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Abstract 

      In this research we discussed the Direct Methods for the 

Solution of Linear systems  and  also we discussed the definition 

of QR algorithm and the methods for computing the QR 

factorization by MATLAB , and then we use the QR factor to 

solve optimality condition for linear equality constraints to find 

the lagrangian multipliers, finally we use the lagrangian 

multipliers to solve nonlinear optimization problems where all 

constraints are linear  equalities and then we comparing between 

the QR- method and traditional methods by MATLAB , and we 

find the QR Method is better to solve all nonlinear optimization 

problem where all constraints are linear   equalities. 

 

 

 

 

 

 

 

 

 

 



IV 
 

 

 ملخص البحث
 

في هـذا البحث ناقشنا الطرق المباشرة لحل النظام الخطي و       

وطرق استعمال حاسبات    QR factorأيضاً ناقشنا تعريف خوارزمية  

QR factor  من قبلMatlab   وبعد ذلك استعملناQR factor   لحل

مضاريب لاجرانج  و أخيراً  لإيجادالأمثلية لقيود المساواة الخطية   مسائل

استعملنا مضاريب لاجرانج لحل مسائل تحقيق الأمثلية اللاخطية  بشروط 

و طرق تقليدية من   QR أمثلية بقيود خطية ، و بعد ذلك قارنا بين طريقة 

أفضل لحل كل مسائل تحقيق الأمثلية  QRريقة  وجدنا ط Matlabقبل 

 اللاخطية حيث أن كل قيود المساواة خطية .
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Introduction 

            Since the early 1960s the standard algorithms for calculating the 

eigenvalues and (optionally) eigenvectors of "small" matrices have been 

the QR algorithm [1] and its variants. This is still the case in the year 

2000 and is likely to remain so for many years to come. For us a small 

matrix is one that can be stored in the conventional way in a computer's 

main memory and whose complete eigenstructure can be calculated in a 

matter of minutes without exploiting whatever sparsity the matrix may 

have had. If a matrix is small, we may operate on its entries. In particular, 

we are willing to perform similarity transformations, which will normally 

obliterate any sparseness the matrix had to begin with. 

         If a matrix is not small, we call it large. The boundary between 

small and large matrices is admittedly vague, but there is no question that 

it has been moving steadily upward since the dawn of the computer era. 

In the year 2000 the boundary is around n = 1000, or perhaps a bit higher. 

         Eigenvalue problems come in numerous guises. Whatever the form 

of the problem, the QR algorithm is likely to be useful. For example, for 

generalized eigenvalue problems       , the method of choice is a 

variant of the QR algorithm called QZ. Another variant of QR is used to 

calculate singular value decompositions (SVD) of matrices. The QR 

algorithm is also important for solving large eigenvalue problems. Most 

algorithms for computing eigenvalues of large matrices repeatedly 

generate small auxiliary matrices whose eigensystems need to be 

computed as a subtask. The most popular algorithms for this subtask are 

the QR algorithm and its variants.      
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Back Ground History 

            In this research we discuss  the QR algorithm. The subject was 

born in the early 1950s with Rutishauser's quotient-difference algorithm 

[2] which he formulated as a method for calculating the poles of a 

meromorphic function. He then reformulated it in terms of matrix 

operations and generalized it to the LR algorithm [3] . The QR algorithm 

was published by Kublanovskaya [4] and Francis [1] in 1961. The Francis 

paper is particularly noteworthy for the refinements it includes. The 

double-shift implicit QR algorithm laid out there is only a few details 

removed from codes that are in widespread use today. 

And what codes are in use today? By far the most popular tool for 

matrix computations is Matlab. If we use Matlab to compute your 

eigenvalues, we will use one of its four QR-based computational kernels. 

Each of these is just a few refinements removed from codes in the 

public-domain software packages EISPACK [5] and LINPACK [6]. In 

particular, the algorithm for computing eigenvalues of real, non 

symmetric matrices is just the Francis double-shift QR algorithm with 

some modifications in the shift strategy. 

A newer public-domain collection is LAPACK [7], which was 

designed to perform well on vector computers, high-performance work 

stations, and shared-memory parallel computers. It also has a double-shift 

implicit QR code, which is used on matrices (or portions of matrices) 

under 50 × 50. For larger matrices a multishift QR code is used. 

For many years the QR algorithm resisted efforts to parallelize it. 

The prospects for a massively parallel QR algorithm for distributed 

memory parallel computers were considered dim. 

The pessimism was partly dispelled by van de Geijn and Hudson 

[8], who demonstrated the first successful highly parallel QR code.  
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However, their code relies on an unorthodox distribution of the 

matrix over the processors, which makes it hard to use in conjunction 

with other codes. Subsequently, Henry [9] wrote a successful parallel QR 

code that uses a standard data distribution. This is an implicit double-shift 

code that performs the iterations in pipeline fashion. This code is 

available in ScaLAPACK [10], a collection of matrix computation 

programs for distributed-memory parallel computers . 

On the theoretical side, the first proof of convergence of the LR 

algorithm (without pivoting or shifts of origin) was provided by 

Rutishauser [2]. His proof was heavily laden with determinants, in the 

style of the time. Wilkinson [11] proved convergence of the unshifted QR 

algorithm using matrices, not determinants. Wilkinson [12] also proved 

global convergence of a shifted QR algorithm on symmetric, tridiagonal 

matrices.  

Research problem : 

                A class of common optimization problems subject to equality 

constraints may be nicely handled by the Lagrange multiplier method. 

Consider an optimization problem with M equality constraints. 

 

 

 

 

According to the Lagrange multiplier method, this problem can be 

converted to the following unconstrained optimization problem: 

   The solution of this problem, if it exists, can be obtained by setting 

the derivatives of this new objective function l(x, λ) with respect to x and 

λ to zero:  
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Note that the solutions for this system of equations are the extreme 

of the objective function. We may know if they are minima/maxima, 

from the positive/negative- definiteness of the second derivative (Hessian 

matrix) of l(x, λ) with respect to x. 

Imposing the QR method as the solving technique is  the research 

problem. 
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Chapter One 

MATHEMATICL BACK GROUND 

1-1  Matrices: 

        Let   and   be two positive integers. We call a matrix having   

rows and   columns, or a matrix    , or a matrix (   )  with 

element   , a set of    scalars       , with         and   

     , represented in the following rectangular array  

  [

      
      

 
 

   
   

   
          

]            (1.1) 

When     or      we shall respectively write        or 

       , to explicitly outline the numerical fields which the elements of   

belong to. Capital letters will be used to denote the matrices, while the lower 

case letters corresponding to those upper case letters will denote the matrix 

entries. 

We shall abbreviate (1.1) as   (   ) which         and   

     . The index   is called row index, while   is column index. The set 

(              ) is called the      row of   , likewise, (              ) is 

the      column of  . 

      If     the matrix is called squared or having order   and the set of the 

entries (              ) is called its main diagonal. 

  A matrix have one row or one column is called row vector or column 

vector respectively. Unless otherwise specified, we shall always assume that a 

vector is a column vector. In the case      , the matrix will simply 

denote a scalar of  . 
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Sometimes it turns out to be useful to distinguish within a matrix the set 

made up by specified rows and column. This prompts us to introduce the 

following definition. 

Definition 1.1 Let   be a matrix      Let                 and 

              
 

 two sets of contiguous indexes. The matrix 

 (   ) of entries           with         and         is called a 

submatrix of   . If     and       for            is called a principal 

submatrix of  .  

Definition 1.2 A matrix  (   ) is called block partitioned or said to be 

partitioned into submatrices if  

  [

      
      

 
 

   
   

    
          

]  

where     are submatrices of  . 

Among the possible partitions of  , we recall in particular the partition 

by columns  

  (          )   

   being the      column vector of   . In a similar way the partition by rows 

of   can be defined. To fix the notations , if   is a matrix      we shall 

denote by  

 (           )  (   )                   

The submatrix of   of size (       )  (       ) that lies 

between the rows    and    and the columns     and   . Likewise, if   is a vector 

of size    we shall denote by  (     ) the vector of size         made up by 

the      notations are convenient in view of programming the algorithms that 

will be presented throughout the volume in the MATLAB language. 
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1-2   Operations with Matrices: 

     Let   (   ) and   (   ) be two matrices     over  . We say 

that   is equal to   if         for                  Moreover, 

we define the following operations: 

- matrix sum: the matrix sum is matrix     (       )  The neutral 

element in matrix sum is the null matrix, still denote by  0 and made up 

only null entries; 

- matrix multiplication by a scalar : the multiplication of   by     , is a 

matrix    (    )  

- matrix product: the product of two matrices   and   of size (   ) and 

(   ) respectively, is a matrix  (   ) whose entries are     

∑                                
 
    . 

      The matrix product is associative and distributive with respect to the 

matrix sum, but is not in general commutative. The square matrices for which 

the property A     holds, will be called commutative . 

          In the case of square matrices , the neutral element in the matrix product 

is a square matrix of order   called the unit matrix of order   or, more 

frequently, the identity matrix given by    (   )  The identity matrix is, by 

definition, the only matrix     such that           for all square 

matrices  . In the following we shall omit the subscript   unless it is strictly 

necessary. The identity matrix is special instance of diagonal matrix of order   

, that is a square matrix of the type   (      ). We will use in the following 

the notation       (             ). 

         Finally, if   is square matrix of order   and   is an integer, we define     

as the product of    with itself iterated   times. We let        
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         Let us now address the so-called elementary row operations that can be 

performed on a matrix. They consist of :  

- multiplying the      row of a matrix by a scalar    this operation is 

equivalent to pre-multiplying     by the matrix  

      (             )  where   occupies the      position ; 

- exchanging the      and      rows of a matrix , this can be denote 

by premultiplying    by the matrix  (   ) of elements  

   
(   )

 {
                                              
                                                                     
                                                                                            

    (1.2) 

          where    denotes the identity matrix of order                 

(henceforth, matrices with size equal to zero will correspond to the empty set ). 

Matrices like (1.2) are called elementary permutation matrices. The product of 

elementary permutation matrices is called a permutation matrix, and it performs 

the row exchanges associated with each elementary permutation matrix. In 

practice, a permutation matrix is a reordering by rows of the identity matrix; 

- adding   times the      row of a matrix to its      row. This 

operation can also be performed by pre-multiplying    by the matrix 

    
(   )

, where   
(   )

 is a matrix having null entries except the one in 

position     whose value is         
 

  1-2-1  Inverse of Matrix: 

 Definition 1.3 A square matrix   of order   is called invertible(or regular or 

nonsingular)if there exists a square matrix   of order   such that           

  is called the inverse matrix of   and is denoted by      A matrix which is not 

invertible is called singular. 
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         If   is invertible its inverse is also invertible, with (   )       

Moreover, if   and   are two invertible matrices of order  , their product    is 

also invertible, with (  )           The following property holds 

Property  1.1 A square matrix is invertible iff its column vector are linearly 

independent. 

Definition  1.4  We call the transpose of a matrix         the matrix     

, denoted by    , that is obtained by exchanging the rows of   with the column 

of   . 

         Clearly, (  )       (   )           (  )       and 

(  )             If   is invertible, then also (  )   (   )        

Definition  1.5  Let       ; the matrix           is called the 

conjugate transpose (or adjoint) of   IF      ̅  , where  ̅   is the complex 

conjugate of      . 

         In analogy with the case of the real matrices, it turns out that 

  (   )           (  )       and (  )   ̅           

Definition  1.6  A matrix         is called symmetric if     , while it is 

antisymmetric  if        . Finally, it is called orthogonal if           

, that is        . 

Permutation matrices are orthogonal and the same is true for their products. 

Definition  1.7 A matrix        is called hermition or self- adjoint if 

    ̅  that is, if      , while it is called unitary if        ,     is 

called normal . 

As a consequence, a unitary matrix is one such that       .  

       Of course, a unitary matrix is also normal, but it is not in general hermitian. 

For instance, the matrix of the Example 1.1 is unitary, although not symmetric 
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(if    ). We finally notic that the diagonal entries of an hermitian matrix 

must necessarily be real.  

  1-2-2   Matrices and Linear Mapping: 

Definition 1.8  A linear map from    into    is a function          such 

that  (     )    ( )    ( )        and          

The following result links matrices and linear maps. 

Property 1.2Let          be a linear map. Then, there exists a unique 

matrix          such that  

 ( )                               (1.3) 

Conversely, if          then the function defined in (1.3) is a linear map 

from    into   . 

Example 1.1 An important example of a linear map is the counterclockwise 

rotation by an angle   in the plane (     )  The matrix associated with such a 

map is given by  

 ( )  0
  
   

1           ( )       ( ) 

and it is called a rotation matrix. 

1-2-3   Operations with Block- Partitioned Matrices: 

         All the operations that have been previously introduced can be extended 

to the case of a block- partitioned matrix   , provided that the size of each 

single block is such that any single matrix operation is well- defined.  

Indeed, the following result can be shown([15]). 

Property  1.3  Let   and   be the block matrices  

  [
       
   
       

]        [
       
   
       

] 
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where     and     are matrices (     ) and (     )  Then we have  

1.    [
         
   

         

],            <
   

     
 

   
   

     
 
=, 

2. if                 and      , then 

    [
               

   
               

] , 

3.  if           and       then, letting     ∑       
 
   ,  

   [

       
   
       

]. 

1-3  Trace and Determinant of a Matrix: 

      Let us consider a square matrix   of order   . The trace of a matrix is the 

sum of the diagonal entries of   , that is   ( )  ∑     
 
     

We call the determinant of   the scalar defined through the following formula 

   ( )  ∑    ( )             
   

  

where   *  (      )
 +  is the set of the     vectors that are 

obtained by permuting the index vector   (     )  and sign( ) equal 

to1(respectively,-1)if an even (respectively, odd) number of exchanges is 

needed to obtain   from   . 

The following properties hold 

   ( )     (  )     (  )     ( )    ( )     (   )      ( )  ⁄   

   (  )     ( )̅̅ ̅̅ ̅̅ ̅̅ ̅ ,        (  )       ( )        
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          Moreover, if two rows or columns of a matrix coincide, the determinant 

vanishes, while exchanging two rows (or columns) produces a change of sign 

in the determinant. Of course, the determinant of a diagonal matrix is the 

product of the diagonal entries. 

        Denoting by     the matrix of order     obtained from   by eliminating 

the       row and the      column, we call the complementary minor 

associated with the entry     the determinant of the matrix     . We call the 

     principal (dominating) minor of   ,   , the determinant of the principal 

submatrix of order   ,     (       )  If we denote by 

    (  )
      (   ) the cofactor of the entry     , the actual computation of 

the determinant of   can be performed using the following recursive relation  

   ( )  {
                                                                            

∑                                                        
 
   

 (1.4) 

which is known as the Laplace rule. If   is a square invertible matrix of order   

, then  

    
 

    ( )
  

where   is matrix having entries                        

         As a consequence, a square matrix is invertible if its determinant is non 

vanishing. In the case of nonsingular diagonal matrices the inverse is still a 

diagonal matrix having entries given by the reciprocals of the diagonal entries 

of the matrix.  

         Every orthogonal matrix is invertible, its inverse is given by    , 

moreover    ( )      
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1-4 Eigenvalues and Eigenvectors: 

          Let   be a square matrix of order n with real complex entries , the 

number       is called an eigenvalue of   if there exists a nonull vector 

       such that        .The vector   is the eigenvector associated with 

the eigenvalue   and the set of the eigenvalue of   is called the spectrum of   , 

denoted by  ( ) . We say that   and   are respectively a right eigenvector and a 

left eigenvector of   , associated with the eigenvalue   , if  

                                                                         

        The eigenvalue   corresponding to the eigenvector   can be determined by 

computing the Rayleigh quotient         (   ) . The number   is the 

solution of the characteristic equation 

                                                   (  )     (    )      

        Where   (  ) is the characteristic polynomial. since this latter is a 

polynomial of degree   with respect to ּג, 

There certainly exist   eigenvalue  of   not necessarily  distinct. The following 

properties can be proved   

   ( )  ∏    
 
     ,            ( )  ∑    

 
             (1.5) 

And since       (     )      (    )     (    ) one concludes that 

 ( )   (  ) and,in an analogous way, that  (  )   ( ̅). 

From the first relation in (1.5) it can be concluded that a matrix is singular if it 

has at least one null eigenvalue, since   ( )     ( )  ∏    
 
    . 

           Secondly, if   has real entries,    (  )  turns out to be a real – 

coefficient polynomial so that complex eigenvalues of   shall necessarily occur 

in complex conjugate pairs. 
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 Finally, due to the Cayley-Hamilton Theorem if     (  )  is the 

characteristic polynomial of  , then    (  )    , where    (  ) denotes a 

matrix polynomial.[16]. 

         The maximum module of the eigenvalues of   is called the spectral radius 

of    and is denoted by  

                                        (  )   | |   ( )
                                     (1.6)  

Characterizing the eigenvalue of a matrix as the roots of a polynomial implies 

in particular that ּג is an eigenvalue of        if  ̅ is an eigenvalue of   . An 

immediate consequence is that  ( )   (   ). M0reover,          

      (  )  and  (  )  , ( )-       

         Finally, assume that   is block  triangular matrix  

  [

   
 

   
   

 
 

   
   

   
      

] 

As    (  )      ( )    ( ) )     ( ), the spectrum of     is given by the 

union of the spectra of each single diagonal block. As a consequence if      is 

triangular, the eigenvalue of     are its diagonal entries.   

For each eigenvalue     of  a matrix A the set of eigenvectors associated with    

, together with  the null vector, identifies a subspace of      which is called the 

eigenspace  associated with     and corresponds by definition to   ker( A-   )  

.The dimension of the eigenspace is 

    ,    (    )] =       (    )  

        and is called geometric multiplicity of the eigenvalue    . It can never be 

greater than the algebraic multiplicity of    , wich is the multiplicity of   as a 

root of the characteristic polynomial. Eigenvalue having geometric multiplicity 
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strictly less than algebraic one are called defective .   matrix having at least 

one defective eigenvalue is called defective. 

       The eigenspace associated with an eigenvalue of a matrix     is invariant 

with respect to A in the sense of the following  definition. 

Definition 1.9   subspace   in    is called invariant with respect to a square 

matrix   if        wher     is the transformed of    through     

1-5 Similarity Transformations: 

Definition 1.10 Let   be a square nonsingular matrix having the same order as 

the matrix    

      We say that the matrices    and       are similar and the trans formation 

from   to         is called a similarity transformation. Moreover, we say that 

the two matrices are unitarily similar if     is unitary. 

