vn>ny(a, €), a € (0, 1)

= lim v(X, — X, €) = 0.

Thus x, converges to X.

Corollary(3.1.26)[6] Let (V,A*) be a fuzzy antinormed linear
space with respect to a t-conorm o satisfying (vi), (vii) and (viii).
W(<CV) is closed in (V,A*) if and only if it is closed with respect to

its corresponding a-norms, a € (0, 1).
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In the following lemma, a finite dimensional space is characterized
by compact set in fuzzy environment and this will lead us to one of
the fundamental differences between finite dimensional and
infinite dimensional normed spaces with respect to fuzzy
antinorms.

Lemma(3.1.27)[6] (Riesz) Let W be a closed and proper subspace
of a fuzzy antinormed linear space (V, v) with respect to a t-
conorm o, satisfying (vi), (vii) and (viii). Then for each € > 0 there
exists y € V — W such that v(y, 1) < 1—a and v(y—w, 1—-¢) < 1—a
forall o € (0, 1) and w € W,

Proof. Recall that, Hx\\;: At:vix, ) <1 —a}, a € (0, 1) and

{HH; . o € (0, 1)} is an increasing family of a-norms on a linear

space V . Now, by applying Riesz lemma for normed linear space,

it follows that for any € > 0 there exists y € V —W such that

ly-w[, >1-¢ vwew. (11)

*

=1, (10)

y

(02

Now, from Theorem (3.1.24) for all a € (0, 1) we have
viy,t) = A{l —a: HyH; <t}
= v(y, 1) =a{l —a: |y <1}

=>vy, 1)1 —a.

Again,

viy—w,t)=A{l —a: Hy—WH; <t}
Svy—W,e)=A{l —a: Hy—WH;§ e}

=>vy—w,e)<1—a.
Hence the proof.
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Theorem(3.1.28)[6] Let (V,A*) be a fuzzy antinormed linear space
with respect to a t-conorm o, satisfying (vi), (vii) and (viii). If the
set {x:v(x,1)<1-—a},a€(0,1)iscompact, then V is a space
of finite dimension.

Proof. It can be easily verified that {x : v(x, 1) <1 —a} = {X :

[x[ < 1}, « € (0, 1). By applying Lemma (3.1.27), it can be

proved that if for some a € (0, 1) the set {x : HxH; < 1} is compact,

then V is of finite dimensional. Using Lemma(3.1.28), it follows
that, for some a € (0, 1), {Xx : v(x, 1) < 1—a} is compact, then Vis a
space of finite dimension.

Section (3-2) Fuzzy a-Anti-Convergence

The relations of fuzzy a-anti-convergence, fuzzy a-anti-
Cauchyness, fuzzy a-anti-compactness with respect to their
corresponding increasing family norms are studied.
Theorem(3.2.1)[6] Let (V,A*) be a fuzzy antinormed linear space

with respect to a t-conorm o, satisfying (vi), (vii), (viii) and
{HH; o € (0, 1)} be increasing family of norms of V, defined by
(ix). Then, for any increasing (or, decreasing) sequence {an}neN
in (0, 1), an — a in (0, 1) implies |x| , vx € V.

*
o .

Proof For x = 0, it is clear that an converges to a = Hx

=[x

Suppose x = 0. Then, from Lemma(3.1.28), for x # 0, a € (0, 1) and
t' > 0, we have

HxH; =t ©v(Xp, t)=1-a.
Let {an}nen De an increasing sequence in (0, 1), such that an

;: s. Then,

converges to o in (0, 1). Let [x|. =s,and [x
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v(X,Smy=1—anand v(x,s) =1 — a. (12)
Since {HH; o € (0, 1)} is an increasing family of norms, {Sy}en is

an increasing sequence of real numbers. Since {Sp}nen IS an
increasing sequence of real numbers and is bounded above by s,
{sn}nen is convergent. Thus,

lImv(x,sy)=1-Ilima, = v(X,sy)=1—a. (13)

nN—o0

From (12) and (13) we have v(x, lims,) = v(X, s). This implies

*
a

lim s, = s, by (vii). Therefore, lim |x

=[x

Similarly, if {an}nen IS a decreasing sequence in (0, 1) and an

converges to a in (0, 1) then, it can be easily shown that

Definition (3.2.2)[6] Let (V,A*) be a fuzzy antinormed linear space

*

X|, — || , vx € V.

*
a

with respect to a t-conorm o and o € (0, 1). A sequence {Xp}nen IN
V is said to be fuzzy a-anti-convergent in (V,A*), if there exists X
€ V such that forall t >0

lim v(Xs — %, t) < 1 — a.

n—o

Then x is called fuzzy a-antilimit of x,.

Theorem (3.2.3)[6] Let (V,A*) be a fuzzy antinormed linear space
with respect to a t-conorm o satisfying (vi) and (viii). Then fuzzy
a-antilimit of a fuzzy a-anti-convergent sequence is unique.

Proof Let {Xn,}nen be a fuzzy a-anti-convergent sequence and
suppose it convergestox andy inV . Then forallt>0

lImv(xp, —x,t) <1 —aand lImv(x,—y,t) <1 —a.

N—o0

Now,
vix—y,t) =v(X— X, + Xy — vy, t), ¥n
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=v(xn — X, t) o v(X, —y, t), Vn.
Taking limit we have

v(x —y,t) = rI]iLr])ov(Xn —X,t) 0 rIliinoov(xn -y, t)

<(l1-a)o(l—a)=(1-a), (by (viii)).
That is, v(x —y, t) <1, Vt > 0. Therefore, x —y =0 by (vi) = x =Y.
Theorem (3.2.4)[6] Let (V,A*) be a fuzzy antinormed linear space
with respect to a t-conorm o, satisfying (vi) and (viii). If {X,}nen IS

a fuzzy a-anticonvergent sequence in (V,A*) such that x, converges
to x, then |x, —XH;—> 0 as n — oo.

Proof Since {X,}.en be a fuzzy a-anti-convergent sequence,

suppose it converges to x, then forall t > 0, Imv(x, —x,t) <1 —«a
n—oo

= 3Any(t) > 0 such that v(X, — x,t) <1 — a, Vn > ny(t)

= 3ny(t) > 0 such that |x, —xH; <'t, Vn > ny(t).

Since t > 0 is arbitrary, |, —xH;—> 0 as n — oo.

Definition(3.2.5)[6] Let (V,A*) be a fuzzy anti-normed linear
space with respect to a t-conorm o and a € (0, 1). A sequence
{Xn}nen In V is said to be fuzzy a-anti-Cauchy sequence if

lim v(X, — Xpsp, t) <1 —0a,Vt>0,p=1,2,3, ...

nN—o0

Theorem (3.2.7)[6] Let (V,A*) be a fuzzy antinormed linear space
with respect to a t-conorm o, satisfying (viii) and a € (0, 1). Then
every fuzzy a-anticonvergent sequence in (V,A*) is a fuzzy a-anti-
Cauchy sequence in (V,A*).

Proof. Let {X,}nen be a fuzzy a-anti-convergent sequence and it
converging to X. Then

Iimv(x, —x,t) <1 - a.