Tow similar matrices share the same spectrum and the same characteristic 

polynomial .Indeed, it is easy to check that if (    )  is an eigenvalue – 

eigenvector pair of    , (       )  is the same for the matrix        since  

                                    (       )                     

 We notice in particular that the product matrices     and    , with           

and       , are not similar but satisfy the following property( [17]) 

                                     (  ) * +⁄   (  ) * +⁄  

      That is    and    share the same spectrum apart from null eigenvalues so 

that          (  )   (  ). 

      The use of similarity transformation aims at reducing the complexity of the 

problem of evaluating the eigenvalues of a matrix. Indeed, if a given matrix 

could be transformed into a similar matrix in diagonal or triangular form, the 

computation of the eigenvalues would be immediate. The main result in this 

direction is the following theorem( [18]).  
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Property 1.4 (schur decomposition )   Given        , there exists   unitary 

such that  

           [

  
 

   
  

 
 

   
   

   
     

]     

Where    are the eigenvalues of  . 

      It thus turns out that every matrix   is unitary similar to an upper triangular 

matrix . The matrices   and     are not necessarily unique . 

The Schur decomposition theorem gives rise to several important result, among 

them, we recall: 

1- Every hermitian  matrix is unitarily similar to a diagonal real matrix m 

that is, when    is hermitian every Schur decomposition of   is diagonal. 

In such an event, since 

                                    (        )    

it turns out that        that is           for         so that the 

column vectors of   are the eigenvectors of  . Moreover , since the 

eigenvectors  are orthogonal two by two, it turns out that anhermitian 

matrix has a system of orthogonal eigenvectors that generates the whole 

space   . Finally , it can be shown that a matrix   of order   is similar to 

a diagonal matrix   iff the eigenvectors of   form a basis for      [ 19] 

2- A matrix         is normal iff it is unitarily similar to diagonal matrix 

.As a consequence , a normal matrix         admits the following 

spectral[20] decomposition        ∑    
 
       

   being   unitary 

and   diagonal. 

3- Let   and   be two normal and commutative matrix, then, the generic 

eigenvalue    of     is given by the sum       , where     and    are 

the eigenvalues of    and   associated with the same eigenvector . 
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         There are, of course, non symmetric matrices that are similar to 

diagonal matrices, but these are not unitarily similar . 

            The Schur decomposition can be improved as follows ([21]) . 

Property 1.5  (Canonical Jordan Form): 

     Let   be any square matrix. Then, there exists a nonsingular matrix   

which transforms   into a block diagonal matrix    such that  

            (   (  )    (  )      (  ))  

which is called canonical Jordan form,     being the eigenvalues of   and 

  ( )    

if      and 

  ( )  

[
 
 
 
 
     
 
 
 

 
 

 
 
 

 
 
 

 
 
 

     ]
 
 
 
 

    for       

         If an eigenvalue is defective, the size of the corresponding Jordan block is 

greater than one. Therefore , the canonical Jordan form tells us that a matrix 

can be diagonalized by a similarity transformation iff it is non defective. For 

this reason, the non defective matrices are called diagonalizable. In particular, 

normal matrices are diagonalizable. 

         Partitioning   by columns,  (       )  it can be seen that the    

vectors associated with the Jordan block    (  ) satisfy the following recursive 

relation  

                      ∑   
   
                                               (1.7) 

                                     if        

The vector    are called principal vector or generalized eigenvectors of      
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1-6 The Singular Value Decomposition (SVD ): 

      Any matrix can be reduced in diagonal form by a suitable pre and post 

multiplication by unitary matrices. Precisely, the following result holds.  

Property  1.6   

        Let         There exist two unitary matrices        and        

such that  

     ∑      (          )   
       with       (   )  ( 1.8) 

And             Formula  (1.8) is called Singular Value Decomposition 

or (SVD) of   and the numbers    (     ( )) are called singular value of    . 

If   is a real–valued matrix ,   and    will also be real –value  and in (1.8)    

must be written instead of      The following characterization of the singular 

values holds 

  ( )  √  ( 
  )                                        (1.9) 

Indeed , from (1.8) it follows that    ∑       ∑    so that ,   and 

  being unitary ,       ∑     , that is ,    ( 
  )    (∑

 )  

(  ( ))
   Since     and     are hermitian  matrices , the columns of   , 

called the left singular vectors of   , turn out to be the eigenvectors of     and 

,therefore ,they are not uniquely defined. The same holds for the columns of   , 

which are the right singular vectors of    . 

        Relation (1.9) implies that if         is hermitian with eigenvalues 

given by           ,then the singular values of   concide with the modules of 

the eigenvalues of   .Indeed because        ,    √  
 
  = |  |  for 

           As far as rank is concerned , if   

                    , 
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Then the rank of    is   , the kernel of   is the span of the column vectors of 

  *         +   and the range of   is the span of the column vectors of 

  *         +   

Definition 1.11 

        Suppose that        has rank equal to   and that it admits a AVD of the 

     ∑ Then matrix     ∑    
  is called the Mooer-Penrose pseudo –

inverse matrix , being  

∑       .
 

  
   

 

  
      /                         (1.10) 

The matrix    is also called the generalized inverse of   . Indeed , if  

    ( )        then    (   )        , while if (        ( )  ,  

       .  

 

1-7  Matrix Norms:              

 Definition 1.12  A matrix norm is mapping ‖ ‖        such that : 

1. ‖ ‖              and  ‖ ‖    if and only if    ; 

2. ‖  ‖  | |‖ ‖          and          (homogeneity ); 

3. ‖   ‖  ‖ ‖  ‖ ‖              (triangular inequality). 

 

         Unless otherwise specified we shall employ the symbol ‖ ‖ ,to denote 

matrix norms . 

       We can better characterize the matrix norms by introducing the concepts 

of compatible norm and induced by a vector norm. 
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Definition 1.13  We say that a matrix norm ‖ ‖ is compatible or consistent 

with a vector norm ‖ ‖ if  

‖  ‖  ‖ ‖‖ ‖                     (1. 11  ) 

          More generally , given three norms, all denoted by ‖ ‖ , albeit defined 

on   ,    and      , respectively, we say that they are consistent if    

   ,                  we have that  ‖ ‖  ‖ ‖‖ ‖  . 

In order to single out matrix norms of practical interest , following property is 

in general required . 

 Definition  1.14 We say that a matrix norm ‖ ‖ is sub- multiplicative if  

                 

‖  ‖  ‖ ‖‖ ‖                            (1. 12  ) 

         This property is not satisfied by any matrix norm. For example ( [22]), 

the norm ‖ ‖     |   |                       .does not satisfy 

(1.12) if applied to the matrices  

    0
  
  

1   

since   ‖  ‖  ‖ ‖ ‖ ‖              

         Notice that , given a certain sub-multiplicative matrix norm ‖ ‖ , there 

always exists a consistent vector norm. For instance , given any fixed vector  

    in    , it suffices to define the consistent vector norm as  

‖ ‖  ‖   ‖          
  

As a consequence , in the case of sub-multiplicative matrix norms it is no 

longer necessary to explicitly specify the vector norm with respect to the matrix 

norm is consistent . 
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Theorem 1.1  Let ‖ ‖  be a vector norm. The function  

‖ ‖     
‖  ‖

‖ ‖
                      (1.13) 

is a matrix norm called induced matrix norm or natural matrix norm. 

Proof. We start by noticing that (1.13) is equivalent to  

‖ ‖     ‖  ‖      ‖ ‖       (1.14) 

        Indeed, one can define for any     the unit vector     ‖ ‖⁄   so that 

(1.13) becomes  

‖ ‖     ‖  ‖  ‖  ‖       ‖ ‖        ‖ ‖    

This being taken as given , let us check that (1.13)(or equivalently, (1.14) is 

actually a norm, making direct use of Definition 1.9. 

1. If ‖  ‖    , then it follows that ‖ ‖     ‖  ‖      ‖ ‖    . 

Moreover 

‖ ‖     
‖  ‖

‖ ‖
    ‖  ‖        

and           if and only if      , therefore ‖ ‖        . 

2. Given a scalar   , 

‖  ‖     ‖   ‖  | |   ‖  ‖  | |‖ ‖  

3. Finally , triangular inequality holds. Indeed , by definition of supremum , 

if     then  

‖  ‖

‖ ‖
 ‖ ‖  ‖  ‖  ‖ ‖‖ ‖  

    so that, taking   with unit norm, one gets 

‖(   ) ‖  ‖  ‖  ‖  ‖  ‖ ‖  ‖ ‖   

from which it follows that ‖(   )‖     ‖(   ) ‖  ‖ ‖  

‖ ‖   ‖ ‖     
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Relevant instances of induced matrix norms are so-called  p- norm defined as 

‖ ‖     
‖  ‖ 
‖ ‖ 

         

The        and the infinity norm are easily computable since  

‖ ‖     
       

∑|   |

 

   

  ‖ ‖     
       

∑|   |

 

   

 

 and they called the column sun norm and the row sum norm, respectively . 

          Moreover, we have ‖ ‖  ‖ 
 ‖  and , if   is self- adjoint or real 

symmetric , ‖ ‖  ‖ ‖  . 

          A special discussion is deserved by the        or spectral norm for 

which the following theorem holds. 

Theorem 1.2 Let   ( ) be the largest singular value of   .Then  

‖ ‖  √ ( 
  )  √ (   )    ( )           (1.15) 

In particular , if   is hermitian (or real and symmetric ), then 

‖ ‖    ( )                                                    (1.16) 

while, if   is unitary , ‖ ‖   . 

Proof. Since  (   ) is hermitian , there exists a unitary matrix   such that  

           (       )  

where    are the (positive) eigenvalues of    . Let        then 

‖ ‖     √
(      )

(   )
    √

(         )

(   )
           

    √∑   |  |
  

   ∑ |  |
  

   ⁄  √                      

from which (1.15) follows, thanks to (1.9). 
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    If   is hermitian , the same considerations as above apply directly to   . 

     Finally , if   is unitary  

‖  ‖ 
  (     )  (      )  ‖ ‖ 

  

so that ‖ ‖   . 

         As a consequence, the computation of ‖ ‖  is much more expensive than 

that of ‖ ‖ or ‖ ‖ .However , if only an estimate of ‖ ‖  is required, the 

following relations can be profitably employed in the case of square matrices. 

   
   
|   |  ‖ ‖      

   
|    |  

 

√ 
‖ ‖  ‖ ‖  √ ‖ ‖   

 

√ 
‖ ‖  ‖ ‖  √ ‖ ‖   

‖ ‖  √‖ ‖ ‖ ‖ . 

Moreover, if   is normal then  ‖ ‖  ‖ ‖  for any   and all      

Theorem1.3  Let |‖ ‖| be a matrix norm induced by a vector norm ‖ ‖  then  

1. ‖  ‖  |‖ ‖|‖ ‖, that is , |‖ ‖| is norm compatible with ‖ ‖, 

2. |‖ ‖|   ,  

3. |‖  ‖|  |‖ ‖||‖ ‖|  that is , |‖ ‖| is sub-multiplicative.  

Proof. Part 1 of the theorem is already contained in the proof of the theorem 

1.1, while part 2  follows from the fact that |‖ ‖|     ‖  ‖ ‖ ‖   ⁄ . Part 3 

is simple to check. 

          Notice that the        are sub-multiplicative. Moreover, we remark 

that the sub- multiplicativety property by itself would only allow us to conclude 

that  |‖ ‖|  |‖   ‖|  |‖ ‖| . 
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1.7.1   Relation between Norms and the Spectral Radius of a matrix: 

Theorem 1.4 Let ‖ ‖ be a consistent matrix norm, then  

 ( )  ‖ ‖          . 

Proof. Let   be an eigenvalue of   and     an associated eigenvector . As a 

consequence , since ‖ ‖ is consistent, we have  

| |‖ ‖  ‖  ‖  ‖  ‖  ‖ ‖‖ ‖ 

so that | |  ‖ ‖. 

More precisely, the following property holds ( [23]). 

Property 1.7  Let        and    . Then , there exists a consistent matrix 

norm ‖ ‖    (depending on  ) such that  

‖ ‖     ( )     

 As a result, having fixed an arbitrarily small tolerance, there always exists a 

matrix norm which is arbitrarily close to the spectral radius of  , namely 

 ( )     ‖ ‖ ,                       (1.17) 

                                                         ‖ ‖ 

the infimum being taken on the set of all the consistent norms. 

     For the sake of clarity, we notice that the spectral radius is a sub-

multiplicative seminorm, since it is not true that  ( )    iff    . 

As an example, any triangular matrix with null diagonal entries clearly has 

spectral radius equal to zero. Moreover , we have the following result. 

Property  1.7 Let   be a square matrix and let ‖ ‖ be a consistent norm. Then  

   
   

‖  ‖  ⁄   ( )  
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1.7.2 Sequences and Series of Matrices: 

      A sequence of matrices { ( )}       is said to converge to a matrix 

       if 

      ‖ 
( )   ‖   . 

       The choice of the norm dose not influence the result since in      all 

norms are equivalent. 

         In particular, when studying the convergence of iterative methods for 

solving linear system , one is interested in the so-called convergent matrices for 

which  

       
( )   , 

0 being the null matrix .The following theorem holds. 

Theorem 1.5  Let   be a square matrix , then  

       
( )     ( )   .             (1.18) 

Moreover, the geometric series ∑  ( ) 
    is convergent iff  ( )    . In such 

a case 

∑  ( ) 
    (   )                              (1.19) 

As a result, if  ( )    the matrix (   ) is invertible and the following 

inequalities hold 

 

  ‖ ‖
 ‖(   )  ‖  

 

  ‖ ‖
                   (1.20) 

where ‖ ‖ is an induced matrix norm such that‖ ‖   . 

Proof. Let us prove (1.18) . Let  ( )   , then      such that  ( )      

and thus thanks to property 1.6, there exists a consistent matrix norm ‖ ‖ such 

that ‖ ‖   ( )     . From the fact that ‖  ‖  ‖ ‖    and from the 

definition of convergence it turns out as     the sequence  { ( )} tends to 



22 
 

zero. Conversely, assume that        
    and let   denote an eigenvalue 

of   . Then ,        , being  (  ) an eigenvector associated with  , so 

that        
   . As consequence, | |   and because this is true for a 

generic eigenvalue one gets  ( )    as desired. Relation (1.19) can be 

obtained noting first that the eigenvalues of (   ) are given by   

 ( )  ( ) being the generic eigenvalue of  . On the other hand, since 

 ( )   , we deduce that     is nonsingular .Then , from the identity  

(   )(        )  (      ) 

and taking the limit for   tending to infinity the thesis follows since  

(   )∑     

 

   

 

Finally , thanks to Theorem 1.3, the equality ‖ ‖    holds, so that  

  ‖ ‖  ‖   ‖‖(   )  ‖  (  ‖ ‖)‖(   )  ‖, 

giving the first inequality in (1.20). As for the second part, noting that     

    and multiplying both sides on the right by (   )   , one gets (  

 )      (   )  . Passing to the norms, we obtain 

‖(   )  ‖    ‖ ‖‖(   )  ‖, 

and thus the second inequality , since ‖ ‖   . 

Remark 1.1 The assumption that there exists an induced matrix norm such that 

‖ ‖    is justified by Property 1.6, recalling that   is convergent and, 

therefore ,  ( )   . 

        Notice that (1.19) suggests an algorithm to approximate the inverse of a 

matrix by a truncated series expansion . 
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Chapter Two 

Direct Method for the Solution of Linear system 

2-0 Introduction:    

      A system of   linear equations in   unknowns consists of algebraic 

relations of the form 

∑                       
 
                   (2.1) 

        where    are the unknowns,     are coefficients of the system and    are 

the components of the right hand side. System (2.1) can be more conveniently 

written in matrix form as 

    ,                      (2.2) 

where we have denoted by   (   )   
    the coefficient matrix , by 

  (  )   
   the right side vector and by   (  )   

  the unknown vector 

, respectively. We call a solution of (2.2) any n-tuple of values    which 

satisfies (2.1). 

        We shall be mainly dealing with real- valued square systems of order   

that is, systems of the form (2.2) with        and       In such cases 

existence and uniqueness of the solution of (2.2) are ensured if one of the 

following (equivalent) hypotheses holds: 

1.   is invertible; 

2.     ( )             

3. the homogeneous system      admits only the null solution. 

The solution of system (2.2) is formally provided by Cramer s rule  

   
  

    ( )
 ,                          (2.3) 
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         where    is the determinant of the matrix obtained by substituting the 

     column of   with the right hand side   . This formula is, however, of 

little practical use . Indeed, if the determinants are evaluated by the recursive 

relation (1.4)the computational effort of Cramer s rule is of the order of  

(   ) ! flops and therefore turns out to be unacceptable even for small 

dimensions of   (for instance, a computer able to perform     flops per second 

would take           years to solve a linear system of 50 equations). 

       For this reason, numerical methods that are alternatives to Cramer s rule 

have been developed. They are called direct methods if they yield the solution 

of the system in a finite number of steps, iterative if they require (theoretically) 

an infinite number of steps. Iterative method will be addressed in the next 

chapter . We notice from now on that the choice between a direct and an 

iterative method does not depend only on the theoretical efficiency of the 

scheme, but also on the particular type of matrix, on memory storage 

requirements and, finally, on the architecture of the computer.  

2-1 Stability Analysis of Linear Systems: 

      Solving a linear system by a numerical method invariably leads to the 

introduction of rounding errors. Only using stable numerical methods can keep 

a way the propagation of such errors from polluting the accuracy of the 

solution. In this section tow aspects of stability analysis will be addressed.  

      Firstly, we will analyze the sensitivity of the solution of (2.2) to changes in 

the data   and   (forward a priori analysis). Secondly, assuming that an 

approximate solution  ̂ of (2.2) is available, we shall quantify the perturbations 

on the data   and   in order for  ̂ to be the exact solution of a perturbed system 

(backward a priori analysis). The size of these perturbations will in turn allow 

us to measure the accuracy of the computed solution  ̂ by the use of posteriori 

analysis. 
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2-1-1 The Condition Number of a Matrix 

     The condition number of a matrix        is defined as  

 ( )  ‖ ‖‖   ‖,                          (2.4) 

where ‖ ‖ is an induced matrix norm. In general  ( ) depends on the choice 

of the norm; this will be made clear by introducing a subscript into the notation, 

for instance,          ( )  ‖ ‖ ‖ 
  ‖ . More generally,   ( ) will denote 

the condition number of   in the       . Remarkable instances are   

       and    . 

      Let us start by noticing that   ( )    since 

  ‖    ‖  ‖ ‖‖   ‖   ( )  

Moreover,  (   )   ( ) and      with       (  )   ( )  Finally, 

if   is orthogonal,   ( )    since ‖ ‖  √  
   √ ( )     and 

      . The condition number of a singular matrix is set equal to infinity. 