N—o0
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Now,

V(Xn_Xn+p, t) :V(Xn_X+X_Xn+p, t),forp: 1, 2, 3, e
=v(xn —X,EJO\{XW —x,i) forp=1,2,3, ...
2 2

Therefore,
) ) t ) t
lim v(Xy — Xp+p, t) < lim v | X, =X, = [o lIm V| X,,, —X, =
n—oo n—o0 2 n—0o0 P 2

< —o)e(—a)=(-oa),(by (viii)).
Hence, {Xn}nen is @ fuzzy a-anti-Cauchy sequence in (V,A*).
Theorem (3.2.8)[6] Let (V,A*) be a fuzzy antinormed linear space

with respect to a t-conorm o, satisfying (vi) and (viii). Then every

Cauchy sequence in (V, HH;) is a fuzzy a-anti-Cauchy sequence in

(V,A*), where H-H;denotes the increasing family of norms on V
defined by (ix), a € (0, 1).
Proof. Choose a0 € (0, 1) arbitrary but fixed. Let {yn}nen be a

Cauchy sequence in V with respect to HH;O Then

lim = 0.

N—o0

Ya _yn+p ag
Then for any given ¢ (> 0) there exists a positive integer ny(g) such

that <g Vn>nyg(e)andp=1,23,....

Yo~ yn+p

Ao

SA{>0:v(Yn — Ynep, 1) < 1 — 0o} < g,
= there exists t(n, p, €) < e such that
V(Yn = Yneps t(N, P, €)) <1 —ap, Vn>np(e) and p =1, 2, 3,...
= V(Yn — Yneps €) < 1 — 0.
Since ¢ (> 0) is arbitrary,

lim v(yn—yn+p, t) <l—-agy Vt> 0= {yn}nEN
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Is fuzzy ay-anti-Cauchy sequence in (V,A*).
Since o, € (0, 1) is arbitrary, every Cauchy sequence in (V, HH;) is

fuzzy a-anti-Cauchy sequence in (V,A*) for each a € (0, 1).
Definition (3.2.9)[6] Let (V,A*) be a fuzzy antinormed linear space
with respect to a t-conorm ¢ and a€ (0, 1). It is said to be fuzzy
a-anti-complete if every fuzzy a-anti-Cauchy sequence in V fuzzy
a-anti-converges to a point of V .

Theorem (3.2.10)[6] Let (V,A*) be a fuzzy antinormed linear
space with respect to a t-conorm o, satisfying (vi) and (viii). If

(V,A*) is fuzzy a-anti-complete then V is complete with respect to

Proof Choose ao, € (0, 1) arbitrary but fixed. Let {yn}nen be a

_,0€ (0, 1).

Cauchy sequence in V with respect to HH; then {yn}nen is fuzzy ao-

anti-Cauchy sequence in (V,A*). Since (V,A*) is fuzzy ag-anti-

complete, there exists y € V such that

imv(ys— y, t) < 1 — 0o, Vt > 0 = lim |y, —yH*O: 0, by Theorem
n— n—o a

(3.2.8).

*

= Yy, — y with respect to ||
Qo

= (V, HH;O) is complete.
Since ay is arbitrary, (V, HH;O) is complete.

Section (3-3) Some Topological and Algebraic Properties of
a-level Subsets' Topology of a Fuzzy Subset

Zadeh introduced the general theory of fuzzy sets. He laid the
foundation for the concept of complement, union, intersection and

emptiness of fuzzy set. Chang was the first person to extend these
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concepts to a topological space. He defined a fuzzy topology on a
set X as the collection of all its fuzzy subsets satisfying three
axioms similar to those of a classical fuzzy topological space.
Wong considered some properties of Chang's fuzzy topological
space such as cover, sequential compactness and semi compactness
and concluded that the theory of fuzzy topological spaces in these
regards are less useful. He also developed a product and quotient
fuzzy topology on Chang's fuzzy topological space. He examined
some properties of fuzzy homeomorphism which he regarded as an
F-continuous one-to-one mapping between two fuzzy topological
spaces such that the inverse also is F-continuous. He further
introduced the concept of fuzzy point in order to formulate the idea
of fuzzy convergence.

However, noting that, according to Chang's fuzzy topological
space, constant maps between fuzzy topological spaces are not
continuous, Lowen modified the definition of fuzzy topology on X
by Chang. Hence, he referred to Chang's topology as a quasi
topology. Along side, he formulated and extended some ideas such
as continuity and compactness. But Gantner faulted the work of
Lowen as losing the concept of generalization which fuzzy
topology on X is to yield. Sarka considered some Hausdorff
separation axioms by taking the fuzzy elements into consideration
and, with this, he hoped to improve on the work of Gantner which
he considered to have done a similar thing but for only the crisp
points and crisp subsets of fuzzy spaces. Shostak made a
modification that is completely different from the existing concept
of fuzzy topology by introducing that a fuzzy set can be open or

closed to a degree. Hence a fuzzy topological function
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1, if o is complete open
t(a)=4B, if o is open toadegree B <(0,1)
0, if ais complete not open.
Chakrabarty et al took a completely different line of thought by

introducing fuzzy topology on a fuzzy set rather than on X, using a
tolerance relation S. This was considered tolerance topology and
the pair (A, S) a tolerance space, where Ais a fuzzy set.
Chaudhuri et al built on this topology to develop the concepts such
as Hausdorffness, regularity, normality and completeness of
normality. Das continued in this setting and introduced a product
topology and fuzzy topological group. However, there was a
resurgence of gradation of openness of Shostak. This, according to
Gregori et al, makes it easier to avoid the concept of fuzzy point.
The concepts of a-level openness, a-interior and a-neighbourhood
were also introduced. This idea was also followed by Benchalli to
obtain some fuzzy topological properties such as a-Hausdorffness,
a-connectedness and a-compactness. Onasanya also introduced and
studied some properties such as fuzzy accumulation (or cluster)
points of an a-level subset of a fuzzy topological space instead of
that of fuzzy cluster set introduced by Chang. This also makes it
easier to avoid fuzzy points. We now introduce a setting where the
topology we introduce is on the fuzzy set m itself and examine
some properties of this topology. This is not a tolerance topology
as in Chakrabarty et al because it uses the collection of level
subsets. It is also different from the topology by a collection of
mere fuzzy subsets as in Chang. It is also different from the
topology in Shostak because this topology is not on X.

Definition (3.3.1)[4] Let X be a non-empty set. The fuzzy subset m
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of the set X is a function pu: X — [0,1], where ux is the
membership function of the fuzzy set u. We can just use m for ux
since it is characteristic of the fuzzy set p.

Definition(3.3.2)[4] Let u and A be any two fuzzy subsets of a set
X. Then

(1) A and mare equal if u(x) = A(x) for every x in X

(i1) X and p are disjoint if u(x) = A(x) for every x in X

(i) A < pif u(x)> A(x)

Definition(3.3.3)[4] Let u be the fuzzy subset of X. Then, for some
a € [0,1], the set p, = {x € X : u(x) > a} is called a a-level subset

of the fuzzy subset p. If a; < 0, then p, cp, -

Definition (3.3.4)[4] Let u be a fuzzy subset of X. Then, X is the
complement of m if A(x) =1 — u(x) vVx € X.

Definition (3.3.5)[4] The family T = {A;};c, of fuzzy subsets of X
such that

(Yo, XeT,

(MU;Aje T foreachjel and

(i) Akn Aje T for each k, i € |

is called a fuzzy topology on X and (X, T) is called a fuzzy
topological space.

Remark (3.3.6)[4] ® ={x e X: u(X) =0 Vx e X} and X ={x €
X :u(x) =1 Vx e X}. Every member of T is called T-open or
simply open fuzzy set. Alternative to this is the definition where «
Is the fuzzy set in X with constant value A. Then, k,=® and k; = X.
Definition(3.3.7)[4] A fuzzy set U in a fuzzy topological space is a
neighbourhood of a fuzzy set m if there exists an open fuzzy set O

such that u < O c U.
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Remark (3.3.8)[4] The collection of all such neighborhood U of n
is called neighborhood system of p. In this case, u is called the
interior fuzzy set of U and the collection of all the interior fuzzy
sets is called the interior of U and can be denoted U°. It is
Important to note that a fuzzy set m is open if and only if p = p°.
Theorem(3.3.9)[4] A fuzzy set is open if and only if it is the
neighbourhood, of each fuzzy set in it.

Definition (3.3.10)[4] A sequence of fuzzy sets, say
{A.:n =1, 2, 3,...}, is eventually contained in a fuzzy set A if and
only if there is an integer m such that, if n > m, then A, c A.
Definition (3.3.11)[4] A sequence of fuzzy sets, say
{A.. n =1, 2, 3,...}, is frequently contained in a fuzzy set A if and
only if for each integer m there is an integer n such that, if n > m,
then A, € A.

Remark (3.3.12)[4] A sequence of fuzzy sets {A,:n=1, 2, 3,...}
in a fuzzy topological space is said to converge to a fuzzy set A if
and only if it is eventually contained in each neighborhood of A.
Definition (3.3.13)[4] A fuzzy set A in a fuzzy topological space
is a cluster fuzzy set of a sequence of fuzzy sets if and only if the
sequence is frequently contained in every neighbourhood of A.
Definition (3.3.14)[4] A fuzzy point X, in a space of points say,
X, is a fuzzy set My, defined by

#0, when x= X,
py ()= .
P 0, elsewise.

The implication of this is that when pxp(X) Is restricted to

X —{xp} it is an improper (or constant) fuzzy set with membership
value O.
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Theorem (3.3.15)[4] Let A, be a a-level subset of a fuzzy
topological space (X, T). A point x € X is a fuzzy accumulation
point or fuzzy cluster point of A, if for T-open subset U
containing x it is such that U < Ug with A, N U \{Xx} = 0 and B < a.
Definition(3.3.16)[4] A class {A;} of sets is said to have finite
Iintersection property if every finite subclass has a non-empty

intersection.

Definition(3.3.17)[4] A fuzzy topological space is sequentially

compact if every sequence in it converges to a point in it.

Main Results(3.3.18)[4]

We now introduce a new topology © which is defined on a fuzzy
subset p of a non-empty set X rather than on X itself. The topology

is the collection of a-level subsets {n, } of X.

In what follows, we shall show that the collection of a-level
subsets of X defines a topology on the fuzzy subset u of X. Some
basic and useful definitions shall be given. Some of these look like

Chang's definition but are modified to fit into the new topology.
Theorem(3.3.19)[4] The family ={ 1, In(x) >0i}\ X for a; € [0,
1] defines a topology on p.

Proof. Note that we have dropped the level subset X = p, , for

some oy = 1 in which case pu(x)=1 vx € X. Then,
p ={xeX i u(x) > e [0,1]}=pand p, ={x € X : p(x) =0 Vxe

X for some a, = 0} = . Hence, p,p, €1 .
If we also consider that p, , u,, € © and take O=max{a,, o,}.,

M(xl ﬂ u(xz = M[S € T*'
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Further, for {u, },such that for every i, p, ©. Let y = min{a;}.

By, Ulip,, =1, 7.

Remark (3.3.20)[4] It should be noted that this family has a
noetherian property. In this regard, (u, ©) is a topological space
and this we refer to as fuzzy level topological space or 1 -space.
Every element p, € 1 is called level open or 1 -open. Hence, a
level set g is T -closed if and only if its complement yg' is t -open.
This level openness agrees to the definition of level openness . A
fuzzy set A can be said to be open if it coincides with a level subset
of w. When ©° = {u, w} we have an indiscrete level topological
space. If © = {i Mo, Mo, Me,s Moy Mo 3o Where {p, }is a
collection of all possible level subsets of u, we have a discrete
level topological space.

Definition(3.3.21)[4] The sequence of level subsets {n, }in TS
frequently contained in a level subset p, if for each i there is an i,
such that for o; > a; we have p, < p, .

Definition (3.3.22)[4] The sequence of level subsets {u, } is
eventually contained in a level subset p, if there is an i, such that
for ai = o; we have p, cp, .

Definition(3.3.23)[4] The sequence of level subsets {u,} is said to
converge to a level subset p, if the sequence is eventually

contained in every neighbourhood of p,.

Definition(3.3.24)[4] A level subset pyin the sequence {u, } is
called maximal if p, <o for all i such that ao<a; or a = min{ai}

and it is minimal if o; < p, for all i such that ap=aior ag= max{ai}.
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Remark (3.3.25)[4] It is can be observed that the sequence is
frequently contained in the maximal level subset. This is because,

for any a; there is an oy such that o; = ax> oo, then p, < p, .
Definition(3.3.26)[4] The sequence {u,. } of fuzzy level subsets is

bounded if it has both the minimal and maximal level subsets.

Definition (3.3.27)[4] A fuzzy level subset p, in (u,7’) is a cluster

fuzzy level subset of a sequence of fuzzy level subset {n, } if the
sequence is frequently contained in every neighbourhood of o, .
Definition(3.3.28)[4] A fuzzy subset A in (u, ') is a neighbourhood
of a level subset p, if there is a level open set O, such that
Mo, © O, < A

Remark (3.3.29)[4] Though it cannot be said that an element X is
in u, X except only to a degree, but rather it can be said that x € p,.
Hence, we can define a fuzzy subset u as a neighbourhood of an
element x if there is a v -open level subset O, such that x € O, ep.
Definition (3.3.28) is a generalisation of this since if p is a

neighbourhood of any y,, it is a neighbourhood of each point ofy, .
Definition (3.3.30)[4] The level subset p, is called an interior

fuzzy level subset of the fuzzy set A and each point of ., is called
fuzzy interior point of A. The collection of all such p, is the
interior of A.

Definition (3.3.31)[4] The collection of all such neighbourhoods A

of level subset (or of points of) p, is called the neighbourhood

system (or of the points) of n, and is denoted N.
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Theorem (3.3.32)[4] A fuzzy subset A in a fuzzy topological space
(W 77 is T -open if and only if A is a neighbourhood of every p

init.

Proof. Let A be open in M and p, < A for each i. Then, A being

opened is in T, there is a p € R such that Ho, CA = pg With B < a;.

Since B and a; are distinct real numbers, (B, a;) forms an interval.

So there is a yeR such that B<y< a; which implies that p, < pc

ws. But i, € 7. Hence, for every u, <, there ispe t such that
b S C A= g

Thus, X is a neighbourhood of all p, 'sin it.

Conversely, let A be a neighbourhood of each n, in it. Then,

Uwiic A. But each p, <A for each i so that for each x € p, <,

w(X) > a;. But each x which is to a certain degree contained in A is

in some p,; so that A < Up,, . Then, A =Up, € ©. Thus, A is open.