    For         ( ) can be characterized as follows. Starting from (1.15) it 

can be proved that 

  ( )  ‖ ‖ ‖ 
  ‖  

  ( )

  ( )
 

where   ( ) and   ( ) are the maximum and minimum singular values of   

(see property 1.5 ). As a consequence, in the case of symmetric positive definite 

matrices we have 

  ( )  
    

    
  ( ) (   )                   (2.5) 

where      and      are the maximum and minimum eigenvalues of  . To 

check (2.5), notice that  

‖ ‖  √  
   √ (  )  √    
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Moreover, since  (   )    ( )⁄   one gets ‖   ‖       ⁄  from which 

(2.5) follows. For that reason,   ( ) is called spectral condition number. 

Remark  2.1  Define the relative distance of        from the set of singular 

matrices with respect to the        by  

     ( )     8
‖  ‖ 
‖ ‖ 

                      9  

  It can then be shown that ([36]) 

     ( )  
 

  ( )
  .                                 (2.6) 

        Equation (2.6) suggests that a matrix    with a high condition number can 

behave like a singular matrix of the form      . In other words, null 

perturbation in the right hand side do not necessarily yield non vanishing 

changes in the solution since, if       is singular, the homogeneous system 

(    )    does no longer admit only the null solution. From (2.6) it also 

follows that if      is nonsingular then 

‖  ‖ ‖ ‖                                      (2.7) 

     Relation (2.6) seems to suggest that a natural candidate for measuring the 

ill-conditioning of a matrix is its determinant, since from (2.3) one is prompted 

to conclude that small determinants mean nearly-singular matrices.   

 2-1-2 Forward a priori Analysis 

        In this section we introduce a measure of the sensitivity of the system 

to changes in the data.  

        Due to rounding errors, a numerical method for solving (2.2) does not 

provide the exact solution but only an approximate one, which satisfies a 

perturbed system. In other words, a numerical method yields an (exact) 

solution      of the perturbed system. 
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(    )(     )=                      (2.8) 

The next result provides an estimate of    in terms of    and   .  

Theorem 2.1 Let        be a nonsingular matrix and         be such 

that (2.7) is satisfied for a matrix norm ‖ ‖. Then, if       is the solution of  

     with      (   ) and        satisfies (2.8) for       , 

‖  ‖

‖ ‖
 

 ( )

   ( )‖  ‖ ‖ ‖⁄
(
‖  ‖

‖ ‖
 
‖  ‖

‖ ‖
).            (2.9) 

Proof. From (2.7) it follows that the matrix       has norm less than 1. Then, 

due to Theorem 1.5,         is invertible and from (1.20) it follows that 

‖       ‖  
 

  ‖     ‖
 

 

  ‖   ‖‖  ‖
 .                (2.10) 

On the other hands, solving for    in (2.8) and recalling that       one gets 

   (        )     (      )  

from which, passing to the norms and using (2.10), it follows that  

‖  ‖  
‖   ‖

  ‖   ‖‖  ‖
(‖  ‖  ‖  ‖‖ ‖)  

Finally, dividing both sides by ‖ ‖ (which is nonzero since     and   is 

nonsingular) and noticing that ‖ ‖  ‖ ‖ ‖ ‖⁄   the result follows. 

Theorem 2.2  Assume that the conditions of the Theorem 3.1hold and let 

      Then  

 

 ( )

‖  ‖

‖ ‖
 
‖  ‖

‖ ‖
  ( )

‖  ‖

‖ ‖
                  (2.11) 

Proof. We will prove only the first inequality since the second one directly 

follows from (2.9). Relation          yields ‖  ‖  ‖ ‖‖  ‖  

Multiplying both sides by ‖ ‖ and recalling that  ‖ ‖  ‖   ‖‖ ‖ it follows 

that ‖ ‖‖  ‖   ( )‖ ‖‖  ‖  which is the desired inequality. 
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          In order to employ the inequalities (2.10) and (2.11) in the analysis of 

propagation of rounding errors in the case of direct methods, ‖  ‖ and ‖  ‖ 

should be bounded in terms of the dimension of the system and of the 

characteristics of the floating – point arithmetic that is being used.  

          It is indeed reasonable to expect that the perturbations induced by a 

method for solving a linear system are such that  ‖  ‖   ‖ ‖ and ‖  ‖  

 ‖ ‖ ,    being a positive number that depends on the round off unit   (for 

example, we shall assume henceforth that        where    is the base and   

is the number of digits of the mantissa of the floating – point system   ). In 

such a case (2.9) can be completed by the following theorem.  

Theorem 2.3  Assume that ‖  ‖   ‖ ‖ ‖  ‖   ‖ ‖ with      and 

        ,        Then, if   ( )    the following inequalities hold  

‖    ‖

‖ ‖
 
     ( )

     ( )
                             (2.12) 

‖  ‖

‖ ‖
 

  

     ( )
 ( )                        (2.13) 

Proof. From (2.8) it follows that (       )(    )           

Moreover, since   ( )    and ‖  ‖   ‖ ‖ it turns out that         is 

nonsingular. 

        Taking the inverse of such a matrix and passing to the norms we get 

‖    ‖  ‖ (       )‖(‖ ‖   ‖   ‖‖ ‖)  From Theorem 1.5 it then 

follows that 

‖    ‖  
 

  ‖     ‖
(‖ ‖   ‖   ‖‖ ‖), 

which implies (2.12), since ‖     ‖    ( ) and ‖ ‖  ‖ ‖‖ ‖.  

Let us prove (2.13). Subtracting (2.2) from (2.8) it follows that  

       (    )      
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Inverting   and passing to the norms, the following inequality is obtained  

‖  ‖  ‖     ‖‖    ‖  ‖   ‖‖  ‖ 

   ( )‖    ‖   ‖   ‖‖ ‖.                               (2.14) 

  Dividing both sides by ‖ ‖ and using the triangular inequality ‖    ‖  

‖  ‖  ‖ ‖  we finally get (2.13). 

Remarkable instances of perturbations    and    are those for which |  |  

| | and |  |   | | with    . Hereafter, the absolute value notation   | | 

denotes the matrix     having entries     |   | with           and the 

inequality      with          has the following meaning  

        for                  

If  ‖ ‖  is considered , from (3.14) it follows that 

‖  ‖ 
‖ ‖ 

  
‖|   || || |  |   || |‖ 
   ‖|   || |‖ ‖ ‖ 

 

                                        
  

   ‖|   || |‖ 
‖|   || |‖                (2.15) 

Estimate (2.15) is generally too pessimistic; however, the following component 

wise error estimates of    can be derived from (2.15) 

|   |   | ( )
 || ||    |                          , 

|   |

|  |
  

| ( )
 || |

| ( )
  |

,                                      (2.16) 

       being  ( )
  the row vector  ( )

    . Estimates (2.16) are more stringent than 

(2.15). The first inequality in (2.16) can be used when the perturbed solution 

     is known, being henceforth      the solution computed by a 

numerical method. 

       In the case where |   || |  | |  the parameter   in (2.15) is equal 

perturbations to the right side. A slightly worse situation occurs when   is a 
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triangular M-matrix and   has positive entries. In such a case   is bounded by 

      since  

| ( )
 || || |  (    )|  |  

Example 2.1  Consider the linear system       with  

  [
 

 

 

 
 

 

]     [
   

 

 
 

 

] 

which has solution    (   )  when        Let us compare the results 

obtained using (2.15) and (2.16). From 

|   || || |  |   || |  (  
 

  
  )       (2.17) 

it follows that the supremum of (2.17) is unbounded as       exactly as 

happens in case of ‖ ‖ . On the other hand, the amplification factor of the 

error in (2.16)is bounded. Indeed, the component of the maximum absolute 

value,     of the solution, satisfies | ( )
 || || |      ⁄   

2-1-3  Backward a priori Analysis 

        The numerical methods that we have considered thus far do not require 

the explicit computation of the inverse of    to solve     . However, we 

can always assume that they yield an approximate solution of the form 

 ̂      where the matrix  , due to rounding errors, is an approximation of  

   . 

In practice,   is very seldom constructed; in case this should happen, the 

following result yields an estimate of the error that is made substituting    

for     ( [23]) . 
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Property  2.1  Let        ; if ‖ ‖    , then   and    are nonsingular 

and  

‖   ‖  
‖ ‖

  ‖ ‖
 
‖ ‖

‖ ‖
 ‖     ‖  

‖ ‖‖ ‖

  ‖ ‖
 .              (2.18) 

         In the frame of backward a priori analysis we can interpret    as being 

the inverse of      (for a suitable unknown    ). We are thus assuming 

that  (    )     This yields 

         (    )          

and, as a consequence if  ‖ ‖    it turn out that  

‖  ‖  
‖ ‖‖ ‖

  ‖ ‖
                                    (2.19) 

        having used the first inequality in (2.18), where   is assumed to be an 

approximation of the inverse of    (notice that the roles of    and    can be 

interchanged). 

2-2 The Gaussian Elimination Methods(GEM) and LU factorization 

       The Gaussian elimination method aims at reducing the system      to 

be an equivalent system (that is, having the same solution ) of the form 

    ̂ , where    is an upper triangular matrix and  ̂ is an updated right 

side vector . This latter system can then be solved by the backward 

substitution method. Let us denote original system by  ( )   ( ). During 

the reduction procedure we basically employ the property which states that 

replacing one of the equations by the difference between this equation and 

another one multiplied by a non null constant yields an equivalent system 

(i.e., one with the same solution ). 

       Thus, consider a nonsingular matrix         , and suppose that the 

diagonal entry     is non vanishing. Introducing the multipliers  
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( )

   
( )
                  

           Where     
( )

 denote the elements of   ( ) , it is possible to eliminate 

the unknown    form the rows other than the first one by simply subtracting 

form row       with            the first row multiplied by     and doing 

the same on the right side. If we now define  

   
( )
    

( )
       

( )
             

  
( )
   

( )
      

( )
                

where    
( )

 denote the components op    , we get a new system of the 

form . 

[
 
 
 
 
    
( )

   
( )

    
( )

 
 

   
( )

   
( )

   

    
( )     

( )
]
 
 
 
 
 

  <

  
  
 
  

=  

[
 
 
 
   
( )

  
( )

 

  
( )
]
 
 
 
 

   

   which we denote by  ( )   ( )   that is equivalent to starting one. Similarly 

, we can transform the system in such a way that the unknown    is eliminated 

from rows        In general , we end up with the finite sequence of systems  

 ( )   ( )                              (2.20) 

where , for        matrix   ( ) takes the following form  

 ( )  

[
 
 
 
 
 
 
    
( )
     
( )
              

( )

      
( )
           

( )

             

           
( )
        

( )

               

           
( )
        

( )
]
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      having assumed that    
( )
   for           . It is clear that for      

we obtain the upper triangular system  ( )   ( )  

[
 
 
 
 
    
( )

   
( )      

( )

    
( )    

( )

 
 
 

 

 

 
 

   
( )
]
 
 
 
 
 

  

[
 
 
 
 
  
  
 
 
  ]
 
 
 
 

 

[
 
 
 
 
   
( )

  
( )

 
 

  
( )
]
 
 
 
 
 

   

      Consistently with the notations that have been previously introduced, we 

denote by   the upper triangular matrix  ( ). The entries     
( )

 are called  

pivots and must obviously be non null for              we assume that 

   
( )
   and define the multiplier  

    
   
( )

   
( )                                   (2.21) 

Then we let  

   
(   )

    
( )
       

( )
                   

  
(   )

   
( )
      

( )
                         (2.22) 

Example 2.2 Let us use GEM to solve the following system 

 ( )   ( )

{
 
 

 
    

 

 
   

 

 
   

  

  
 

 
   

 

 
   

 

 
   

  

  

 
 

 
   

 

 
   

 

 
   

  

  

        , 

         Which admits the solution   (        )  . At the first step we compute 

the multipliers     
 

 
 and     

 

 
    and subtract from the second and third 

equation of the system the first row multiplied by     and     respectively . 

we obtain the equivalent system. 
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 ( )   ( )

{
 
 

 
    

 

 
   

 

 
   

  

  

  
 

  
   

 

  
   

 

 

  
 

  
   

 

  
   

  

   

      , 

        If we subtract the second row multiplied by       form the third one , 

we end up with the upper triangular system  

 ( )   ( )

{
 
 

 
    

 

 
   

 

 
   

  

  

  
 

  
   

 

  
   

 

 

    
 

   
   

 

   

             , 

       from which we immediately compute      and then , by back 

substitution , the remaining  unknowns             

Remark 2.2 The matrix in Example 2.1 is called the Hilbert matrix of order 3. 

In the general     case , its entries are  

     (     )                ⁄                 (2.23) 

      To  complete Gaussian elimination   (   ) (   )    (   )⁄  

flops are required , plus    flops to backsolve the triangular system    

 ( )  Therefore, about (    ⁄     ) 

        Flops are needed to solve the liner system using GEM. Neglecting the 

lower order terms , we can state the Gaussian elimination  process has a cost 

of      ⁄  flops . 

         As previously noticed, GEM terminates safely iff the pivotal elements 

   
( )
   for            , are non vanishing . Unfortunately, having non null 

diagonal entries in   is not enough to prevent zero pivots to arise during the 

elimination process. For example , matrix   in (2.5) is nonsingular and has 

nonzero diagonal entries  
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  [
   
   
   

]    ( )  [
   
    
      

]                 (2.24) 

        Nevertheless, when GEM is applied, it is interrupted at the second step 

since    
( )
   . 

         More restrictive conditions on    are needed to ensure the applicability of 

the method . leading dominating minors    of    are nonzero for         

    then the corresponding pivotal entries    
( )

   must necessarily be non 

vanishing. We recall that    is the determinant of    , the      principal 

submatrix  made by the first   rows and columns of    . The matrix in the 

previous example does not satisfy this condition, having                   

       Classes of matrices exist such that GEM can be always safely employed in 

its basic form (2.22) .Among them, we recall the following ones: 

1. Matrices diagonally dominant by rows. 

2. Matrices diagonally dominant by columns. In such a case one can even 

show that the multipliers are in module less than or equal to 1(see 

Property 2.2). 

3. Matrices symmetric and positive definite (see Theorem 2.6). 

For a rigorous derivation of these results, we refer to the forthcoming sections. 

2.2.1 GEM as Factorization  Method 

We show how GEM is equivalent to performing a factorization of 

 the matrix   into the product of two matrices ,      , with    ( ). Since 

  and    depend only on   and not on the right hand side, the same 

factorization can be reused when solving several linear systems having the 

same matrix    but different right hand side   , with a considerable reduction of 

the operation count (indeed, the main computational effort, about     ⁄  flops, 

is spent in the elimination procedure ). 
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     Let us go back to Example 3.2concerning the Hilbert matrix     In practice, 

to pass from  ( )     to the matrix  ( ) at the second step, we have 

multiplied the system by the matrix  

   

[
 
 
 
 
   

 
 

 
  

 
 

 
  ]

 
 
 
 

 [
   

      
      

]   

Indeed,  

       
( )  

[
 
 
 
 
  

 

 

 

 

 
 

  

 

  

 
 

  

 

  ]
 
 
 
 
 

  ( )   

         Similarly, to perform the second ( and last ) step of GEM, we multiply 

 ( ) by the matrix  

   [
   
   
    

]  [
   
   
      

] . 

where  ( )     
( ). Therefore  

       
( )                        (2.25 ) 

         On the other hand, matrices     and    are triangular, their product is 

still lower triangular, as is their inverse , thus from (2.25) one gets  

  (    )
        

which is the desired factorization of   . 

     This identity can be generalized as follows. Setting  

   (                   )
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 and defining 

   

[
 
 
 
 
 
 
                    
                                

                     

                    

                              
                 ]

 
 
 
 
 
 

        
  

as the      Gaussian transformation matrix, one out that  

(  )       (    
 )                               

On the other hand, from (3.3) we have that  

   
(   )

    
           

( )
 ∑(          )   

( )
                       

 

   

 

or , equivalently , 

        
( ).                                     (2.26) 

As a consequence, at the end of the elimination process the matrices    with 

         

and the matrix   have been generated such that  

                

The matrices     are unit lower triangular with inverse given by  

  
                 

                   (2.27) 

where (    
  )(    

 ) are equal to the null matrix if     . As a consequence  

    
    

       
    

=(       
 )(       

 ) (           
 )  

= (   ∑     
  )    
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=

[
 
 
 
 
 
   
 

 
 
   

   
 

  
    
              ]

 
 
 
 

                                    (2.28) 

Defining   (           )    
       

      it follows that  

       

        We notice that, due to (2.28) the subdiagonal entries of   are the 

multipliers     produced by GEM, while the diagonal entries are equal to one .  

         Once the matrices   and   have been computed , solving the linear 

system consists only of solving successively the two triangular systems  

     

       

        The computational cost of the factorization process is obviously the same 

as that required by GEM. 

       The following result establishes a link between the leading dominant 

minors of a matrix  and its    factorization induced by GEM. 

Theorem 2.4 Let        . The    factorization of    with       for 

        exists and is unique iff the principal submatrices    of   of order 

          are nonsingular . 

Proof. The existence of the    factorization can be proved following the steps 

of the GEM. Here we prefer to pursue an alternative approach , which allows 

for proving at the same time both existence and uniqueness and that will be 

used again in later sections. 

         Let us assume that the leading minors    of   are nonsingular for 

          and prove , by induction on   , that under this hypothesis the 

   factorization of  (   ) with       for         exists and is unique . 
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       The property is obviously true if     . Assume therefore that there exists 

an unique     factorization of      of the form       
(   ) (   ) with 

   
(   )

   for           , and show that there exists an unique 

factorization also for     We partition    by block matrices as  

   [
     

     
] 

and  look for a factorization of    of the form  

    
( ) ( )  [ 

(   )  
   

] [
 (   )  
     

]             (2.29) 

         having also partitioned by blocks factors  ( ) and  ( ). Computing the 

product of these two factors and equating by blocks the elements of    , it turns 

out that the vectors         are the solutions to the linear system  (   )    ,  

   (   )       

     On the other hand, since      (    )     ( 
(   ))    ( (   ))  the 

matrices  (   ) and  (   ) are nonsingular and, as a result,   and   exist and 

are unique .  

     Thus, there exists a unique factorization of     where     is the unique 

solution of the equation          
    This completes the induction step of 

the proof.  

     It now remains to prove that, if the factorization at hand exists and is unique, 

then the first     leading minors of the   must be nonsingular. we shall 

distinguish the case where   is singular and when it is nonsingular . 

     Let us start from the second one and assume that the    factorization of   

with        for         exists and is unique. Then, due to (2.10), we have 

    
( ) ( ) for          Thus 

   (  )     ( 
( ))    ( ( ))     ( ( ))                     (2.30) 
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         form which, taking     and   nonsingular, we obtain              

and thus, necessarily ,    (  )               for          . 