The following theorem connects Chang's topological space with
T -space.
Theorem (3.3.33)[4] Let the fuzzy set A be a neighbourhood of the

fuzzy set p in Chang's topological space. Then, A is a

neighbourhood of all the t"-open subsets p, of p.

Proof. Note that y, < ufor every a. Since A is a neighbourhood of
1, there is an open set O in Chang's topological space such that, p
c O, cA.

But for every a, y,c pnc Oc A. Hence, y,c O .

Theorem (3.3.34)[4] A sequence of fuzzy subsets that is frequently
contained in a fuzzy subset M is eventually contained in p.
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Proof. For each m such that n > m, we have A, — A. But we can
choose a fix m, such that for n > m,, A, < A. Hence, {A,} is
eventually contained in A.

Theorem (3.3.35)[4]Every sequence of level subsets {n, } of
fuzzy set M is frequently contained in the fuzzy set p.

Proof. For each m such that o;> m, My S Hm Since for each m,

n,, SHmcw, we have , cp., the sequence { } is frequently

contained in .
Remark(3.3.36)[4] The sequence{n, }is eventually contained in

LL.
Theorem (3.3.37)[4] Every level subset of u in the sequence

{u,, }, except the maximal one, is a fuzzy cluster level subset.

Proof. Let p, be any fuzzy level subset of p and p, the
neighbourhood of p, . Always, n, cp, with oy > a. For each a
such that a,>a, p, <u, and so the sequence is frequently

contained in p,. As for the maximal one, it is not properly
contained in any other level subset which can serve as its
neighbourhood.

Corollary (3.3.38)[4] The sequence {u, } converges to its

minimal fuzzy level cluster subset ,_.

Proof. The sequence converges to its minimal level subset .And it
is one of the fuzzy cluster level subset .

Theorem(3.3.39)[4] The fuzzy set m is open if and only if it can
be expressed as the union of all its fuzzy cluster level subsets.

Proof. If u = U, Mo, = max{u&i }. Then there is an ox = min{o;}
such that p = p, e . Thus, m is open.

Conversely, if m is open, we have pu € t. Then, there is an oy such

that p,, =n.
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Remark(3.3.40)[4] The following is similar to what we have in
classical case that a set is closed if and only if it contains all its
limit points, in which case the set is bounded.

Theorem(3.3.41)[4] The sequence of level subsets is bounded if
and only if it contains all its cluster level subsets of the fuzzy set.

Proof. If a sequence contains all the cluster level subsets of the
fuzzy set, they are also level subsets of that fuzzy set, the sequence
is bounded. Conversely, if the sequence is bounded, it has both the
minimal and maximal level subsets. Since it is a noetherian
sequence, it contains the maximal level subset, and thus the
sequence, contains all the other level subsets of the fuzzy set. But
all of them are cluster level subsets,except the maximal one.

Definition(3.3.42)[4]. The sequence of level subsets {,, } is a

cover for p, ifp, cUyp, .

Remark(3.3.43)[4] The property of compactness of p is hard to
come by in this space because of the neotherian property of {}.
We rather can have something that mimics it. As a matter of fact,
for the same reason, this space does not separate points. So, the
property of Hausdorffness is not possible. But the space (u, ) has
something that much resembles sequential compactness.

Definition(3.3.44)[4] The sequence of level subsets {n, } is a

quasicover forp, if p, < Uy, .

Definition(3.3.45)[4] A level subset p, is quasicompact if every
open quasicover {u.} has a refinement or a subsequence {Ma,.}
with o;> a; which is a quasicover of p, .

Definition(3.3.46)[4] A fuzzy topological space is parasequentially
compact if every sequence of level subsets in it converges to a
level subset in it.

Theorem(3.3.47)[4] (1, T ) is a parasequentially compact space.

Proof. Every sequence of level subsets in (u, T) converges to a
level subset p, < p. Hence, (y, ') is parasequentially compact.

83



Chapter 4
Some Topological Properties of Fuzzy Antinormed Linear Spaces

Section(4-1) Some Topological Properties of Fuzzy Antinormed

Linear Spaces

The concept of fuzzy set was introduced by Zadeh in 1965.
Thereafter, fuzzy set theory found applications in different areas of
mathematics and its applications in other sciences. The concept of
fuzzy norm was introduced by Katsaras in 1984. In 1992, by using
fuzzy numbers, Felbin introduced the fuzzy norm on a linear space.
Cheng and Mordeson introduced another idea of fuzzy norm on a
linear space, and in 2003 Bag and Samanta modified the definition
of fuzzy norm of Cheng-Mordeson. A comparative study of the
fuzzy norms defined by Katsaras, Felbin, and Bag and Samanta

was given. The idea of fuzzy antinorm was introduced.

On the basis of this idea, Jebril and Samanta introduced the
concept of fuzzy antinorm on a linear space based on the notion of
continuous triangular conorm, first applied in investigation of
probabilistic metric spaces. Dinda, Samanta, and Jebril further
modified this concept and also defined fuzzy a-anticonvergence.
We use this later approach to investigate statistical versions of

anticonvergence. Recall that statistical convergence is defined by

using the asymptotic or natural density 6(A) of a subset A of
natural numbers N, defined by §(A) = lim_.({k € A : k < n}|/n)
if this limit exists. AcN is said to be statistically dense if
6(A)= 1. consider somecovering properties in fuzzy antinormed

linear spaces.
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Preliminaries(4.1.1)[11] Contains some basic definition and

preliminary results which we need for further exposition.

Definition (4.1.2)[11] Abinary operation ¢ : [0, 1] X [0, 1]—[O0, 1]
Is said to be a continuous t-conorm if it satisfies the following

conditions:

(1) ¢ is commutative and associative.

(i) ¢ is continuous.

(ii)a® 0=a,a€e [0,1].
(ivya<candb<dimplyad¢b<codfora, b,c, de][o0,1].
Classical examples of continuous t-conorms are
a0db=a+b—ab,a0b=max{a, b}, a0b =min{fa+b,1}.

We often use idempotent t-conorms ¢ (i.e., satisfying a ¢ b = a for

each a € [0,1]).

Recall now the notion of fuzzy antinorm in a linear space with

respect to a continuous t-conorm following.

In what follows E will denote a real linear space with the zero

element 6 and ¢ will be a continuous t-conorm.
Definition(4.1.3)[11] Let E be a real linear space and ¢ a

t-conorm. A fuzzy subset v: E X R— R of E X R is called a fuzzy
antinorm on E with respect to the t-conorm ¢ if, for all X, y € E,
(FaN1) for each t € (—,0], v(x, t) = 1;

(FaN2) for each t € (0,), v(x, t) =0 if and only if x = 6,

(FaN3) for each t € (0,), v(cx, t) = v(X, t/|c|) if x #0;

(FaN4) for all t, s € R, v(x+y, s+t) < v(X, s)Ov(y, t);
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(FaN>5) lim,_,, v(s, t) = 0.

Note that if v is the antinorm v in the definition above, then v(s, t)
IS nonincreasing with respect to t for each x € E.

The following are examples of fuzzy antinorms with respect to a
corresponding t-conorm and show how a fuzzy antinorm can be
obtained from a norm.

Example(4.1.4)[11] Let (E, ||.||) be a normed linear space and let
the t-norm ¢ be given by a ¢ b =a + b— ab. Define v: EXR — [0, 1]

by
0, if t>x||
vix, t)=1LLifo<t<|x|, (1)
1, if t<O.

Then v is a fuzzy antinormon E with respect to the t-conorm 9.
Example(4.1.5)[11] Let (E, || . ||)be a normed linear space and let

the t- conorm ¢ be given by a ¢ b = max{a, b}. Define
v: EXR—[0, 1] by

al if t>0;
v(x, 1) =4 _ > (2)
1, if t<0.

Then v is a fuzzy antinorm on E with respect to the t-conorm 9.
Example(4.1.6)[11] Let (E, || . ||) be a normed linear space and let
the t-conorm ¢ be given by a ¢ b = a + b—ab.
Definev: E X R— [0, 1] by
0, if t>|x|;
o) { I

3
1 i t<|x| ®)

Then v is a fuzzy antinormon E with respect to the t-conorm 9.

This antinorm v satisfies also the following:

86



v(Xx, t) <1 for each t > 0 implies x = 6.
Example(4.1.7)[11] Let (E, ||.|[) be a normed linear space and
consider the t-conorm ¢ defined by a ¢ b = min{a + b, 1}.

Define v: EXR—]0, 1] by

x| ' :
v(x, t)={ 2 if t > ]| )
1, if t<|x|

Then v is a fuzzy antinorm on E with respect to the t-norm ¢. Note
that this v satisfies the condition and also the following:
v(X, .) iIs a continuous function on R and strictly decreasing on the
subset {t: 0 <v(x,t) <1} of R.
Definition(4.1.8)[11] Asequence (Xn)nen in a fuzzy antinormed
linear space (E, v, 0) is said to be v-convergent to a point x € E if
for each € > 0 and each t > 0 there is n,€ N such that
v (Xp— X, t) < & for each n > n,. (5)

In this case we write (x,) ——X.
Definition(4.1.9)[11] Asequence (Xy)nen In a fuzzy antinormed
linear space (E, v, ¢) is said to be statistically]-convergent to a
point Xxe E if for each ¢ >0 and eacht > 0

6 ({ne N:v(x,— x,t) <e})=0. (6)
In this case we write (X,) ———>X.
Theorem(4.1.10)[11] Let (E, v, ¢0) be a fuzzy antinormed linear
space with respect to an idempotent t-conorm ¢, and let v satisfy
(FaN®6). Then for each 4 € (0, 1) the function ||.|[x : X— [0,)
defined by

.= A{t>0:v (X, t)<1- A1} (7)
Is a norm on E (called an A-norm generated by v), and

A ={||.||]x: 1€ (0,1)} is an ascending family of norms on E.
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Convention. We use the notation (E, A) for the family of normed
linear spaces {(E,||.||») : 4 € (0, 1)} and call (E, A) also a fuzzy
antinormed linear space.

Lemma(2.1.11)[11] In a fuzzy antinormed linear space (E, A) with
respect to an idempotent t-conorm ¢ satisfying (FaN6) and (FaN7)
a sequence is statistically v-convergent if and only if it is
statistically A-convergent for each 4 € (0, 1).

Proof. (=): Let (X,)nen be a sequence in E such that (Xn)nen———X,
I.e., for each t > 0.

st— limv (x,— x, t) =0. (8)

N—o0

Fix 2 € (0, 1). So, st — Iim v (x,— X, t) =0 <1 — A. There exists a

statistically dense set M c N so that, for each n € M,

v(Xp—x, ) <1-A. 9)
Since [[Xp= X[Ja = A{t>0:v (X,— X, t) <1 — A} we have ||x,— X|]2 <'t
for all ne M. As t > 0 was arbitrary, for each 1 € (0, 1), by (FaN6),
we have ||x,— X||2 which statistically converges to 0.
(<): Suppose now that for each 1 € (0, 1), [|xn— X||2 statistically
converges to 0.Thismeans that for each 4 € (0, 1) and each € > 0

there is a statistically dense M,c N such that

[IXn— X[[a < & (10)
for each n € Mj.Therefore,
v (Xn— X, &) = A{l — A [[Xn— X|]2< €} (11)
implies
v(Xp—X, &) <1 -1 (12)
for each 1 € (0, 1) and each n € M, which means
v (Xo— X, £) /5 X; (13)
that is, (Xn) —=X. (14)
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The relations of fuzzy A-anticonvergence, fuzzy A- anticauchyness,
and fuzzy A-anticompactness with respect to their corresponding
increasing family of norms are studied in the following part of this
section.
Definition (4.1.12)[11] Let (E, A) be a fuzzy antinormed linear
space and A€ (0, 1). A sequence (Xn)nen in E is said to be fuzzy
statistically A-anticonvergent in E if there existx € E and M cN
with §(M) = 1 such that, for all t > 0,

v(Xp— X, ¢) <1-A. (15)
In this case we write (x,)——=— x and X is called a fuzzy statistical
A-antilimit of (Xp)nen.
Theorem(4.1.13)[11] Let (E, A) be a fuzzy antinormed linear
space with respect to an idempotent t-conorm ¢ satisfying .Then
statistical fuzzy A-antilimit of a fuzzy statistically A-anticonvergent
sequence is unique.
Proof.Let (X,)nen be a fuzzy statistically A-anticonvergent sequence
converging to distinct points x and y in E. This means that for each
t > 0 there are two subsets M, and My of N with §(My) =1 = §(M,)
such that we have v(x,—x, t/2) <1 — A for eachn € M, and
v(Xn—X, t/2) ] <1 — A for each n € M,. The set M = MyNMy is
sequentially dense in N, and by the assumption on ¢ for each ne M
we have

v(X—y, t) = v(X — Xp+ Xp— Y, 1)

< V(X”_x’%) Ov (xn—y,%) (16)

<(1-2D0(-A)=1-2
Therefore, v(x—-y, t) <1 for eacht> 0. By (FaN6) one obtains
X—y=0,ie,x=y.
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Theorem(4.1.14)[11] Let (E,A) be a fuzzy antinormed linear space
with respect to an idempotent t-conorm ¢ satisfying (FaN6). Then:
(i) If (X)) =2 x and (y,) —=>y, then (X, + y,) —=2 5 x+ y
(i) If (x,) =~ >sx and r € R, then (r. x,) rx.

Proof. (i) Since (x,) —=**x for each t > 0 there is M;c N with
6(M;)= 1 such that v(x,— x, t/2) < 1 — A for each n € M,. Similarly,
from(y,) —=> sy it follows that for each t>0 there is a set M,c N
with §(M,)=1 such that v(y,—y, t/2)< 1 — M, for each ne M,. Then
M = M;NM, is such that §(M)=1 and for each t>0 and each ne M

we have
t t
V(Xp+Xp—X=y,D<v (xn —X,Ej Ov (xn -, Ej

<(1-D01-=1-2, (17)

a—st—

which means (X, + yn) ——=%*> x+y
(ii) The fact (x,) —=**x implies that for each t > 0 there is a
statistically dense subset M of N such that v(x,—y, t) <1 — A for

eachn € M.Then foreacht> 0

v(rx, —rx,t)=v£xn —x,ﬁ} <1-\ (18)

foreachn e M;i.e., (r. xn)L“)rx.