      Now let   be a singular matrix and assume that (at least) one diagonal entry 

of   is equal to zero . Denote by     the null entry of   with minimum index 

   Thanks to (2.29), the factorization can be computed without troubles until 

the        step. From that step on, since the matrix  ( ) is singular, 

existence and uniqueness of vector    are certainly lost, and, thus, the same 

holds for the uniqueness of the factorization. In order for this not to occur 

before the process has factorized the whole matrix   , the     entries must all 

be nonzero up to the index       included, and thus due to (2.30) all the 

leading minors    must be nonsingular for          . 

         From the above theorem we conclude that, if    , with          , is 

singular , then the factorization may either not exist or not be unique.   

2-3   The LDMT factorization. 

         It is possible to devise other types of factorization of   removing the 

hypothesis that the elements of     are equal to one . Specifically, we will 

address some variant where the factorization of     is of the form  

         

       where       and    are lower triangular, upper triangular and diagonal 

matrices, respectively  

         After the construction of this factorization, the resolution of the system 

can be carried out solving first the lower triangular system       , then the 

diagonal one     , and finally the upper triangular system      , with a 

cost of      flops . In the symmetric case, we obtain     and the      

factorization enjoys a property analogous to the one in Theorem 2.4  for the    

factorization . In particular, the following result holds . 
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       Theorem 2.5   If all the principal minors of a matrix        are 

nonzero then there exist a unique diagonal matrix    , a unique unit lower 

triangular matrix   and a unique unit upper triangular matrix    , such that 

        

Proof. By Theorem 2.1 we already know that there exists a unique    

factorization of   with                     If we set the diagonal entries 

of   equal to      (nonzero because   is nonsingular ), then      

  (   )   Upon defining          the existence of the      

factorization follows , where       is a unit upper of the uniqueness of the 

     factorization is a consequence of the uniqueness of the    

factorization . 

      The above proof shows that, since the diagonal entries of   coincide with 

those of   , we could compute       and   starting from the    factorization 

of    . It suffices to compute    as       Nevertheless ,this algorithm has the 

same cost as the standard    factorization. 

Likewise, it is also possible to compute the three matrices of the factorization 

by enforcing the identity        entry by entry  

2-4  Symmetric and Positive Definite Matrices:  The 

          Cholesky factorization  

        As already pointed out, the factorization      simplifies considerably 

when   is symmetric because in such a case      yielding the so- called 

     factorization. The computational cost halves, with respect to the    

factorization , to about (   )⁄  flops. 

         As an example , the Hilbert matrix of order 3 admits the following      

factorization  
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[
 
 
 
 
  

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 ]
 
 
 
 
 

 

[
 
 
 
 
   
 

 
  

 

 
  ]

 
 
 
 

[
 
 
 
 
   

 
 

  
 

  
 

   ]
 
 
 
 

[
 
 

 

 

 
   
   

]  

         In the case that   is also positive definite, the diagonal entries of   in the 

     factorization are positive . Moreover, we have the following result . 

Theorem 2.6 Let        be a symmetric and positive definite matrix. Then, 

there exists a unique upper triangular matrix   with positive diagonal entries 

such that  

                                                             (2.31) 

          This factorization is called cholesky factorization and entries of    can 

be computed as follows :    √    and, for           

    (    ∑      )

   

   

                     ⁄  

    (    ∑    
 )

   
   

  ⁄
                               (2.32) 

Proof. Let us prove the theorem proceeding by induction on the size   of the 

matrix (as done in Theorem 2.4), recalling that if     
    is symmetric 

positive definite, then all its principal submatrices  enjoy the same property. 

       For      the result is obviously true. Thus, suppose that it holds for     

and prove that it also holds for  . There exists an upper triangular matrix      

such that          
     . Let us partition     as 

   [
     

   
] , 
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with               and look for a factorization of     of the form 

     
    6

  
  

   
7 [
     

   
]  

        Enforcing the equality with the entries of    yields the equation     
   

  and         . The vector   is thus uniquely determined, since     
  is 

nonsingular. As for    due to properties of determinants  

     (  )     (  
 )    (  )   

 (   (    ))
   

      we can conclude that it must be a real number . As result ,   √      is 

the desired diagonal entry and this concludes the inductive argument . 

       Let us now prove formulae (2.32). The fact that     √    is an 

immediate consequence of the induction argument for    . In the case of 

generic  , relations (2.16) are the forward substitution formulae for the solution 

of the linear system     
     (                )

    

 while formulae (2.16) state that   √      , where      . 

          The algorithm which implements (2.32) requires about  (   )⁄  flops and 

it turns out to be stable with respect to the propagation of rounding errors . It 

can indeed be shown that the upper triangular matrix  ̃ is such that  ̃  ̃  

       where    is perturbation matrix such that ‖  ‖    (   )  

  (   )   (see [24] ). 

          Also, for the Cholesky factorization it is possible to overwrite the matrix 

   in the lower triangular portion of   , without any further memory storage . 

By doing so,   and factorization are preserved, noting that   is stored in the 

upper triangular section since it is symmetric and its diagonal entries can be 

computed as        
          

  ∑    
              

     

        An example of implementation of the Cholesky factorization is coded in 

the Program  
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Program 1 -chol2: the Cholesky factorization 

        , -        

,   -      ( )  

            

 (   )      ( (   )    (       )   (       )  (   ) ⁄  

             (     )   (     )   (     )   (   )      

end 

 (   )      ( (   ))  

2-5  Rectangular Matrices : QR factorization: 

 Definition(2.1)    matrix       , with     , admits a QR factorization 

if there exist an orthogonal matrix         and an upper trapezoidal 

matrix        with null rows from the n+1-th one on, such that  

                                       (2.33) 

         This factorization can be constructed either using suitable transformation 

matrices ( Givens or Householder matrices , see section( 3.4.1) or using the 

Gram-Schmidt orthogonalization algorithm discussed below. 

    It is also possible to generate a reduced version of the QR factorization 

(2.33) , as stated in the following result . 

Property 2.3 Let        be a matrix of rank   for which a QR factorization 

is known . Then there exists a unique factorization of    of the form  

   ̃ ̃                                       (2.34) 

where  ̃ and   ̃ are submatrices of   and   given respectively by  

 ̃   (       )          ̃   (       )                               (2.35) 
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         Moreover ,  ̃ has orthonormal vector columns and  ̃ is upper triangular 

and coincides with the Cholesky factor   of the symmetric positive definite 

matrix      ̃  ̃ . 

         If    has rank   (i.e., full rank),then the column vector of  ̃ form an 

orthonormal basis for the vector space range ( )  (     ( )  *       

             ). As a consequence , constructing the QR factorization can 

also be interpreted as a procedure for generating an orthonormal basis for a 

given set of vectors. 

          If    has rank       the QR factorization does not necessarily yield an 

orthonormal basis for rang  ( ) . However , one can obtain a factorization of 

the form  

     0
      
  

1  

           

    =     

 

 FIGURE 2.1 The reduced factorization. The matrices of the QR 

factorization are drawn in dashed lines  

         where Q is orthogonal , P is a permutation matrix and     is a 

nonsingular upper triangular matrix of order   . 

          In general, when using the QR factorization , we shall always refer to its 

reduced form (2.34) as it finds a remarkable application in the solution of 

overdetermined system. 

       The matrix factor  ̃ and  ̃ in (2.34) can be computed using the 

Gramschmidt orthogonalization . Starting from a set of linearly independent 

   ̃      ̃ 
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vectors ,          this algorithm generates a new set of mutually orthogonal 

vector ,         , given by  

      , 

          ∑
(       )

(     )
  

 
    ,                       (2.36) 

Denoting by         the column vectors of   , we set  ̃    ‖  ‖ ⁄   and , 

for 

           , compute the column vectors of  ̃ as 

 ̃        ‖    ‖ ⁄  , 

where 

          ∑ ( ̃      ) ̃ 
 
   . 

Next, imposing that    ̃ ̃ and exploiting the fact that  ̃ is orthogonal (that is 

 ̃    ̃ ), the entries of  ̃ can easily be computed . The overall 

computational cost of the algorithm is of the order of     flops. 

     It is also worth noting that if   has full rank , the matrix     is symmetric 

and positive definite (see Section 1.6) and thus it admits a unique Chollesky 

factorization of the form     . On the other hand , since the orthogonality of  ̃ 

implies 

         ̃  ̃  ̃ ̃   ̃  ̃ , 

 we conclude that  ̃ is actually the Cholesky factor     of      . Thus , the diagonal entries 

 of  ̃ are all nonzero only if   has full rank . 

       The Gram- Schmidt method is of little practical use since the generated 

vectors lose their linear independence due to rounding errors . Indeed , in 

floating-point arithmetic the algorithm produces very small values of ‖    ‖  
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and  ̃   with a consequent numerical instability and loss of orthogonlity for 

matrix  ̃ ( see Example 2.3) . 

    These drawbacks suggest employing a more stable version, known as 

modified Gram-Schmidt method . At the beginning of the    -th step, the 

projection of the vectors      along  the vectors  ̃     ̃  are progressively 

subtracted form      .On the resulting vector, the orthogonalization step is 

then carried out. In practice , after computing (  ̃     ̃   ) ̃   

at the     -th step, this vector is immediately subtracted from      . As an 

example , one lest 

    
( )

      ( ̃      ) ̃  . 

This new vector     
( )

 is projected along the direction of   ̃  and the obtained 

projection is subtracted from      
( )

 yielding 

    
( )

     
( )
 ( ̃      

( )
) ̃  

and so on , until     
( )

 is computed . 

   It can be checked that     
( )

 coincides with the corresponding vector      in 

the standard Gram-Schmidt process , since due to the orthogonality of vectors 

 ̃   ̃     ̃  , 

    
( )

      ( ̃      ) ̃  ( ̃       ( ̃      ) ̃ ) ̃     

      ∑( ̃  

 

   

    ) ̃   

         Program 2 implements the modified Gram-Schmidt method .Notice that it 

is not possible to overwrite the computed QR factorization on the matrix  . In 

general, the matrix  ̃ is overwrite on   , whilst  ̃ is stored separately. The 

computational cost of the modified Gram-Schmidt has the order of      flops. 
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program 2-mod_grams: Modified Gram-Schmidt method:           

           ,   -           ( )  

,   -      ( ) ; 

       (   )      (     )   (     )          ( )    (   )      

           

R(k,k)=norm(A(1:m,k));       Q(1:m,k)=A(1:m,k)/R(k,k); 

for j=k+1:n 

R(k,j)=Q(1:m,j)*A(1:m,j); 

A(1:m,j)=A(1:m,j)-Q(1:m,k) *R(k, j) ;  

end 

end 

Example 2.3  Let us consider the Hilbert matrix    of order 4 (see (2.23)).The 

matrix  ̃ , generated by the standard Gram-Schmidt algorithm , is orthogonal 

up to the order of       ,being  

   ̃  ̃       [
                               
                                           
                                      

] 

and ‖   ̃  ̃‖
 
              . Using the modified Gram-Schmidt 

method , we would obtain  

   ̃  ̃       [
                               
                                           
                                         

] 

and this time ‖   ̃  ̃‖
 

 =301686.         . 
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      An improved result can be obtained using, instead of program 2, the 

intrinsic function QR of MATLAB. This function can be properly employed to 

generate both the factorization (2.33) as well as its reduced version (2.34). 

2-6 Pivoting: 

     As previously out , the GEM process breaks down as soon as zero pivotal 

entry is computed. In such an event, one needs to resort to the so called 

pivoting technique which amounts to exchanging rows (or columns ) of the 

system in such a way that non vanishing pivots are obtained. 

Example 2.4 Let us go back to matrix (2.24)for which GEM furnishes at the 

second step a zero pivotal element. By simply exchanging the second row with 

the third one, we can execute one step further of the elimination method , 

finding a nonzero pivot . The generated system is equivalent to the original one 

and it can be noticed that it is already in upper triangular form. Indeed  

 ( )  [
   
      
    

]    

while the transformation matrices are given by  

 ( )  [
   
    
    

]      ( )  [
   
   
   

] 

        From algebraic standpoint , a permutation of the rows of   has been 

performed. In fact, it now no longer holds that     
    

    , but rather 

    
       

    , P being the permutation matrix  

  [
   
   
   

]                           (2.37) 

       The pivoting strategy adopted in Example 3.4 can be generalization by 

looking , at each step   of the elimination procedure, for a nonzero pivotal 
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entry by searching within the entries of subcolumn   ( )(     )  For that 

reason, it is called partial pivoting (by rows ) . 

     From (2.21)it can be seen that a large value of     (generated for example 

by a small value of the pivot    
( )

 might amplify the rounding errors affecting 

the entries    
( )
  Therefore, in order to ensure a better stability , the pivotal 

element is chosen as the largest entry (in module) of the column  ( )(     ) 

and partial pivoting is generally performed at every step of the elimination 

procedure, even if not strictly necessary (that is , even if nonzero pivotal entries 

are found ). 

       Alternatively, the searching process could have been extended to the whole 

submatrix  ( )(       )  ending up with a complete pivoting ( see Figure 

2.2). Notice , however , that while partial pivoting requires an additional cost of 

about    searches , complete pivoting need about     ⁄  , with a considerable 

increase of the computational cost of GEM. 

 

                    k                                 

                                                                                           r           r  

                                                                           

FIGURE 2.2. Partial pivoting by row ( left) or complete pivoting ( right). 

Shaded areas of the matrix are those involved in the searching for the 

pivotal entry  

Example 2.5  Let us consider the linear system      with  

  0  
    
  

1 

       and where   is chosen in such a way that   (   )  is the exact solution. 

Suppose we use base 2 and 16 significant digits. GEM without pivoting would 

 

q k 

0 0 

k 

r 

k 

r 

k 
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give      (                   )
   while GEM plus partial pivoting 

furnishes the exact solution up to the      digit. 

       Let us analyze how partial pivoting affects the LU factorization induced by 

GEM. At the first step of GEM with partial pivoting , after finding out the entry 

    of maximum module in the first column , the elementary permutation 

matrix    which exchanges the first row with r-th  row is constructed(if   r =1, 

   is identity matrix ). Next , the firs Gaussian transformation matrix    is 

generated and we set  ( )       
( )   similar approach is now taken on  

 ( ), searching for a new permutation matrix    and a new matrix    such that 

 ( )       
( )           

( ) . 

        Executing all the elimination steps, the resulting upper triangular matrix   

is now given by  

   ( )                
( )                       (2.38) 

         Letting                 and            we obtain that 

     and , thus,   (    )    It can easily be checked that the matrix 

        is unit lower triangular , so that the    factorization reads  

                             (2.39) 

      
    

       
      

   and   
     

  while   
           

        Once     and   are available solving the initial linear system amounts to 

solving the triangular systems                      Notice that the entries 

of the matrix   coincide with the multipliers computed by    factorization , 

without pivoting, when applied to the matrix   . 

        If complete pivoting is performed , at the first step of the process , once 

the element     of largest module in submatrix  (       ) has been found , 

we must exchange the first row and column with the        row and the 

permutation matrices by rows and by columns, respectively. 
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     As a consequence, the action of matrix    is now such that  ( )  

     
( )    Repeating the process, at the last step, instead of (2.22) we obtain 

   ( )                
( )         

In the case of complete pivoting the    factorization becomes 

        

        where           is permutation matrix accounting for all 

permutations that have been operated . By construction, matrix   is still lower 

triangular, with module entries less than or equal to 1 .As happens in partial 

pivoting, the entries of   are the multipliers produced by the    factorization  

process without pivoting , when applied to the matrix      

   Program 3 is an implementation of the    factorization with complete 

pivoting . For an efficient computer implementation of the    factorization 

with partial pivoting, we refer to the MALAB intrinsic function    . 

Program 3 –LU pivtot  : LU factorization with complete pivotin: 

function [L,U,P,Q]=LU pivtot(A,n) 

P=eye(n) ; Q=P;Minv=P; 

for k=1:n-1 

[PK,QK]=pivot(A,K,n) ;    A=PK*A*QK; 

[MK,MKinv]=MGauss(A,K,n) ; 

A=MK*A;    P=PK*K;       Q=Q*QK; 

Minv*PK*MKinv; 

end 

U=triu(A) ;      L=P*Minv; 

function[MK,MKinv]=MGauss(A,K,n) 
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MK=eye(n) ; 

fori=k+1:n,    MK(i,K)=-A(I,k)/A(K,K) ; end 

Mkinv=2*eye(n)-Mk; 

function [PK,QK]=pivot(A,k,n) 

[y,i]=max(abs(A(k:n,k:n))) ;   [piv,jpiv]=max(y) ; 

ipiv=i(jpiv) ;    jpiv=jpiv+k-1;    ipiv=ipiv+k-1; 

pk=eye(n) ;  pk(ipiv,ipiv)=0;   pk(k,k)=0;   pk(k,ipiv)=1;    pk(ipiv,k)=1; 

  jpiv.jpiv)=0;  Qk(k,k)=0; Qk(k,jipv)=1;  Qk(jpiv,k)=1;)Qk=eye(n) 

;   Qk 

Remark 2.3   The presence of large pivotal entries is not in itself sufficient to 

guarantee accurate solution, as demonstrated by the following example (taken 

from [25] .For the linear system       

[
             
            
      

]  [

  
  
  
]  =[

   
      
      

] 

           at the first step the pivotal entry coincides with the diagonal entry -400 

itself . However , executing GEM on such a matrix yields the solution  

                       ̂  ,                               -   

whose first component drastically differs from that of exact solution  

                        ,                          -  . The cause of this 

behaviour should be ascribed to the wide variation among the system 

coefficients. Such cases can be remedied by a suitable scaling of the matrix. 

Remark 2.4   (pivoting for symmetric matrices)  As already noticed, pivoting 

is not strictly necessary if   is symmetric and positive definite.     separate 

comment is deserved when   is symmetric but not positive definite, since 

pivoting could destroy the symmetry of the matrix . This can be avoided by 
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employing a complete pivoting of the form      , even though this pivoting 

can only turn out into a reordering of the diagonal entries of    . As a 

consequence, the presence on the diagonal of   of small entries might inhibit 

the advantages of the pivoting .To del with matrices of this kind, special 

algorithms are needed (like the Parlett-Reid method [26]  or the Aasen method 

[27] for whose description we refer to [28], and to [29] for the case of sparse 

matrices. 

2-7  Computing the Inverse of a Matrix:  

       The explicit computation of the inverse of matrix can be carried out using 

the UL factorization as follows. Denoting by   the inverse of a nonsingular 

matrix        , the column vectors of   are the solutions to linear systems 

        for         . 

         Supposing that      , where   is partial pivoting permutation matrix, 

we must solve    triangular systems of the form 

                                       

i.e., a succession of linear systems having the same coefficient matrix but 

different right hand sides. The computation of the inverse of matrix is a costly 

procedure which can sometimes be even less stable than MEG. 

   An alternative approach for computing the inverse of   is provided by the 

faddev or leverrier formula, which, letting       recursively computes 

   
 

 
  (     )                                     

Since       if      we get 

    
 

  
      

      and the computational cost of the method for a full matrix is equal to 

(   )   flops (for further details [30],[31]). 
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2-8  undetermined systems: 

       We have seen that the solution of the linear system      exists and is 

unique if     and   is nonsingular. In this section we give a meaning to the 

solution of a linear system both in the overdetermined case, where      , and 

in the underdetermined case, corresponding to     . We notice that an 

underdetermined system generally has no solution unless the right side   is an 

element of range (A) 

For a detailed presentation, we refer to [32], [22]and [33]. 

    Given        with          , we say that       is a solution of 

the linear system      in the least-square sense if 

Φ( )  ‖     ‖ 
         ‖    ‖ 

     
    

Φ( )              (2.40) 

The problem thus consists of minimizing the Euclidean norm of the residual. 

The solution of (2.40) can be found by imposing the condition that the gradient 

of the function Φ in (2.40) must be equal to zero at   . From 

Φ( )  (    ) (    )                     

we find that  

 Φ(  )                 

from which it follows that    must be the solution of the square system 

                                                             (2.41) 

        known as the system of normal equation. The system is nonsingular if    

has full rank and in such a case the least- squares solution exists and is unique. 

We notice that       is a symmetric and positive definite matrix. Thus, in 

order to solve the normal equations, one could first compute the cholesky 

factorization       and then solve the two systems         and 

     . However, due to roundoff errors, the computation of      may be 
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affected by a loss of significant digits, with a consequent loss of positive 

definiteness or nonsingularity of the matrix, as happens in the following 

example(implemented in MATLAB) where for a matrix   with full rank, the 

corresponding matrix fl (   ) turns to be singular 

  [
  
     
     

]         fl (   )  0
  
  

1 . 

           Therefore, in the case of ill-conditioned matrices it is more convenient to 

utilize the QR factorization introduced in Section 2.5. Indeed, the following 

result holds. 

Theorem 2.7 let        , with     , be a full rank matrix. Then the 

unique solution of (3.40) is given by     

    ̃   ̃                                         (2.42) 

where  ̃       and  ̃       are the matrices defined in (2.35) starting 

from the QR factorization of    . Moreover, the minimum of Φ  is given by  

Φ(  )  ∑ ,(   ) -
  

 

     

 

Proof. The QR factorization of   exists and is unique since   has full rank. 

Thus, there exists two matrices,        and        such that       

where Q is orthogonal. Since orthogonal matrices preserve the Euclidean scalar 

product it follows that  

‖    ‖ 
  ‖      ‖ 

  . 

Recalling that R is upper trapezoidal, we have 

‖      ‖ 
  ‖ ̃   ̃  ‖

 

 
 ∑ ,(   ) -

  

 

     

 

so that the minimum is achieved when     . 
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  is         If   does not have full rank, the solution techniques above fail, since 

in this case if   a solution to (2.40), the vector     , with       ( ) , is a 

solution too. We must therefore introduce a further constraint to enforce the 

uniqueness of solution. Typically , one requires that    has minimal Euclidean 

norm, so that the least-squares problem can be formulated as find       with 

minimal Euclidean norm such that  

‖     ‖ 
         ‖    ‖ 

              (2.43) 

This problem is consistent with (2.40) if   has full rank, since in this case 

(2.40) has a unique solution which necessarily must have minimal Euclidean 

norm. 

    The tool for solving (2.43) is singular value decomposition (or SVD, see 

Section 1.6 ), for which the following theorem holds. 

Theorem (2.8) Let        with SVD given by    ∑    Then the unique 

solution to (2.43) is  

                            (2.44) 

where    is the pseudo- inverse of   introduced in Definition (1.11). 

        As for the stability of problem (2.43), we point out that if the matrix   

does not have full rank, the solution    is not necessarily a continuous function 

of the data, so that small changes on these latter might produce large variation 

in   .  

        In the case of underdetermined systems, for which    , if   has full 

rank the QR factorization can be used. In particular, when applied to the 

transpose matrix    , the method yields the solution of minimal Euclidean 

norm. If, instead, the matrix has not full rank, one must resort to SVD. 
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Remark 2.5  If     (square system), both SVD and QRfactorization can be 

used to solve the linear system      , as alternatives to GEM. Even though 

these algorithms require a number of flops far superior to GEM (SVD, for 

instance, requires      flops), they turn out to be more accurate when the 

system is ill-conditioned and nearly singular. 
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Chapter Three 

Approximation of Eigenvalues and Eigenvectors 

3.1  Introduction:  

      We deal with approximation of the eigenvalues and eigenvectors of a 

matrix        .Two main classes of numerical methods exist to this purpose, 

partial methods, which compute the extremal eigenvalues of     ( that is, those 

having maximum and minimum module), or global methods, which 

approximate the whole spectrum of    . 

       It is worth noting that methods which are introduced to solve the matrix 

eigenvalue problem are not necessarily suitable for calculating the matrix 

eigenvectors . For example , the power method provides an approximation to 

particular eigenvalue/ eigenvector pair . 

       The QR method ( a global method) instead computes the real Schur from 

of   , a canonical form that displays all the eigenvalues of    but not its 

eigenvectors . These eigenvectors can be computed, starting from the real 

Schur form of    , with an extra amount of work. 

          Finally , some ad hoc methods for dealing effectively with special case 

where   is a symmetric (   ) matrix .     

3-2 `Geometrical Location of the Eigenvalues: 

        Since the eigenvalues of   are the roots of the characteristic polynomial 

  ( )( see Section 1-4) , iterative methods must be used for their 

approximation when    . Knowledge of eigenvalue location in complex 

plane can thus be helpful in accelerating the convergence of the process . 

A first estimate is provided by Theorem 1.4  

| |  ‖ ‖                      ( )       (3.1) 
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           for any consistent matrix norm ‖ ‖  Inequality (4.1), which is often quite 

rough, states that all eigenvalues of    are contained in a circle of radius 

 ‖ ‖  ‖ ‖  centered at the origin of the Gauss plane. 

Theorem 3.1  If        , let  

  (    )   ⁄  and    (    )   ⁄  

be the hermition and skew-hermition parts of   , respectively,   being the 

imaginary unit. For any    ( ) . 

    ( )    ( )      ( )         ( )    ( )      ( )         (3.2) 

Proof. From the definition of   and   it follows that         Let      , 

‖ ‖     be the eigenvector associated with the eigenvalue     the Rayleigh 

quotient ( introduced in Section 1.4) 

                         (3.3) 

   Notice that both   and   are hermitian matrices, whiles    is skew-hermitian.  

Matrices   and    are thus unitarily similar to real diagonal matrix(see Section 

2.4) and therefore their eigenvalues are real . In such case, (3.3) yields 

    ( )                   ( )        

form which (3.2) follows. 

An a priori bound for the eigenvalues of   is given by the following result. 

Theorem  3.2 (of the Gershgorin circles )   Let        . Then  

 ( )     ⋃                            
 
       *    |     |  ∑ |   | + 

 
   
   

      (3.4) 

The sets    are called Gershgorin circles. 

Proof. Let us decompose   as        where   is diagonal part of    , 

whilst       for          For    ( ) (with               )  
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let us introduce the matrix         (    )     Since    is singular , 

there exists a non –null vector      such that        This means that 

((    )   )     that is passing to the ‖ ‖  norm, 

   (    )          ‖ ‖  ‖(    )
  ‖ ‖ ‖   

and thus  

  ‖(    )  ‖  ∑
|   |

|     |
 
    ∑

|   |

|     |
  

   
   

        (3.5) 

for a certain          Inequality (4.5) implies      and thus (3.4). 

The bounds (3.4)ensure that any eigenvalue of    lies within the union of the 

circles     Moreover, since   and    share the same spectrum, Theorem 3.2 

also holds in the form. 

 ( )     ⋃   
 
    ,    *    |     |  ∑ |   | + 

 
   
   

    (3.6) 

The circles    in the complex plane are called row circles, and    column 

circles . The immediate consequence of (3.4) and (3.6) is the following. 

property 3.1(First gershgorin theorem) For a given matrix        , 

    ( )               .             (3.7) 

The following two location theorems can also be proved ([30], [31). 

property 3.2(Second gershgorin theorem)  Let 

   ⋃   
 
           ⋃   

 
    . 

If          , then    contains exactly   eigenvalues of   , each one being 

accounted for with its algebraic multiplicity , while the remaining eigenvalues 

are contained in    . 

Remark 3.1 Properties 3.1 and 3.2 do not exclude the possibility that there 

exist circles containing no eigenvalues . 
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Definition 3.1 A matrix        is called reducible if there exists a 

permutation matrix   such that  

     [
      
    

] , 

where     and     are square matrices ,   is irreducible if it is not reducible. 

To check if a matrix is reducible , the oriented graph of the matrix can be 

conveniently employed, that the oriented graph of a real matrix   is obtained 

by joining   points ( called vertices of the graph )         through a line 

oriented from    to    if the corresponding matrix entry       . An oriented 

graph is strong connected if for any pair of distinct vertices    and     there 

exists an oriented path from    to    . The following result holds ( [32]). 

Property 3.3 A matrix         is irreducible iff its oriented graph is strongly 

connected. 

Property 3.4 (Third Gershgorin theorem) Let        be an irreducible 

matrix . An eigenvalue    ( ) cannot lie on the boundary of    unless it 

belongs to the boundary of every circle    , for        . 

3-3 Power Method:  

    The power method is very good at approximating the extremal eigenvalues 

of the matrix, that is eigenvalues having largest and smallest module, denoted 

by    and    respectively, as well their associated eigenvectors.  

3-3-1 Approximation of the Eigenvalue of Largest Module:  

     Let        be a diagonalizable matrix and let        be the matrix of 

its eigenvector    for         . Let us also suppose that eigenvalues of   are 

ordered as  

|  |  |  |  |  |   |  |                     (3.8) 
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where    has algebraic multiplicity equal to 1. Under these assumptions,    is 

called the dominant eigenvalue of matrix   . 

  Given an arbitrary initial vector  ( )      of unit Euclidean norm, consider 

for         the following iteration based on the computation of powers of 

matrices, commonly known as the power method : 

 ( )    (   ) 

 ( )   ( ) ‖ ( )‖
 

⁄                       (3.9) 

 ( )  ( ( ))   ( ) 

         Let us analyze the convergence properties of method (3.9). By induction 

on   one check that  

 ( )  
 ( ) ( )

‖ ( ) ( )‖
 

                                (3.10) 

        This relation explains the role played the power of    in the method. 

Because   is diagonalizable , its eigenvectors    form a basis of    ; it is thus 

possible to represent  ( ) as 

 ( )  ∑                      
 
                            (3.11) 

Moreover , since          , we have  

 ( ) ( )      
 (   ∑

 

 
.
  

  
/
 

 
     *                (3.12) 

        Since |    ⁄ |                     as   increases the vector  ( ) ( ) 

(and thus also  ( ), due to (3.10)) , tends to assume an increasingly singnificant 

component in the direction of the eigenvector    decrease. Using (3.10) and 

(3.12) , we get  

 ( )  
    

 (    
( ))

‖    
 (    

( ))‖
 

   
    

( )

‖    
( )‖ 
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where    is the sign of     
  and  ( ) denotes a vector that vanishes as      

      As      the vector  ( ) thus aligns it self along the direction of 

eigenvector    , and the following error estimate holds at step   . 

Theorem 3.4 Let        be a diagonalizable matrix whose eigenvalues 

satisfy (3.8). Assuming that       there exists a constant     such that  

‖ ̃( )    ‖   |
  

  
|
 
                     (3.13) 

where  

 ̃( )  
 ( )‖ ( ) ( )‖

 

    
     ∑

  

  
(
  

  
)     

 
                        (3.14) 

Proof. Since   is diagonalizable , without losing generality, we can pick up the 

nonsingular matrix   in such a way that is columns have unit Euclidean length, 

that is ‖  ‖    for        . From (3.12) it thus follows that  

‖   ∑[
  
  
(
  
  
)   ]    

 

   

‖

 

 ‖∑
  
  
(
  
  
)   

 

   
‖
 

 

 4∑ [
  
  
]
 

(
  
  
)  

 

   
5

  ⁄

 |
  
  
|
 

4∑ [
  
  
]
  

   
5

  ⁄

 

that is (3.13) with   (∑ (    )⁄   
   )  ⁄  . 

Estimate (3.13) expresses the convergence of the sequence  ̃( ) towards     . 

Therefore the sequence of the Rayleigh quotients  

(( ̃( ))
 
  ̃( )) ‖ ̃( )‖

 

 
 ( ( )) ⁄   ( )     

will converge to    .As a consequence,        
     and the convergence 

will be faster when the ratio |    ⁄ | is smaller. 

     If the matrix   is real and symmetric it can be proved, always assuming that  

      that ([33]) 
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|    
 |  |     |   

 (  ) |
  

  
|
  
             (3.15) 

where    (  )  |  
  ( )|     Inequality (3.15) out lines that the convergence 

of the sequence    to    is quadratic with respect to the ratio |    ⁄ |. 

We conclude the section by proving a stopping criterion for the iteration (3.9). 

For this purpose, let us introduce the residual at step    

 ( )    ( )   ( ) ( )            

and, for      the matrix   ( )    ( ), ( )-         with ‖ ( )‖
 
    

since 

  ( ) ( )    ( )                        (3.16) 

an eigenvalue  of the perturbed matrix     ( ).  

From (3.16) it follows that   ‖ ( )‖
 
 for         .Plugging this identity 

back into |
  

  
( )|  

 

|   |
 and approximating the partial derivative in it by the 

incremental ratio |    
 |  ⁄  we get  

|    
 |   

‖ ( )‖
 

|   (  )|
                     (3.17) 

 where    is the angle between the right and the left eigenvectors,     and    

associated with   . Notice that, if   is an hermitian matrix, then    (  )   , 

so that (3.17)yields an estimate which is analogue to(        ( )| ̂   |  
‖ ̂‖ 

‖ ̂‖ 
 ). 

      In practice, in order to employ the estimate (3.17) it is necessary at each 

step   to replace |   (  )| with the module of the scalar product between two 

approximations  ( ) and  ( ) of     and     , computed by the power method. 

The following a posteriori estimate is thus obtained 

|    
 |   

‖ ( )‖
 

|( ( ))  ( )|
                      (3.18) 
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3.3.2  Inverse Iteration: 

       We look for an approximation of the eigenvalue of matrix        which 

is closest to a given number      where    ( )  For this, the power 

iteration (3.17) can be applied to the matrix (  )
   (    )  , yielding the 

so-called inverse iteration or inverse power method. The number   is called a 

shift. 

       The eigenvalues of  (  )
   are    (    )

   ; let us assume that there 

exists an integer   such that  

|    |  |    |                and            (3.19) 

          This amounts to requiring that the eigenvalue    which is closest to   

has multiplication equal to 1. Moreover, (3.19) shown that    is the eigenvalue 

of (  )
  with largest module; in particular, if    ,    turns out to be the 

eigenvalue of   with smallest module. 

    Given an arbitrary initial vector  ( )     of unit Euclidean norm, for 

        the following sequence is constructed : 

(    ) ( )   (   ) 

 ( )   ( ) ‖ ( )‖
 

⁄             (3.20) 

 ( )  ( ( ))   ( )  

             Notice that the eigenvectors of    are the same as those of   since 

    (     ) 
  , where       (       )  For this reason, the 

Rayleigh quotient in(3,28) is computed directly on the matrix   ( and not on  

(  )
   ).The main difference with respect to (3.9) is that at each step   a linear 

system with coefficient matrix         must be solved. For numerical 

convenience, the LU factorization of    is computed once for all at      so 
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that at each step only two triangular systems are to be solved, with a cost of the 

order of    flops. 

          Although being more computationally expensive than the power method 

(3.9), the inverse iteration has the advantage that it can converge to any desired 

eigenvalue of   (namely, the one closest to the shift  ). Inverse iteration is thus 

ideally suited for refining an initial estimate   of an eigenvalue of  , which can 

be obtained, for instance, by applying the localization techniques introduced in 

Section 3.1. Inverse iteration can be also effectively employed to compute the 

eigenvector associated with a given (approximate) eigenvalue, as described in 

Section 3.8.1. 

        In view of the convergence analysis of the iteration (3.20) we assume that 

  is diagonalizable, so that  ( ) can be represented in the form (3.11). 

Proceeding in the same way as in the power method, we let  

 ̃( )     ∑
  

  
(
  

  
)   

 
       , 

  where    are the eigenvector of (  )
  ( and thus also of  ), while    are as in 

(3.11). As a consequence, recalling the definition of    and using (3.19), we get  

       ̃
( )    ,                

( )    . 

Convergence will be faster when   is closer to   . Under the same 

assumptions made for proving (3.18), the following a posteriori estimate can be 

obtained for the approximation error on    

|    
( )|  

‖ ̂( )‖
 

|( ̂( ))  ( )|
 ,                 (3.20) 

where  ̂( )    ( )   ( ) ( ) and  ̂( ) is the      iteration of the inverse 

power method to approximate the left eigenvector associated with   . 
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3.3.3   Implementation Issues: 

     The convergence analysis shows that the effectiveness of the power method 

strongly depends on the dominant eigenvalues being well-separated (that is 

|  | |  |⁄   )  Let us now analyze the behavior of iteration (3.9) when two 

dominant eigenvalues of equal module exist (that is, |  |  |  | ). Three cases 

must be distinguished : 

1.       : the two dominant eigenvalues are coincident. The method is 

still convergent, since for   sufficiently large(3.12)yields 

   ( )    
 (         ) 

         which is an eigenvector of   .For    , the sequence  ̃( ) (after a 

suitable   

         redefinition) converges to   vector lying in the subspace spanned by the 

eigenvectors  

            and    , while the sequence  ( ) still converges to   . 

2.       : the two dominant eigenvalues are opposite. In this case the 

eigenvalue of largest module can be approximated by applying the power 

method to the matrix     Indeed, for           ( 
 )  ,  ( )-

 , so 

that   
    

  and the analysis falls into the previous case, where the 

matrix is now   .  

3.     ̅ : the two dominant eigenvalues are complex conjugate. Here 

undamped oscillations arise in the sequence of vectors  ( ) and the 

power method is not convergent ( [24]). 