Theorem (4.1.15)[11] Let (E, A) be a fuzzy antinormed linear

space with respect to an idempotent t-conorm O. If (Xp)nen IS a

fuzzy statistically A-anticonvergent sequence in (E, A) statistically

converging to x € E, then ||x, —x||, statistically converges to 0.

Proof. By assumption there is a set M ¢ N with 8(M) = 1 such that

for each t > 0and each n € M we have v(X,— X, t) <1 — A. In other
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words, ||X, —X]|[;, < t for each n € M. Since t was arbitrary we have
that ||x, —x||,, statistically converges to 0.

Definition(4.1.16)[11] Let A € (0, 1). A sequence (Xp)nen IN a
fuzzy antinormed linear space (E, A) (with respect to a t-conorm 9¢)
Is said to be fuzzy statistically A-anti-Cauchy if for every t > 0
there is a set M < N such that (M) = 1 and for all m, n € M,
v(Xp— Xm,t) <1 —A.

Theorem(4.1.16)[11] Let (E, A) be a fuzzy antinormed linear
space with respect to an idempotent t-conorm ¢ satisfying (FaN6)
andl A€(0,1).Then every fuzzy statistically A-anticonvergent
sequence (Xn)nen In (E, A, Q) is fuzzy statistically A-anti- Cauchy.
Proof. Since (Xxn)neniS fuzzy statistically A-anticonvergent to some
X € E, for each t > 0, there is a set M c Nwith 6(M) = 1 such that
v(Xn — X,t/2) < 1 — A for each n € M. Then for all m, n € M we
have

V(Xn— Ym, t) = v(Xy — X+ X — X, 1)

< V(X”_Xéj Ov (xm—y,%j (19)

<(1-D0A-A)=1-2

which means that (x,)nen is fuzzy statistically A-anti-quasi- Cauchy
in (E, A).

Theorem(4.1.17)[11] Let (E,A) be a fuzzy antinormed linear space
with respect to an idempotent t-conorm ¢.Then every statistically
Cauchy sequence(Xy)nen in (E, ||.||2), A€ (O, 1), is fuzzy statistically
A-anti-quasi-Cauchy in (E, A).

Proof. Let A€ (0,1) be arbitrary and fixed. Since (Xp)neniS a

statistical Cauchy sequence in (E, ||.||2), for any &€ > 0 there is a
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setM < N with 6(M) = 1 such that for all m, n € M we have
[[Xn —Xml||5. < €. It means that for each m,n € M

AMt>0:v (X~ Xm ) <1-2A}<e¢ (20)
which implies the existence of t, < € such that v(X,— Xm, to) <1—A4. It
follows that v(x,— Xm, €) < 1—A, and as € was arbitrary, we conclude
that v (Xp— Xm, t) = 1 — A for each t > 0 and all m, n € M. This
means that (x,)nen IS fuzzy statistically A-anti-quasi-Cauchy
sequence in (E, A). But, 4 also was an arbitrary element in (0, 1) so
thatwe have that (X,)nen IS fuzzy statistically A-anti-quasi-Cauchy
in (E, A) for each 1 € (0, 1).
Definition(4.1.18)[11] A fuzzy antinormed linear space (E, A)
(with respect to a t-conorm¢) is said to be fuzzy statistically
A-anticomplete, A€ (0, 1), if every fuzzy statisticallyA-anti-Cauchy
sequence in E fuzzy statistically A-anticonverges in E.
Theorem(4.1.19)[11] Let (E,A) be a fuzzy antinormed linear space
with respect to an idempotent t-conorm ¢. If (E, A) is fuzzy
statistically A-anticomplete, then E is statistically complete with
respect to ||.||; for each A € (0, 1).
Proof. Let A € (0, 1) be fixed and let (Xx,)hen be a statistically
Cauchy sequence in E with respect to ||.||,. By the previous theorem
(Xn)nen 1S fuzzy statistically A-anti-Cauchy in (E, A). Therefore,
there is x € E and a subset M of N with 6(M) = 1 such that, for
eacht> 0 and eachn € M, v (X,— X, t)< 1-A. By Theorem (4.1.20),
this means ||x, — X||, statistically converges to 0; i.e., (Xp)nen
statistically converges to x with respect to ||.||,. Therefore, (E, ||.||5)

Is statistically complete.
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Section (4-2) Some Covering Properties
Let(E,v,0) be a fuzzy antinormed linear space where ¢ is
idempotent.
Given XeE, € € (0, 1), and t > 0, the set

B, (X, &, t) ={y € E:v(y — x,t) <&} (21)
Is called the open ball with center x and radius € with respect to t.
For each point y € B, (X, &, t)there is an open ball with center y
contained in B, (X, &, 1). Letv(y — X, t)=a<eandset f = ¢ — a.
We prove B, (X, &, t/2) c B, (X, €, t). Let p € B, (y, B, t/2). Then
v(p — vy, t/2) < B so that we have

t t
—x,t)= _ X, — 4 —
v(p-x,t) v(p y+Yy x2+2

=v(p—y,%]<>v(y—p,§ (22)
<(e—a)0e<ele=¢,
i.e., p € B, (X, & 1).
Therefore, the collection
{B (X, & t):xe Eee (0,1),t>0} (23)
Is a base of a topology on E; denote this topology by 7,. Notice

that the collection
{B(X,l,thXEE,I’IEN,t>O} (24)
n

is also a base for t,. The topology t, is Hausdorff and first
countable.
The following definitions are motivated by definitions of the

classical Menger, Rothberger, and Hurewicz covering properties.
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Definition(4.2.1)[11] A fuzzy antinormed linear space (E, v, Q) is
said to be

M: Menger-bounded (or M-bounded),

R: Rothberger-bounded (or R-bounded),

H: Hurewicz-bounded (or H-bounded)
if for each sequence (e,: n € N) of elements of (0, 1) and each
t > 0 there is a sequence

M: (An: n € N) of finite subsets of E such that

E= UnenUaean B(a, &n, 1),

R: (Xn: n € N) of elements of E such that

E = UnenB(Xn, &n, 1),

H: (An: n € N) of finite subsets of E such that for each xe E

there is ng€ N such that X € Uaea. B(a, &,, t)for all n > n,.
A fuzzy antinormed linear space (E, v, ¢) is said to be precompact
(respectively, pre-Lindelof ) if for every € € (0, 1) and every t>0
there is a finite (respectively, countable) set AcEsuch that E
= U.ea B(a, &, 1).
Evidently,

precompact = H — bounded = M — bounded = pre —Lindelof,

R — bounded = M — bounded. (25)

Example(4.2.2)[11] Let (E, ||. ||) be a normed linear space with the
Menger (Rothberger,Hurewicz) property. Consider the fuzzy

antinormed linear space (E, v, ¢), where] and ¢ are as in
Example(4.2.3)[11] Then this fuzzy antinormed linear space is M
bounded (R-bounded, H-bounded). Consider only the M-bounded

case because the other two are shown quite similarly.
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Let (¢,: n € N) be a sequence in (0, 1) and let t> 0. As (E, ||. ||) has

theMenger covering property, there is a sequence (A,: n € N) of

finite subsets of X such that

E=U UKlae,), (26)

neN acA,

Where K(a,e,) ={y € X :|la—y| < e}.
Let x € X. There is n € N and a point a,e A, satisfying
|[X — a|| < &,. Then v(x — ay, t)
0, if t>|x—a,|;
= M (27)

: if t<|x-—a.l, t>0;
tHX_anH H nH

If t > |[x—a,|, then v(x — a,, t) = 0 so that x € B, (a,, &nt)). If t>0
and t < |x—a,|, then v(x — a,, t) = (|x—a,|/(t + [x—a,]))en; i.e., in
this case also x € B, (a, &n,t).