      As for the computer implementation of (3.9), it is worth noting that 

normalizing the vector  ( ) to 1 keeps away from overflow (when |  |   ) or 

underflow(when |  |   ) in (3.12). We also point out that the requirement 

     (which is a priori impossible to fulfil when no information about the 
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eigenvector    is available) is not essential for the actual convergence of the 

algorithm . 

          Indeed, although it can be proved that, working in exact arithmetic, the 

sequence (3.9) converges to the pair (     ) if      , the arising of 

(unavoidable) rounding errors ensures that in practice the vector  ( ) contains a 

non-null component also in the direction of    . 

         This allows for the eigenvalue   to ''show-up'' and the power method to 

quickly converge to it. 

An implementation of the power method is given in Program 5. Here and in the 

following algorithm, the convergence check is based on the a posteriori 

estimate(3.18).  

        Here and in the remainder of the chapter, the input z0, tool and nmax are 

the initial vector, the tolerance for the stopping test and the maximum 

admissible number of iterations, respectively. In output, the vectors nu1 and err 

contain the sequences { ( )} and 2‖ ( )‖
 
|    (  )|⁄ 3 (see(3.18)), whilst    

and niter are the approximation of the eigenvector    and the number of 

iterations taken by the algorithm to converge, respectively.  

Program 5 –powerm  :power method:                

function [nu1,x1,niter,err]=powerm(A,z0,toll,nmax) 

q=z0/norm(z0);q2=q;err=[];nul=[];res=toll+1;nier=0;z=A*q; 

while(res>=toll& niter<=nmax) 

q=z/norm(z) ;z=A*q; lam=q*z;x1=q; 

z2=q2`*A;q2=z2/norm(z2) ;q2=q2; 

y1=q2;costheta=abs(y1`*x1); 

if( costheta >=5e-2), 
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niter =niter+1;res=norm(z-lam*q)/costheta ; 

err=[err,res];nul=[nul;lam]; 

else 

disp (` Multiple eigenvalue `);break; 

  end 

end   

          A coding of the inverse power method is provided in Program 6. The 

input parameter mu is the initial approximation of the eigenvalue. In output, the 

vectors sigma and err contain the sequences { ( )} and 

2‖ ̂( )‖
 
|( ̂( ))  ( )|⁄ 3 (see (3.21)). The LU factorization (with partial 

pivoting) of the matrix    is carried out using the MATLAB intrinsic function 

1u.    

Program 6 – invpower    :Inverse power method: 

function [sigma,x,niter,err]=invpower(A,z0,mu,toll,nmax) 

n=max(size(A)); M=A-mu*eye(n); [L,U,P]=lu(M); 

q=z0/norm(z0); q2=q`; err=[]; sigma=[]; res=tool+1; niter=0; 

while(res>=tool&niter<=nmax) 

niter=niter+1; b=P*q; y=L/b; z=U/y; 

q=z/norm(z); z=A*q; lam=q`*z; 

b=q2; y=U`/b; w=L`/y; 

q2=(P`*w)`; q2=q2/norm(q2); costheta=abs(q2*q); 

if (costheta >=5e-2), 

    res=norm(z-lam*q)/costheta ; err=[err; res]; sigma=[sigma; lam]; 

else 
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     disp(' Multiple eigenvalue '); break; 

end 

x=q;  

end   

3-4 The QR Iteration: 

     We present some iterative techniques for simultaneously approximating all 

the eigenvalues of a given matrix   .The basic idea consists of reducing   , by 

means of suitable similarity transformations, into a form for which the 

calculation of the eigenvalues is easier than on the starting matrix . 

      The problem would be satisfactorily solved if the unitary matrix   of the 

Schur decomposition theorem 1.4 , such that        . T being upper 

triangular and with       ( ) for         could be determined in direct 

way, that is , with a finite number of operations. Unfortunately , it is a 

consequence of Abel`s theorem that for     the matrix   cannot be 

computed in an elementary way. Thus, our problem can be solved only 

resorting to iterative techniques. 

   Let        , given an orthogonal matrix  ( )       and letting 

 ( )  ( ( ))   ( ) for          until convergence , the QR iteration 

consists of : 

determine  ( )  ( ) such that 

 ( ) ( )    (   )      (QR factorization ),              (3.22 ) 

                            then , let  

 ( )   ( ) ( ) 

        At each step    , the first phase of the iteration is the factorization of 

the matrix  (   ) into product of an orthogonal matrix   ( ) with an upper 
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triangular matrix  ( ) ( see Section3.6.3) . The second phase is a simple matrix 

product. Notice that  

 ( )   ( ) ( )  ( ( )) ( ( ) ( )) ( )  ( ( ))  (   ) ( ) 

 ( ( ) ( )  ( ))
 
 (( ( ) ( )  ( ))                (3.23) 

i.e., every matrix  ( ) is orthogonally similar to   . This is particularly relevant 

for the stability of the method . 

         A basic implementation of the QR iteration (3.22), assuming  ( )     , 

while a more computationally efficient version, starting from  ( ) in upper 

Hessenberg form, is described in detail in Section 3.6. 

          If   has real eigenvalues, distinct in module, it will be seen in Section 3.5 

that the limit of  ( ) is an upper triangular matrix (with the eigenvalues of   on 

the main diagonal ). However, if   has complex eigenvalues the limit of  ( ) 

cannot be an upper triangular matrix   . Indeed if it were   would necessarily 

have real eigenvalues, although it is similar to  . 

          Failure to converge to triangular matrix may also happen in more general 

situations, as addressed in Example 3.1. 

          For this, it is necessary to introduce variants of the QR iteration (3.22), 

based on deflation and shift techniques (see Section 3.7 and, for a more detailed 

discussion of the subject, [18], ,[35]). 

         These techniques allow for   ( ) to converge to an upper quasi-triangular 

matrix , known as  the real Schur decomposition of   , for which the following 

result holds (for the proof we refer to [22]). 
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Property  3.5 Given a matrix         ,there exists an orthogonal matrix 

        such that  

     [

   
 

   
   

 
 

   
   

    
      

]             (3.24) 

where each block     is either a real number or matrix of order   having 

complex conjugate eigenvalues, and  

        , 
( ) ( )  ( )-                (3.25) 

 ( )being the orthogonal matrix generated by the      factorization step of 

the QR iteration (3.22). 

     The QR iteration can be also employed to compute all the eigenvectors of a 

given matrix. For this purpose, we describe in Section 3.8 two possible 

approaches, one based on the coupling between (3.22) and the inverse iteration 

(3.20), the other working on the real Schur form (3.24). 

3-5 The Basic QR Iteration: 

    In the basic version of the QR method , one sets  ( )     in such a way that  

 ( )   . At each step     the QR factorization of the matrix  (   ) can be 

carried out using the modified Gram-Schmidt procedure introduced 2.4with a 

cost of the order of     flops (for a full matrix   ). The following convergence 

result holds ( [22]). 

property 3.6 (convergence of QR method ) Let              be a 

matrix such that  

|  |  |  |    |  | . 

Then  
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( )  [

         
       

 
 
 
 

 
 

 
  

]          (3.26 ) 

As for the convergence rate , we have  

|      
( )
|   (|(

  

    
) |)          ,              for         (3.27 ) 

aim of accelerating it, one can resort to the so-called shift technique, which will 

be addressed in in Section 3.7. 

Remark 3.2 It is always possible to reduce the matrix   into a triangular form 

by means of an iterative algorithm employing nonorthogonal similarity 

transformations .In such a case, the so-called    iteration (known also as 

Rutishauser method, [2]) can be used, form which the QR method has actually 

been derived ( see also[24]). The    iteration is based on the factorization of 

the matrix   into the product of two matrices   and   , respectively unit lower 

triangular and upper triangular , and on the (nonorthogonal) similarity 

transformation  

         (  )       

         The rare use of the    method in practical computations is due to the loss 

of accuracy that can arise in the    factorization because of the increase in 

module of the upper diagonal entries of  R . This aspect, together with the 

details of the implementation of the algorithm and some comparisons with the 

QR method, is examined in [24]. 

Example 3.1  we apply the QR method to the symmetric matrix        such 

that        for          and           for        whose 

eigenvalues are ( to three significant figures)          ,             

     and         . After 20 iterations, we get  
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 (  )  [

                                    

                                  

          

          
          

          
    

         
         

    

] 

    Notice the  almost-diagonal structure of the matrix  (  ) and, at the same 

time, the effect of rounding errors which slightly alter its expected symmetry. 

Good agreement can also be found between the under-diagonal entries and the 

estimate (3.27).   

         A computer implementation of the basic QR iteration is given in program 

7. The QR factorization is executed using the modified Gram-Schmidt method 

(program2).The input parameter niter denotes the maximum admissible number 

of iterations, while the output parameters     and   are the matrices     and 

  in (3.22) after niter iteration of the QR procedure. 

program 7 –basicqr  :Basic QR iteration:        

function [T,Q,R]=basicqr(A,niter) 

T=A 

fori=1:niter, 

[Q,R]=mod –grams(T); 

T=R*Q; 

end 

3-6The QR Method for matrices in Hessenberg Form: 

     The naïve implementation of the QR method discussed in the previous 

section requires (for full matrix ) a computational effort of the order of    flops 

per iteration. In this section we illustrate a variant for the QR iteration, known 

as Hessenberg –QR iteration, with a greatly reduced computational cost. The 

idea consists of starting the iteration from a matrix  ( ) in upper Hessenberg 
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form, that is    
( )
   for       . Indeed ,it can be checked that with this 

choice the computation of    ( ) in (3.22) requires only an order of     flops 

per iteration. 

         To achieve maximum efficiency and stability of the algorithm, suitable 

transformation matrices are employed. Precisely , the preliminary reduction of 

a matrix   into upper Hessenberg form is realized with Householder matrices, 

whilst the  QR factorization of   ( ) is carried out using Givens matrices, 

instead of the modified Gram-Schmidt procedure introduced in Section 3.4.3. 

We briefly describe Householder and Givens matrices in the next section, 

referring to Section 3.6.5 for their implementation. The algorithm and examples 

of computations of the real Schur form of     starting from its upper 

Hessenberg form are then discussed in Section 3.6.4.  

3-6-1  Householder and Given Transformation Matrices: 

        For any vector      , let us introduce the orthogonal and symmetric 

matrix  

        ‖ ‖ 
 ⁄                          (3.28) 

           Given a vector     , the vector      is the reflection of   with 

respect to the hyperplane        * +  formed by the set of the vectors that 

are orthogonal to   (see Figure 3.1,left). Matrix   and the vector   are called 

the Householder reflection matrix and the householder vector, respectively.  

 

 

  

FIGURE  3.1. Reflection across the hyperplane orthogonal to   (left), rotation by an 

angle   in the plane (     ) (right) 
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X1 y 
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         Householder matrices can be used to set to zero a block of components of 

a given vector     . If, in particular, one would like to set to zero all the 

components of   , except the      one , Householder vector ought to be 

chosen as  

    ‖ ‖                           (3.29) 

   being the      unit vector of    .The matrix   computed by (3.28) 

depends on the vector   itself, and it can be checked that  

   ,       ‖ ‖ ⏟  
 

      -                     (3.30) 

Example 3.2  Let   ,       -   and     , then  

  <

 
 
 
 

=       ,   
 

 
 [

   
   

  
  

  
  

        
       

]  ,       <

 
 
  
 

= 

          If , for some    , the first    components of   must remain unaltered , 

while the components from     on are to be set to zero, the Householder 

matrix    ( ) takes the following form  

 ( )  [
   
     

]                 
 ( )( ( )) 

‖ ( )‖
 

  .                    (3.31) 

As usual,    is the identity matrix of order   , while      is the elementary 

Householder matrix of order     associated with the reflection across the 

hyperplane orthogonal to the vector  ( )       . According to (4.29), the 

Householder vector is given by  

 ( )   (   )  ‖ (   )‖
 
  
(   )

,          (3.32) 
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  where  (   )       is the vector formed by the last     components of   

and   
(   )

 is the first unit vector of the canonical basis of       . We notice 

that  ( ) is a function of   through  ( ) will be discussed in Section 3.6.5. 

       The components of the transformed vector    ( )    read  

>

                                                        
                                                  

      ‖ 
(   )‖

                                                          

 

        The Householder matrices will be employed in Section 3.6.2 to carry out 

the reduction of a given matrix   to a matrix  ( ) in upper Hesssnberg form.  

         This is the first step for an efficient implementation of the QR iteration 

(3.22)with  ( )   ( ) (see Section 3.6). 

Example 3.3  Let   ,         -  and     (this means that we want to set 

to zero the components   , with        )  The matrix  ( ) and the 

transformed vector    ( )  are given by  

 ( )  

[
 
 
 
 
 
 
 

 
      
      

                           
                  
                    

                           
                           ]

 
 
 
 

   ,     

[
 
 
 
 
 

      
   

 

 
 ]

 
 
 
 

 

         The Givens elementary matrices are orthogonal rotation matrices that 

allow for setting to zero in a selective way the entries of a vector or matrix.  

         For a given pair of indices    and  , and a given angle   , these matrices 

are defined as  

 (     )                          (3.33) 

 

 



79 
 

where        is a null matrix expect for the following entries :         

     ( )          ( )        A Givens matrix is of the form  

                                                                                     

 (     )  

[
 
 
 
 
 
 
 
 
  

                   

                        

 

 
    ( )

     ( )

 
    ( )

    ( )
 

 
 ]
 
 
 
 
 
 
 
 
 

 
 

 
 

            For a given vector      , the product   ( (     ))   is equivalent 

to rotating   counterclockwise by an angle   in the coordinate plane (     ) ( 

see Figure 3.4, right). After letting                it follows that  

   >

                                                   

                                                
                                                     

              (3.34) 

Let     √  
    

  and notice that if   and   satisfy         ⁄    

       ⁄  (in each a case,          (      ⁄ )) , we get      ,        

and       for        Similarly , if         ⁄          ⁄  ( that is 

,          (     ⁄ )) , then              and       for         

Remark 3.3 (Householder deflation for power iterations)  

       The elementary Householder transformations can be conveniently 

employed to compute the first (largest or smallest ) eigenvalues of given matrix 

      . 

        Assume that the eigenvalues of   are ordered as in (3.8) and suppose that 

the eigenvalue/ eigenvector pair (     ) has been computed using the power 
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method. Then the matrix   can be transformed into the following block form ( 

[34]) 

       (
    

   
* 

         where       ,   is the Householder matrix such that         for 

some     , the matrix     
(   ) (   ) and the eigenvalues of     are the 

same as those of   except for    . The matrix   can be computed using (3.28) 

with      ‖  ‖      

         The deflation procedure consists of computing the second dominant (sub 

dominant) eigenvalue of    by applying the power method to    provided that 

‖  ‖  ‖  ‖  Once   is available , the corresponding eigenvector    can be 

computed by applying the inverse power iteration to the matrix   taking      

( see Section 3.3.2 ) and proceeding in the same manner with the remaining 

eigenvalue/eigenvector pair.     

  3-6-2    Reducing a Matrix in Hessenberg Form: 

      A given matrix        can be transformed by similarity transformations 

into upper Hessenberg form with a cost of the order of    flops. The algorithm 

takes     steps and similarity transformation Q can be computed as the 

product of Householder matrices  ( )  (   ). For this, the reduction 

procedure is commonly known as the Householder method. 

       Precisely , the      step consists of similarity transformation of   

through the Householder matrix  ( ) which aims at setting to zero the elements 

in positions         of the      column of   , for        (   ) (see 

Section 3.6.1). For example , in the case     the reduction process yields 
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[
 
 
 
 ∎ ∎

∎ ∎

∎

∎

∎

∎

∎ ∎ ∎ ∎

∎ ∎ ∎ ∎]
 
 
 
 

  ⃗ ( )   

[
 
 
 
 ∎ ∎

∎ ∎

∎

∎

∎

∎

∎ ∎ ∎ ∎

∎ ∎ ∎ ∎]
 
 
 
 

   ⃗ ( )

[
 
 
 
 ∎ ∎

∎ ∎

∎

∎

∎

∎

∎ ∎ ∎ ∎

∎ ∎ ∎ ∎]
 
 
 
 

   

         having denoted by ∎  the entries of the matrices that are a priori non zero. 

Given  ( )     the method generates a sequence of matrices  ( ) that are 

orthogonally similar to   

 ( )   ( )
  (   ) ( )  ( ( )   )

 
 ( ( )   ) 

  ( )
   ( )                                                            (3.35) 

          For any     the matrix  ( ) is given by (3.31), where   is substituted 

by the      column vector in matrix   (   ) .From the definition (3.31) it is 

easy to check that the operation  ( )
  (   ) ( )   

( ) does the same on the 

first   columns. After     steps of Householder reduction, we obtain a matrix 

   (   ) in upper Hessenberg form. 

Remark 3.4 (The symmetric case) If is symmetric , the transformation (3.35) 

maintains such a property. Indeed  

( ( ))  ( ( )
   ( ))

 
  ( )                

        so that   must be tridiagonal. Its eigenvalues can be efficiently computed 

using the method of Sturm sequences with a cost of the order of   flops. 

        A coding of the Householder reduction method is provided in Program 8. 

To compute the Householder vector , Program 11 is employed . In output , the 

tow matrices    and   respectively in Hessenberg form and orthogonal, are 

such that           
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Program 8 – Houshess  :Hessenberg- Householder method: 

function [H,Q]=houshess(A) 

n=max(size(A)); Q=eye(n); H=A; 

for k=1:(n-2), 

    [v,beta]=vhouse(H(k+1:n,k)); I=eye(k); N=zeros(k,n-k); 

    m=length(v); R=eye(m)-beta*v*v`; H(k+1:n,k:n)=R*H(k+1:n,k:n); 

    H(1:n,k+1:n)=H(1:n,k+1:n)*R; P=[1,N;N`;R];  Q=Q*P; 

end 

       The algorithm coded in Program 8 requires a cost of      ⁄  flops and is 

well- conditioned with respect to rounding errors . Indeed, the following 

estimate holds ( [34]) 

 ̂    (   )                ‖ ‖    
  ‖ ‖         (3.36) 

where  ̂ is the Hessenberg matrix computed by Program 8, Q is an orthogonal 

matrix ,   is a constant,   is the roundoff unit and  ‖ ‖  is the Frobenius  norm . 

Example 3.3  Consider the reduction in upper Hessenberg form of the Hilbert 

matrix     
    . Since    is symmetric, its Hessenberg form should be a 

triadigonal  symmetric matrix .Program 8 yields the following results  

  <

     
     

 
     

 
    

              
             

=       [

        
        

 
    

 
 

                  
                       

]     

The accuracy of the transformation procedure (3.35) can be measured by 

computing the ‖ ‖  norm of the difference between   and       . This yields 

‖       ‖         
    , which confirms the stability estimate (3.36).  
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  3-6-3   QR factorization of a Matrix in Hessenberg Form: 

        We explain how to efficiently implement the generic step of the QR 

iteration, starting form a matrix  ( )   ( ) in upper Hessenberg form. 

    For any      the first phase consists of computing the QR factorization of 

 (   ) by means of     Givens rotation  

( ( ))  (   )  (    
( )
)  (  

( )
)  (   )   ( )        (3.37) 

where, for any              
( )
  (        )

( ) is , for any      the 

     Gives rotation matrix (3.43) in which    is chosen according to (3.34) in 

such a way that the entry of indices (j+1,j) of the matrix 

(  
( )
)   (  

( )
)  (   ) is set equal to zero. The product (3.37) requires a 

computational cost of the order of     flops. 

    The next step consists of completing the orthogonal similarity transformation  

 ( )   ( ) ( )   ( ) .  
( )
       

( )
/        (3.38) 

The orthogonal matrix  ( )  .  
( )
       

( )
/ is in upper Hessenberg form 

.Indeed , taking for instance      and recalling Section (3.6.1), we get  

 ( )    
( )
  
( )
 [
∎ ∎  
∎ ∎  
   

] [
   
 ∎ ∎
 ∎ ∎

]  6
∎ ∎ ∎
∎ ∎ ∎
 ∎ ∎

7 . 

         Also (3.38) requires a cost of the order of     operations, for an overall 

effort of the order of     flops. In conclusion, performing the QR factorization 

with elementary Givens rotations on a starting matrix in upper Hessenberg 

form yields a reduction of operation count of one order of magnitude with 

respect to the corresponding factorization with the modified Gram Schmidt 

procedure of Section 3.4.   
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3-6-4   The Basic QR Iteration Starting from Upper:      

Hessenberg Form. 

      A basic implementation of the QR iteration to generate the real Schur 

decomposition   is given in Program 9. 

         This program uses Program 8 to reduce   in upper Hessenberg form , 

then each QR factorization step in (4.22) is carried out with Program 10 which 

utilizes Givens rotations. The overall efficiency of the algorithm is ensured by 

pre-and post-multiplying with Givens matrices as explained in Section 3.6.5, 

and by constructing the matrix  ( )    
( )
       

( )
 in the function prodgiv , 

with a cost of      flops and without explicitly forming the Givens matrices 

  
( )
  for          . 

       As for the stability of the QR iteration with respect to rounding error 

propagation, it can be shown that the computed real Schur form  ̂ is 

orthogonally similar to a matrix "close" to   , i.e. 

 ̂    (   )  

 where Q is orthogonal and ‖ ‖   ‖ ‖  , u being the machine roundoff unit. 

   Program 9 returns in output, after niter iterations of the QR procedure , the 

matrices T,Q and R in (3.22). 

Program 9- hessqu   :Hessenberg – QR method: 

function [T,Q,R]=hessqr(A,niter) 

n=max(size(A)); 

[T,Qhess]=houshess(A); 

for j=1:niter 

     [Q,R,c,s]=qrgivens(T); 

T=R; 
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for k=1:n-1 

    T=gacol(T,c(k),s(k),1,k+1,k,k+1); 

     end 

end 

Program  10  - givensqr   :QR factorization with Givens rotations: 

function [Q,R,c,s]=qrgivens(H) 

[m,n]=size(H); 

for k=1:n-1 

   [c(k),s(k)]=givcos(H(k,k),H(k+1,k)); 

   H=garow(H,c(k),s(k),k,k+1,k,n); 

end 

R=H; Q=prodgiv(c,s,n); 

function Q=prodgiv(c,s,n) 

n1=n-1;n2=n-2; 

Q=eye(n);Q(n1,n1)=c)n1)=-s(n1); 

for k=n2:-1:1, 

k1=k+1;Q(k,k)=c(k);Q(k1,k)=-s(k); 

q=Q(k1,k1:n); Q(k,k1:n)=s(k)*q; 

Q(k1,k1:n)=c(k)*q; 

end 
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Example 3.5 consider the matrix   (already in Hessenberg form) 

  

[
 
 
 
 
 
 
 

  
 
 

        
           
          

            
            ]

 
 
 
 

 

       To compute its eigenvalues, given by       and   , we apply the QR 

method and we compute the matrix  (  ) after 40 iteration of Program 9. 

Notice that the algorithm converges to the real Schur decomposition of   

(3.24), with three blocks    of order 1   (     ) and with the block     

 (  )(       ) having eigenvalues equal to      

 (  )  

[
 
 
 
 
      
 
 

       
       
 

                       
                          
                           

                              
                              ]

 
 
 
 

 

Example  3.6   Let us now employ the QR method to generate the Schur real 

decomposition of the matrix   below, after reducing it to upper Hessenberg 

form  

  

[
 
 
 
 
  
  
 

  
 
 

                     
             
             

                
               ]

 
 
 
 

 

       The eigenvalues of   are real and given (to four significant figures) by 

      ,and             and              After 40 iterations of 

Program 9, the computed matrix reads  

 (  )  

[
 
 
 
 
  
 
 

 
       
       

                                         
                          
                          

                                      
                                      ]
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It is not upper triangular, but block upper triangular, with a diagonal block 

       and the two blocks 

    0
              
               

1        0
               
              

1 

having spectrums given by  (   )       and  (   )       respectively. 

    It is important to recognize that matrix  (  ) is not the real Schur 

decomposition of   , but only a "cheating" version of it . In fact, in order for 

the QR method to converge to the Schur decomposition of   , it is mandatory 

to resort to the shift techniques introduced in Section 3.7.       

3-6-5   Implementation of transformation Matrices: 

      In the definition (3.32) it is convenient to choose the minus sign, obtaining                   

 ( )   (   )  ‖ (   )‖
 
  
(   )

 , in such a way that the vector      
(   )   

is a positive multiple of   
(   )

  If      is positive, in order to avoid numerical 

cancellations, the computation can be rationalized as follows  

  
( )
 
    
  ‖ (   )‖

 

 

     ‖ 
(   )‖ 

 
 ∑   

  
     

     ‖ 
(   )‖ 

   

The construction of the Householder vector is performed by Program 11, which 

takes as input a vector        (formerly, the vector (   )) and returns a 

vector        (the Householder vector   ( ) ), with a cost of the order of   

flops . 

     If       is the generic matrix to which the Householder matrix   

(3.28) is applied (where   is the identity matrix of order   and     )  letting 

     , then  

                       ‖ ‖ 
 ⁄               (3.39) 

Therefore, performing the product    amounts to a matrix- vector product 

(      ) plus an external product vector- vector (   ). The overall 
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computational cost of the product    is thus equal to  (    ) flops. 

Similar consideration hold in the case where the product    is to be computed 

; defining       we get  

                                (3.40) 

          Notice that (3.39) and (3.40) do not require the explicit construction of 

the matrix    This reduces the computational cost to an order of     flops , 

whilst executing the product    without taking advantage of the special 

structure of   would increase the operation count to an order of     flops. 

Program  11  - vhouse    :Construction of the Householder vector: 

function [v,beta]=vhouse(x) 

n=length(x); x=x/norm(x); s=x(2:n)`*x(2:n); v=[1;x(2:n)]; 

if (s==0), beta=0; 

else 

     mu=sqrt(x(1)^2+s); 

if (x(1)<=0), v(1)=x(1)=x(1)-mu; 

else,        v(1)=-s/(x(1)+mu);   end 

beta=2*v(1)^2/(s+v(1)^2);  v=v/v(1); 

end 

       Concerning the Givens rotation matrices, the computation of   and   is 

carried out as follows. Let   and   be two fixed indices and assume that the 

     component of a given vector      must be set to zero. Letting 

  √  
    

   , relation (3.34)yields 

0
   
  

1 0
  
  
1  0

 
 
1                  (3.41) 
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        hence there is no need of explicitly computing  , nor evaluating any 

trigonometric function. 

       Executing Program 12  to solve system (3.41), requires 5 flops, plus the 

evaluation of a square root.  As already noticed in the case of Householder 

matrices, even for Givens rotations  we don't have to explicitly compute the 

matrix  (     ) to perform its product with a given matrix         . For 

that purpose Program 13 and 14 are used, both at the cost of    flops. Looking 

at the structure (3.33) of matrix  (     ) , it is clear that the first algorithm 

only modifies rows   and   of  . 

         We conclude by noticing that the computation of Householder vector   

and of the Givens sine and cosine (   ), are well-conditioned operations with 

respect to rounding errors ( [33]). parameters are the vector components    and 

   , whilst the output data are the Givens cosine and sine   and  . 

Program 12 –givcos   :Computation of Givens cosine and sine: 

function [c,s]=givcos{xi,xk) 

if (xk==0), c=1; s=0;else, 

     if abs(xk)> abs(xi) 

  t=-xi/xk; s=1/sqrt(1+t^2); c=s*t; 

else 

t=-xk/xi; c=1/sqrt(1+t^2); s=c*t; 

     end  

end 

         Program 13 and 14 compute  (     )   and    (     ) respectively. 

The input parameters   and   are the Givens cosine and sine .In Program 13, 

the indices    and   identify the rows of the matrix  , while   and    are 
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indices of the columns involved in the computation. Similarly, in Program 14     

and   identify the columns effected by the update     (     ), while 

  and    are the indices of the rows involved in the computation . 

Program  13 –garow   : Product   (     )   

function [M]=garow(M,c,s,i,k,j1,j2) 

for j=j1:j2 

    t1=M(i,j); 

    t2=M(k,j); 

    M(i,j)=c*t1-s*t2; 

    M(k,j)=s*t1+c*t2; 

end 

Program  14 –gacol   :Product   (     ) 

function [M]=gacol(M,c,s,j1,j2,i,k) 

for j=j1:j2 

     t1=M(j,i); 

    t2=M(j,k); 

    M(j,i)=c*t1-s*t2; 

   M(j,k)=s*t1+c*t2; 

End 
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3-7 The QR Iteration with Shifting Techniques: 

         Example 3.9 reveals that the QR iteration does not always converge to the 

real Schur form of a given matrix   . To make this happen, an effective 

approach consists of incorporating in the QR iteration (3.22) a shifting 

technique similar to that introduced for inverse iteration in Section 3.3.2.  

        This leads to the QR method with single shift described in Section 3.7.1, 

which is used to accelerate the convergence of the QR iteration when   has 

eigenvalues with moduli very close to each other. 

        In Section 3.7.2, a more sophisticated shifting technique is considered, 

which guarantees the convergence of the QR iteration to the ( approximate) 

Schur form of matrix   (see Property3.5). The resulting method (known as QR 

iteration with double shift) is the most popular version of the QR iteration 

(3.22) for solving the matrix eigenvalue  problem, and is implemented in the 

MATLAB intrinsic function eig.         

3-7-1 The QR Method with single shift: 

    Given    , the shifted QR iteration is defined as follows. For          

until convergence : 

determine  ( ) ( )   (   )       (QR factorization); 

                      then , let                                                               (3.42) 

 ( )   ( ) ( )    . 

where  ( )  ( ( ))   ( ) is in upper Hessenberg form. Since the QR 

factorization in (3.52) is performed on the shifted matrix  (   )    , the 

scalar   is called shift. The sequence of matrices  ( ) generated by (3.42) is 

still similar to the initial matrix  , since for any      

 ( ) ( )     ( ( ))
 
( ( ) ( ) ( )    ( )) 
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 ( ( ))
 
( ( ) ( )    ) ( )  ( ( ))

 
 (   ) ( ) 

 ( ( ) ( )  ( ))
 
 ( ( ) ( )  ( ))         

Assume   is fixed and that the eigenvalues of   are ordered in such a way that  

|    |  |    |   |    |  

Then it can be shown that, for        the subdiagonal entry       
( )

 tends to 

zero with a rate that is proportional to the ratio 

|(    ) (      )⁄ |
 
. 

This extends the convergence result (3.27) to the shifted QR method ( [35]). 

   The result above suggests that if   is chosen in such a way that 

|    |  |    |                , 

        Then the matrix entry       
( )

 in iteration (3.42) tends rapidly to zero as   

increases. (In the limit, if   were equal to an eigenvalue of  ( ), that is of  , 

then        
( )

   and     
( )
  . In practice one takes  

      
( )

 ,                                 (3.43) 

yielding the so called QR iteration with single shift. Correspondingly, the 

convergence to zero of the sequence 2      
( )

3 is quadratic in the sense that if 

|      
( )

| ‖ ( )‖
 
      ⁄  for some      then |      

( )
| ‖ ( )‖

 
  (  

 ) ⁄  ([18], [22]). 

            This can be profitably taken into account when programming the QR 

iteration with single shift by monitoring the size of the subdiagonal entry 

|      
( )

|  In practice,       
( )

 is set equal to zero if  

|      
( )

|   |        
( )

|  |    
( )
|                                (3.44) 



93 
 

         for a prescribed  , in general of the order of the roundoff unit. If   is an 

Hessenberg matrix, when for a certain         
( )

 is set to zero,     
( )

 provides the 

desired approximation of   . Then the QR iteration with shift can continue on 

the matrix  ( )(           )  and so on. This is a deflation algorithm. 

Example 3.7  We consider again the matrix   as in Example 3.6. Program 15, 

with toll equal to the roundoff unit, converges in 14 iterations to the following 

approximate real Schur form of  , which displays the correct eigenvalues of 

matrix   on its diagonal (to six significant figures) 

 (  )  

[
 
 
 
 
  
 
 

 
        

 

                                     
                              
                             

                                        
                                            ]

 
 
 
 

  . 

We also report in Table 3.1 the convergence rate  ( ) of the sequence 2      
( )

3 

 (   ) computed as  

 ( )    
 

     
   

      
( )

      
(   ) ,     . 

The results show good agreement with the expected quadratic rate. 

  |      
( )

| ‖ ( )‖
 

⁄   ( ) 

0 0.13865  

1 1.5401.     2.1122 

2 1.2213.      2.1591 

3 1.8268.      1.9775 

4 8.9036.       1.9449 
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TABLE 3.1. Convergence rate of the sequence 2      
( )

3 in the QR iteration 

with single shift  

        The coding of the QR iteration with single shift (3.42) is given in Program 

15. The code utilizes Program 8 to reduce the matrix   in upper Hessenberg 

from and Program 10 to perform the QR factorization step. The input 

parameters toll and itmax are the tolerance   in (3.44) and the maximum 

admissible number of iterations, respectively . In output, the program returns 

the (approximated) real Schur form of   and the number of iterations needed 

for its computation. 

Program 15 – qrshift   :QR iteration with single shift 

function[T,itr]=qrshift(A,toll,itmax) 

n=max(size(A)); iter=0; [T,Q]=houshess(A); 

for k=n:-1:n 

I=eye(k); 

while abs(T(k,k-1))> tool*(abs(T(k,k)+abs(T(k,k-1))) 

      iter=iter+1; 

      if(iter>itmax), 

        return 

      end 

      mu=T(k,k); [Q,R,c,s]=qrgivens(T(1:k,1:k)-mu*I); 

     T(1:k,1:k)=R*Q+mu*I; 

 end 

T(k,k-1)=0; 

end                 
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3-7-2 The QR Iteration Method with Double shift: 

     The single-shift QR iteration (3.42) with the choice (3.43) for   is effective 

if the eigenvalues of   are real, but not necessarily when complex conjugate 

eigenvalues are present, as happens in the following example. 

Example 3.8 The matrix        (reported below to five significant figures) 

  [

             
             

      
      

       
       

                         
                          

] 

         has eigenvalues *      +   being imaginary unit. Running Program 15 

with toll equal to the roundoff unit yields after 100 iterations 

 (   )  [

       
          

      
       

      
      

                      
                         

] 

        The obtained matrix is the real Schur form of  , where the     block 

 (   ) (2:3,2:3) has complex conjugate eigenvalues       These eigenvalues 

cannot be computed by the algorithm (3.42)-(3.43) since   is real . 

         The problem with this example is that working with real matrices 

necessarily yields a real shift, whereas a complex one would be needed. The 

QR iteration with double shift is set up to account for complex eigenvalues and 

allows for removing the     diagonal blocks of the real Schur form of   . 

        Precisely, suppose that the QR iteration with single shift (3.42) detects at 

some step   a     diagonal block    
( )

 that cannot be reduced into upper 

triangular form. Since the iteration is converging to the real Schur form of the 

matrix   the two eigenvalues of    
( )

 are complex conjugate and will be 

denoted by  ( ) and  ̅( ). The double shift strategy consists of the following 

steps: 
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    determine  ( )  ( ) such that 

   ( ) ( )   (   )   ( )              (first QR factorization ); 

then, let 

 ( )   ( ) ( )   ( )  ; 

determine  (   )  (   ) such that                                    [3.45 ] 

 (   ) (   )   ( )   ̅( )       ( second QR factorization) 

then, let  

 (   )   (   ) (   )   ̅( )     

        Once the double shift has been carried out the QR iteration with single 

shift is continued until a situation analogous to the one above is encountered. 

        The QR iteration incorporating the double shift strategy is the most 

effective algorithm for computing eigenvalues and yields the approximate 

Schur form of a given matrix  . Its actual implementation is far more 

sophisticated than the outline above and is called QR iteration with Francis 

shift ( [18] ,[22]). As for the case of the QR iteration with single shift, quadratic 

convergence can also be proven for the QR method with Francis shift. 

However, special matrices have recently been found for which the method fails 

to converge. We refer for some analysis and remedies to [39],[40], although the 

finding of a shift strategy that guarantees convergence of the QR iteration for 

all matrices is still an open problem. 

Example  3.9  Let us apply the QR iteration with double shift to the matrix   in 

Example 3.8. After 97 iterations of Program 16, with toll equal to the roundoff 

unit, we get the following (approximate) Schur form of  , which displays on its 

diagonal the four eigenvalues of   
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 (  )  

[
 
 
 
 
                    
             

           
                 

    
    

   
(  )

                                          

   
(  )

                   
(  )   ]

 
 
 
 

 

         where    
(  )

                        ,     
(  )

             and 

   
(  )

            , respectively . 

 

         A basic implementation of the QR iteration with double shift is provided 

in Program 16. The input/output parameters are the same as those of Program 

15 . The output matrix T is the approximate Schur form of matrix   . 