Therefore, E = UpenUaeas By (@, en,t); i.e., (E, v, ) is M bounded.
Example(4.2.4)[11] LetE=Rand || .|| =].], and let ¢ be defined
as in then the fuzzy antinormed space (E, v, ¢) is M-bounded by
the previous example and the fact that (R, | . |) has the Menger
property. On the other hand, (E, v, ¢) is not R-bounded.

Indeed, if we take the sequence (2" :n€ N) c (0,1) andt=2",
then X cannot be covered by the open balls B(x,, 27", 27") for any
choice of elements x,, n € N, from E. Otherwise, we would have
that for every x € R the following holds:

X=Xl g (28)
27+ X = X, | ’

which means
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R=UJ(x,—2",x,+27") (29)

neN
However, it is impossible.

We end with the following result on M-boundedness.

If (E, v, 0) is a fuzzy antinormed space and S c E, then (S, vs, 0),
where ve= v [ (SXR), is also a fuzzy antinormed space and it is
called the fuzzy antinormed subspace of (E, v, 0).

Section (4-3) Some Topological Properties of Extended b-
Metric Space.

In 1993 Czerwik introduced the concept of a b-metric space by
giving an axiom wich was weaker than the triangular inequality as
follows.

Definition(4.3.1)[14] Let X be a nonempty set and A function
d: X x X—[0, +oof is called a b-metric if for all x, y, z e X it
satisfies

LdX,y)=0<x=y

il.d (x,y) =d(y, x)

. d(x,2) < 2[d(x,y) + d(y, 2)]

After that in 1998 Czerwik generalized this notion where the
onstant 1i was replaced by a constant b >1. In 2017, Kamran,
Samreen, U, Ain generalized this notion as following
Definition(4.3.2)[14] Let X be a nonempty set and 0:XxX—J[1, +x],
A function dy : X x X — [0, +oo] is called an extended b-metric if
for all x,y, z € X it satisfies

.do(X,y) =0 = x=y

i, do (X, y) =dg (y, X)

. dg (X, 2) < 6(X, z) [do (X, y) + do(y, Z)]
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Example(4.3.3)[14] Let X ={2,3,4}, Define 6: X x X —[1, +oo[ and
dg: XxX —[0, +oo[ such that
0(X,y)=2+x+Y,
do(2,2) = do(3,3) = dy(4,4) = 0
dov(2,3) = do(3,2) = 30, do(2,4) = do(4,2) = 200 ,
do (3,4) = dy (4,3) = 2000
Example(4.3.4)[14] Let X=C([a,b],R) be the space of all continuous
real valued functions defined on [a, b], X is an extended b-metric
space by considering
do( X y) = SUPLcgapy X(E) — Y(B)[* with
0(x, y) = [x(t)| +|y(t)| +1, where g: X x X —[1, +o0],
It is obvious that the class of extended b-metric spaces is larger
than b-metric spaces, because if 0(x, y) = b, for b > 1 then we

obtain the definition of a b-metric space.
Definition 43.5)[14 ] Let (X, d0) be an extended b-metric space,

(1) A sequence {x,}in X is said to converge to xeX, if for every

e>0 there exist N=N(g)eN such that dy(X,, X)<e, for all n > N.

(i1) A sequence {xp}in X is said to be Cauchy, if for every ¢ > 0
there exist N=N(e) €N such that dy¢(Xy, Xm) < €, for all n,m > N.

(1) An extended b-metric space (X, dy) is complete if every
Cauchy sequence in X is convergent.

Lemma(4.3.6)[14] Let (X, dy¢) be an extended b-metric space, If dg
IS continuous then every convergent sequence has a unique limit.
main Results(4.3.7)[14] Denote B(a,r) = {ye X :dy(a,y) < r}
Bla,r]=(ye X :de(a,y) < r} and call them respectively the open ball
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and the closed ball.

Definition(4.3.8)[14] Let (X, dy) be an extended b-metric space ,

I. A subset A of X is called open if for any acA , it exists € > 0,
such that B(a, r) c A.

Ii. Asubset B of X is called close if for any sequence X, ,such that

lim x, = x and x,eB for all n, then xeB, It is easy to prove the

following Lemma.

Lemma (4.3.9)[14] A subset A of X is open if and only if A°=X-A
is closed, In a b-metric space (X,d) are well known the following
results

I. d is not necessarily continous in each variable

Ii. An open ball is not necessarily an open set.

In an extended b- metric space (X, dg) we can say the same thing,
since every b- metric space is an extended b-metric space.
Proposition (4.3.10)[14] Let (X, dy) be an extended b-metric space,
If dg is continous in one variable then d& is continous in the other
variable.

Proof:

Without loss of generality ,we may assume that dy is continuous

with respect to the first variable. For each xe X, if lim y, =y then

n—o

we have that,

lim de(X, yn) =lim dg(yn, X) =d (y, X) = d (X, y).
Proposition (4.3.11)[14]
Let (X, dy ) be an extended b-metric space, If dy is continous in

one variable then for each aes X and r > 0 we have

I. B(a,r) is open
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ii. B[a,r] is closed
Proof: For the first one by using Lemma (4.2.10) we will show
that the set (B(a, r))° is a closed set. Let {X,}nen < (B(A,R))C be a

sequence such that lim x, = x. For all n eN we have d¢{x,, a) > r

N—o0

then dg(x,a) =lim (x,, a) > r, therefore x € (B(a, r)), so (B(a, r ))c

Is a closed set.

For the second one, let {x,},en< B[a, r] and let lim n = x. For all

n—oo

neN we have do{X,, a) <.

Then dyg(x, a) = limdy(xn, @) < r . It implies that x € BJa, r].

Therefore BJa, r] is closed.
Propostion (4.3.12)[14] Let (X,, d; ),(X2,dy ),(X3, dg ),...,(Xn ,dy )

be n extended b-metric spaces. Put

do : X; x X3 x ... x X;; —[0, +oo[ such that

do((X1, Xaue. Xe). (Y1, Yaryn)) = 3°06,(x,,y; )and

i=1
0: X; x X, x ... x X, —[0, too[ such that
0((X1, X2,...Xn),(Y1, Y2,...Yn)) = max(0i(xi, yi)}, Then
de is an extended h metric on X; x X; x ... x X .
Proof: We only give the proof for the product of two extended b-

metric space. So let (X;,d, ),(X,d, ) be two extended b-metric

space. Put

d9 ((X], X2)’ (yll y2)) - del (X11 yl) + d92 (X2; Y2) and

O((X1, X2),( Y1, Y2))=max {0,(X1, Y1), 02(X2, ¥2)}
1. do((X1, X2), (Y1, ¥2)=0= del (X1, Y1) + d92 (X2, ¥o) if and only if

do, (X1, Y1) + dg (X2, Y2)= 0, but since d, ,d, are extended b-metric
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space then X; =y, X, =Y, hence (X;, X2) + (Y1, Y2).

i de((X1, X2), (Y1, ¥2)) = dg (X1, Y1) + dg (X2, Y2)=dg (X1, Y1)

+

dg, (X2, Y2) = do((X1, X2), (Y1, ¥2))-

1ii. Now let us show the following inequality

0((x1,X2), (a1, @2)) <

0((X1, X2), (¥2, ¥2))[de((X1, X2), (z1, 22))*de((z1, Z2), (Y1, ¥2))] Since
do((X1, X2), (Y2, ¥2)) = dg (X1, Y1) + dg, (X2, Y2) <

0:1(X1,yD)[dg, (X1, Z1)+dg (Z1, Y)1+01(Xa, Y2)[dg (X2, Z2)+dg (22, Y2)I<
max{0(x;,X2),(y1,Y2) Hdy (Xi,z1)+d (21,y)+dg, (X2,22)+dg (22,¥2)}=

O((X1,X2),(Y1,Y2))[do((X1, X2), (21, 22))+do((Z1, 22), (Y2, ¥2))]
Proposition (4.3.13)[14]

The topology induced by d& and the product topology of X; x X,
are coincident,
Proof: We will show that for all (a;, a;) € X, x X, the following

inclusions holds

I. B((a;, a»), r)c B(ay, 2r) x B(a, ,2r)

ii. B(a;, r) x B(a, r) < B((a;, a,),2r)

Let (X;, X, ) € B((a, a,), r) then

do((X1, X2), (a1, @2))= dg (X1, @1) + dy (X2, @) <1 . S0 we have that
do, (X1, 1) <1 <2rand dy (xy, &) < <2r, therefore x,e B(ay, 2r)
and X, € B(a,, 2r) hence (X, X,)e B(a;,2r) x B(a, ,2r)

We can prove similarly the second inclusion.

Corollary (4.3.14)[14] lim (x},x2) = (x1, X,) in (X;, x X, do) if

and only iflim x; = x; in(X,, d,) lim Xp= X in (X, dy).

Nn—o0
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Corollary (4.3.15)[14] A sequence{(x1 xz)}is Cauchy in (X,

xX,,dg) if and only if {(x})} is Cauchy in (X, dg¢) and {(x2)} is
Cauchy in (X,, dg).

Corollary (4.3.16)[14] (X, xX,, dg) is complete if and only if
(X1,d, ) and (X,,d, ) are complete.

Definition (4.3.17)[14] A subset U of X is sequentially open if
each sequence (Xx,) in X that converges to a point x of U, then it
exist N e N such that x,e N for each n > N.
Definition(4.3.18)[14] Let A — B, be an extended b-metric space.
And C a subset of X

I. C is compact if and only iffor every sequence of elements of C
there exists a subsequence that converges to an element of C.

11.C is bounded if and only if 8(C) = sup{de(x,y) : X,y € C} <

Let H(X) denote the set of all nonempty compacts subsets of X.
For A, B € H(X), let

H(A, B)= max {sup (d,(a, B)),sup (d,(b, A))}

acA aeB
Where dyg(x, B) = inf {d¢(X, ¥): y €B} is the distance of a point x
from the set B. The mapping H is said to be the Pompeiu-
Hausdorff metric induced by d,.

For any AceH(X), and any positive number ¢, let

A.={x € X:dy (X, y) <g,forsomeye A} ={xee X: do(Xx, A)< &}.
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Remark (4.3.19)[14]

I .Notice that the infimum in the definition of dy (X, B) is actually
achieved, that is there is some point y of B such that
do(X, B) = dy(X, y), since B is compact.

Ii. sup(de¢(a, B)) < ¢ if and only if A < B.. By this last one we can

acA
give an equivalent definition for the mapping H as following
H(A, B) = inf {e: Ac B,and B c A}

Proposition(4.3.20)[14] Let (X, dg) be an extended b-metric
space, For any A,B,C,D sets of H(X) we have

ii. sup(de(a, B)) =0 ifandonly if A € B

acA

i.1f B € C then sup(de(a, C)) < sup(de(a, B))

acA acA
ii. HLAuB,CuD) < max{H(A,C),H(B,D)}
Proof: It is easy to prove the first property ¢

I. It is clear that since B € C then B, € C,. Let suppose that
sup (d¢(a, B)) = &. By Remark(4.3.19) we have that A < B.C C,,

acA

that is sup (d¢(a, C)) <& = sup(de(a, B))

acA acA
ii.Without losing generality we suppose that
max{H(A,C)H (B, D)} =H (A, C)=¢. Then Ac C,;and C c A,,
also we have that H(B,D) H(A, C),hence B < D, and D < B,. This
implies that AUBc A, uD=(CuD);,andCUDc A, UB; =
(A U B),, which means that

H(AB,CUD) < ¢ = H(A,C) = max{H(A, C), H(B,D)} .

Theorem (4.3.21)[14] Let (X, dy) be an extended b-metric space
and CB(X) denote the set of all closed and bounded subsets of X,
Then (CB(X), Hg) is an extended b- metric space where the
mapping

102



0 :CB(X) x CB(X) — [l, +0) is such that
0(A, B) =sup {6(a,b):a e A, b e B}

Proof: To prove that Hy is an extended b-metric we need to verify
the following four properties
i. H(A, B) >0 for all A, B € CB(X)
. HAA,B) =0 ifand only if A=B
ii. H(A, B) = H(B, A) for all A, B € CB(X)
iv. H(A, B) < 6(A, B)[H(A, C) + H(C, B)]
The first property is trivial since sup(de (a, B)) and sup(dy (b, A))

acA acA
are nonnegative.For the second property, suppose A=B. Therefore
from property 1 of Proposition (4.3.20), A € B and B C A, hence
sup(dg (a, B)) =0 and
sup (d¢(b, A)) =0. Thus H (A, B) = 0. Now suppose H (A, B) = 0.

acA

This implies sup(de(a, B)) =0 and sup(de(b, A)) =0. Again by

acA acA
property 1 of Propositon (4.3.20) it follows that AC Band B C A,
hence A = B. The third property can be proved by the symmetry of
the definition of H(A,B). For the final property by using the
property 1 of Remark (4.3.19) we have that for each acA there
exist an element c,€C such that dyg(a, C) = dy (a, c;) . We then have
that
d¢(a,B) = inf {do(a,b): b € B} <
inf {6(a, b)[d(a, c,) + d(c,,b)]: b € B} =
0(a,b)d(a, c,) + inf {6(a,b)d(c,,b): b € B} <
0(A, B)d(a, c,) + inf {60(A, B)d(c,,b) : b € B} =
0(A,B)d(a,c,) + 0(A,B) inf {d(cs,b): b € B} =
0(A, B)dg(a, C) + 6(A, B)dy(c,, B) <
6 (A, B)[sup (dy(a, C)) + sup(de(c, B))]

acA ceC
Since a€A was arbitrary, by taking the supremum of dy(a, B) we
get that sup ((a, B)< 6(A, B)[sup(do (a, C)) + sup(dg (c, B))] <

- G( A, B)[HCE(CB, C) + H (C, A)]
Analogusly we can show that
sup (do(b, A)) < g(A, B)[sup(doe(b, C)) + sup(dg (c, A))]<

" 0(A, B)[H (CBC C) + H (C, A)]
Hence we get that
H (A, B) <0(A, B)[H (A, C)+H (C, B)]
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