Program 16  -qr2shift    :QR iteration with double shift 

      function [T,iter]=qr2shift(A,toll,itmax) 

     n=max(size(A)); iter=0; [T,Q]=houshess(A); 

    for k=n:-1:2 

    I=eye(k); 

    while abs(T(k,k-1))>toll*(abs(T(k,k))+abs(T(k-1,k-1))) 

    iter=iter+1;  if (iter > itmax), return, end 

    mu=T(k,k); [Q,R,c,s]=qrgivens(T(1:k,1:k)-mu*I); 

    T(1:k,1:k)=R*Q+mu*I; 

    if (k>2), 

    T diag2=abs(T(k-1,k-1))+abs(T(k-2,k-2)); 

     if   abs(T(k-1,k-2)) i=toll*T diag2; 

     [Iambda]=eig(T(k-1:k,k-1:k)); 

     [Q,R,c,s]=qrgivens(T(1:k,1:k)-Iambda(1)*I); 

    T(1:k,1:k)=R*Q+Iambda(1)*I; 
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   [Q,R,c,s]=qrgivens(T(1:k,1:k)-Iambda(2)*I); 

   T(1:k,1:k)R*Q+Iambda(2)*I; 

end 

end 

end, T(k,k-1)=0; 

end 

I=eye(2); 

while (abs(T(2,1))>toll*(abs(T(2,2))+abs(T(1,1))))&(iter<=itmax) 

  iter=iter+1; mu=T(2,2); 

  [Q,R,c,s]=qrgivens(T(1:2,1:2)-mu*I);  T(1:2,1:2)=R*Q+mu*I; 

end  

3-8 Computing The Eigenvector and the SVD  of a Matrix: 

     The power and inverse iteration described in Section 3.3.2 can be used to 

compute a selected number of eigenvalue/eigenvector pairs. If all the 

eigenvalues and eigenvectors of matrix are needed, the QR iteration can be 

profitably employed to compute the eigenvectors as shown in Section 3.8.1and 

3.8.2. In Section 3.8.3 we deal with the computation of the singular value 

decomposition (SVD) of a given matrix. 

3-8-1 The Hessenberg Inverse Iteration: 

      For any approximate eigenvalue   computed by the QR iteration as 

described in Section 3.7.2, the inverse iteration (3.20)cab be applied to the 

matrix        in Hessenberg form, yielding an approximate eigenvector  . 

Then, the eigenvector   associated with   is computed as       Clearly, one 

can take advantage of the structure of the Hessenberg matrix for an efficient 



99 
 

solution of the linear system at each step of (3.20). Typically, only one iteration 

is required to produce an adequate approximation of the desired eigenvector 

   ( [22]).  

   3-8-2 Computing the Eigenvectors from the Schur Form of a matrix: 

         Suppose that the (approximate) Schur form         of a given matrix 

       has been computed by the QR iteration with double shift,       a 

unitary matrix and   being upper triangular. 

     Then if      , we have               i.e letting          

     holds. Therefore   is eigenvector of  , so that to compute the 

eigenvectors of   we can work directly on Schur form     

    Assume for simplicity that         is a simple eigenvalue of  . Then the 

upper triangular matrix   can be decomposed as 

  <

       
    

     

=, 

where      
(   ) (   ) and       

(   ) (   ) are upper triangular 

matrices,       , and    (   )   (   )  

Thus, letting   (    
        

 )  with       
   ,     and       

   , 

the matrix eigenvector problem (    )    can be written as  

>

(         )                                            

                                                                                   

                                                 (         )             

            (3.46) 

      Since   is simple, both matrices           and           are 

nonsingular, so that the third equation in (3.46) yield        and the first 

equation becomes 

(         )         . 
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Setting arbitrarily     and solving the triangular system above for      

yields (formally) 

  (
 (         )

   
 
 

+ . 

The desired eigenvector   can then be computed as     . 

     Invoking this function with the format ,   -     ( ) yields the matrix   

whose columns are the right eigenvectors of   and the diagonal matrix   

contains its eigenvalues. Further details can be found in strvec subroutine in the 

LAPACK library, while for the computation of eigenvectors in the case where 

  is symmetric, we refer to [22], [37].  

3-8-3  Approximate Computation of the SVD of a matrix: 

      We describe the Golub-Kahan-Reinsh algorithm for computation of the 

SVD of a matrix        with     ([22]). The method consists of two 

phases, a direct one and an iterative one. 

      In the first phase   is transformed into an upper trapezoidal matrix of the 

form  

     .
 
 
/                                  (3.47) 

where   and   are two orthogonal matrices and        is upper bidiagonal. 

The matrices   and   are generated using       Householder matrices 

                   as follows. 

The algorithm initially generates    in such a way that the matrix  ( )      

has    
( )
   if      Then,    is determined so that  ( )   ( )   has 

   
( )
   for    , preserving at the same time the null entries of the previous 

step. The procedure is repeated starting from  ( ), and taking    such that 

 ( )     
( ) has    

( )
   for     and    in such a way that  ( )   ( )   
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has    
( )
   for    , yet preserving the null entries already generated. For 

example, in the case         the first two steps of the reduction process 

yield 

 ( )      

[
 
 
 
 
∎ ∎ ∎ ∎
 ∎ ∎ ∎
 
 
 

∎
∎
∎

∎
∎
∎

∎
∎
∎]
 
 
 
 

  ( )   ( )   

[
 
 
 
 
∎ ∎   
 ∎ ∎ ∎
 
 
 

∎
∎
∎

∎
∎
∎

∎
∎
∎]
 
 
 
 

   

having denoted by ∎the entries of the matrices that in principle are different 

than zero. After at most     steps, we find (3.47) with  

                               

      In the second phase, the obtained matrix   is reduced into a diagonal matrix 

∑ using the QR iteration. Precisely, a sequence of upper bidiagonal matrices 

 ( ) are constructed such that, as    , their off-diagonal entries tend to zero 

quadratically and the diagonal entries tend to the singular values    of  . In the 

limit, the process generates two orthogonal matrices   and   such that  

      ∑      (       )   

The SVD of    is then given by  

     .
∑
 
/,  

with        (      ) and     .  

      The computational cost of this procedure is           
 

 
   flops, 

which reduces to      
 

 
   flops if only the singular values are computed.  

In this case, recalling what was stated in Section 3.8 about      the method 

described in the present section is preferable to computing directly the 

eiagenvalues of      and then taking their square roots.  
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          As for the stability of this procedure, it can be shown that the computed 

   turn out to be the singular values of the matrix      with  

‖  ‖      ‖ ‖    

    being a constant dependent on     and the roundoff unit    For other 

approaches to the computation of the SVD of a matrix, ( [22] , [34]).  

3-9 The Generalized Eigenvalue Problem: 

      Let          be two given matrices, for any    , we call      a 

matrix pencil and denote it by (   ). The set  (   )of the eigenvalues of 

(   ) is defined as  

 (   )  *       (    )   +   

The generalized matrix eigenvalue problem can be formulated as : find 

   (   ) and a nonnull vector      such that 

                                       (3.48) 

        The pair (   ) satisfying (3.48) is an eigenvalue/eigenvector pair of the 

pencil (   ). Note that by setting      in (3.48) we recover the standard 

matrix eigenvalue problem considered thus far. 

       Problems like (3.48) arise frequently in engineering applications,  e.g., in 

the study of vibrations of structures ( buildings, aircrafts and bridges) or in the 

mode analysis for waveguides ( [37] , [38]). Another example is the 

computation of the extermal eigenvalues of a preconditioned matrix      ( in 

which case     in (3.48) when solving a linear system with an iterative 

method (see Remark 3.2).  

       Let us introduce some definitions. We say that the pencil (   ) is regular 

if     (    ) is not identically zero, otherwise the pencil is singular. When 

(   ) is regular,  ( )      (    ) is the characteristic polynomial of the 

pencil; denoting by   the degree of    the eigenvalues of (   ) are defined as : 
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1. the roots of  ( )              

2.          ( with multiplicity equal to    ). 

Example 3.10  

  0
   
  

1          0
  
  

1       ( )          (   )     

  0
   
  

1          0
  
  

1    ( )                 (   )  *   + 

  0
  
  

1          0
  
  

1        ( )                (   )     

      The first pair of matrices shows that symmetric pencils, unlike symmetric 

matrices, may exhibit complex conjugate eigenvalues. The second pair is 

regular pencil displaying an eigenvalue equal to infinity, while the third pair is 

an example of singular pencil. 

3-9-1 Computing the Generalized Real Schur  Form:  

       The definitions and examples above imply that the pencil (   )has   

finite eigenvalues iff   is nonsingular. 

        In such a case, a possible approach to the solution of problem (3.48) is to 

transform it into the equivalent eigenvalue problem        where the matrix 

  is the solution of the system      then apply the QR iteration to  . For 

actually computing the matrix  , one can use Gauss elimination with pivoting 

or the techniques shown in Section 2.7. This procedure can yield inaccurate 

result if   is ill-conditioned, since computing   is sffected by rounding errors 

of the order of  ‖ ‖ ‖ 
  ‖  ( [22]). 

        A more attractive approach is based on the following result, which 

generalizes the Schur decomposition theorem 1.5 to the case of regular pencils 

to ( [34]). 
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Property 3.9  (Generalized Schur decomposition) Let (   ) be a regular 

pencil. Then, there exist two unitary matrices  and   such that       ,  

        where   and  are upper triangular. For         the eigenvalues 

of (   ) are given by  

   
   
   ⁄             

                      

          Exactly as in the matrix eigenvalue problem, the generalized Schur form 

cannot be explicitly computed, so the counterpart of the real Schur form (3.24) 

has to be computed. Assuming that the   and   are real, it can be shown that 

there exist two orthogonal matrices  ̃ and  ̃ such that  ̃   ̃   ̃ is upper 

quasi-triangular  ̃   ̃   ̃ is upper triangular. This decomposition is known as 

the generalized real Schur decomposition of a pair (   ) and can be computed 

by a suitably modified version of the QR algorithm, known as    iteration, 

which consists of the following steps ( [22], ,[34): 

1. reduce   and   into upper Hessenberg form and upper triangular form, 

respectively, i.e., find two orthogonal matrices   and   such that 

       is upper Hessenberg and         is upper triangular ; 

2. the QR iteration is applied to the matrix      to reduce it to real Schur 

form. 

      To save computational resources, the QZ algorithm overwrites the matrices 

  and   on their upper Hessenberg and triangular forms and requires      

flops; an additional cost of      operations is required if   and  are also 

needed.  
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3-9-2 Generalized Real Schur  Form of Symmetric –Definite Pencils:  

        A remarkable situation occurs when both   and   are symmetric, and one 

of them, say  , is also positive definite. In such a case, the pair (   ) forms a 

symmetric-definite pencil for which the following result holds. 

Theorem 3.5  The symmetric-definite pencil (   ) has real eigenvalues and 

linearly independent eigenvectors. Moreover, the matrix   and   can be 

simultaneously diagonalized. Precisely, there exists a nonsingular matrix 

        such that  

           (          )  
         

where for               are the eigenvalue of the pencil (   ). 

Proof. Since   is symmetric positive definite, it admits a unique Cholesky 

factorization      , where   is upper triangular ( see Section 2.4). From 

(3.48) we deduce that       with          ,       where (   )is an 

eigenvalue/eigenvector pair (   ). 

    The matrix   is stmmetric; therefore, its eigenvalues are real and a set of 

orthonormal eigenvectors (        )    exists. As a consequence, letting 

       allows for simultaneously diagonalizing both   and   since  

                           (          )  

                        

    The following QR –Cholesky algorithm computes the eigenvalues     and 

corresponding eigenvectors    of a symmetric-definite pencil  (   ), for 

         ( [22], [34] ): 

1. compute the Cholesky factorization          

2. compute             

3. for          compute the eigenvalues    and eigenvectors    of the 

symmetric matrix   using the QR iteration. Then construct from the set 
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*  + an orthonormal set of eigenvectors  *  + (using, for instance, the 

modified Gram-Schmidt procedure of Section 3.4); 

4.  for          compute the eigenvectors    of pencil (   ) by solving 

the systems       .  

This algorithm requires an order of      flops and it can be shown ( [22]) 

that if  ̂ is a computed eigenvalue, then 

 ̂   (         )             with ‖ ‖    ‖ ‖ ‖ 
  ‖    

Thus, the generalized eigenvalue problem in the symmetric-definite case 

may become unstable with respect to rounding errors propagation if   is ill-

conditioned. For a stabilized version of the QR-Cholesky method, [22] and 

the references cited therein. 
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Chapter Four 

4.0  Basic Concepts 

4.0.1 Linear Constraints 

      In this chapter we examine ways of representing linear constraints. The goal 

is to write. 

      The constraints in a form that makes it easy to move from one feasible point 

to another. 

      The constraints specify interrelationships among the variables so that, for 

example, if we increase the first variable, retaining feasibility might require 

making a complicated sequence of changes to all the other variables. It is much 

easier if we express the constraints using acoordinate system that is ―natural‖ 

for the constraints. Then the interrelationships among the variables are taken 

care of by the coordinate system, and moves between feasible pointsare almost 

as simple as for a problem without constraints. 

   In the general case these constraints may be either equalities or inequalities. 

Since any inequality of the ―less than or equal‖ type may be transformed to an 

equivalent constraint of the ―greater or equal‖ type, any problem with linear 

constraints may be written as follows: 

minimize      ( ) 

subject to       
                  

                     
                  

      Each    here is a vector of length   and each    is a scalar.   is an index set 

for the equality constraints and   is an index set for the inequality constraints. 

We denote by   the matrix whose rows are the vectors    
  and denote by b the 

vector of right-hand side coefficients     . 
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Let   be the set of feasible points. A set of this form, defined by a finite number 

of linear constraints, is sometimes called a polyhedron or a polyhedral set. In 

this chapter we are notconcerned with the properties of the objective function 

   . 

Example 4.1 (Problem with Linear Constraints). Consider the problem 

minimize     ( )     
    

   
  

subject to                       

              

 

 

 

 

 

 

Figure 4.1. Feasible directions. 

For this example     *   +         *       +  The vectors *    + that 

determine the constraints 

are 

     (     )
        (     )

  

     (     )       (     )  

and the right-hand sides are 
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        We start by taking a closer look at the relation between a feasible point 

and its neighboring feasible points. We shall be interested in determining how 

the function value changes as we move from a feasible point   ̅  to nearby 

feasible points. 

        First let us look at the direction of movement. We define   to be a feasible 

direction at the point  ̅ if a small step taken along   leads to a feasible point in 

the set. Mathematically,   is a feasible direction if there exists some       

such that  ̅          for all            

        Thus, a small movement from  ̅  along a feasible direction maintains 

feasibility. In addition, since the feasible set is convex, any feasible point in the 

set can be reached from  ̅  by moving along some feasible direction. Examples 

of feasible directions are shown in Figure 4.1. 

        In many applications, it is useful to maintain feasibility at every iteration. 

For example, the objective function may only be defined at feasible points. Or 

if the algorithm is terminated before an optimal solution has been found, only a 

feasible point may have practical value. These considerations motivate a class 

of methods called feasible-point methods. These methods have the following 

form. 

Algorithm 4.1. 

Feasible-Point Method 

1. Specify some initial feasible guess of the solution    

2. For              

(i) Determine a feasible direction of descent    at the point   . If none exists, 

stop. 

(ii) Determine a new feasible estimate of the solution            

       where 
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  (    )     (  )  

      In this chapter we are mainly concerned with representing feasible 

directions with respect to    in terms of the constraint vectors    . We begin by 

characterizing feasible directions with respect to a single constraint. 

Specifically, we determine conditions that ensure that small movements away 

from a feasible point  ̅  will keep the constraint satisfied. 

      Consider first an equality constraint   
        . Let us examine the effect 

of taking asmall positive step   in the direction    . Since   
  ̅      , then 

  
  (  ̅      )        will hold if 

and only if   
      

Example 4.2 (An Equality Constraint). Suppose that we wished to solve 

             (     ) 

                          

         For this constraint      (   )
  and       . Let  ̅    (   )  so that   ̅  

satisfies the constraint. 

        Then   ̅       will satisfy the constraint if and only if    
      , that is, 

             

For this example 

  
 (  ̅      )    (  ̅     ̅ )     (       )    ( )    ( )       

as expected. 

      The original problem is equivalent to 

  (  ̅      )    
                

where   ̅    (   ) , as before, and where     (    )  is a vector satisfying 
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Expressing feasible points in the form  ̅       will be a way for us to 

transform constrained problems to equivalent problems without constraints. 

       Continuing to inequality constraints, consider first some constraint 

  
         which 

is inactive at   ̅ . Since   
   ̅       , then   

  (   ̅      )       for all α 

sufficiently small. Thus, we can move a small distance in any direction p 

without violating the constraint. 

If the inequality constraint is active at   ̅, we have   
    ̅       . Then to 

guarantee that 

  
  (   ̅      )       for small positive step lengths α, the direction p must 

satisfy   
       . 

Example 4.3 (An Inequality Constraint). Suppose that we wished to solve 

             (     ) 

                          

For this constraint       (   )
  and       . If   ̅    (   ) , then the 

constraint is inactive and any nearby point is feasible. 

           If   ̅    (   ) , then the constraint is active and nearby points can be 

expressed in the form  ̅     with   
      . For this example this 

corresponds to the condition            or          

      In summary, we conclude that the feasible directions at a point  ̅  are 

determined by the equality constraints and the active inequalities at that point. 

Let  ̂ denote the set of active inequality constraints at   ̅. Then   is a feasible 

direction with respect to the feasible set at  ̅  if and only if 

  
                      

           ̂   
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In the following, it will be convenient to consider separately problems that have 

only equality constraints, or only inequality constraints. 

         The general form of the equality-constrained problem is 

             ( ) 

                      

It is evident from our discussion above that a vector p is a feasible direction for 

the linear equality constraints if and only if 

        

We call the set of all vectors p such that        the null space of  . A 

direction   is a feasible direction for the linear equality constraints if and only 

if it lies in the null space of  . 

             The general form of the inequality-constrained problem is 

           ( ) 

                   

Let  ̅ be a feasible point for this problem. We have observed already that the 

inactive constraints at   ̅ do not influence the feasible directions at this point. 

Let  ̂ be the submatrix of   corresponding to the rows of the active constraints 

at  ̅. Then a direction   is a feasible direction for   at  ̅ if and only if 

 ̂     . 

          Since the inactive constraints at a point have no impact on its feasible 

directions, such constraints can be ignored when testing whether the point is 

locally optimal. In particular, if we had prior knowledge of which constraints 

are active at the optimum, we could cast aside the inactive constraints and treat 

the active constraints as equalities. A solution of the inequality-constrained 
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problem is a solution of the equality-constrained problem defined by the active 

constraints. 

     The theory for inequality-constrained problems draws on the theory for 

equality-constrained problems. For this reason, it is important to study 

problems with only equality constraints. In particular, it will be useful to study 

ways to represent all the vectors in the null space of a matrix.  

       Once a feasible direction    is determined, the new estimate of the solution 

is of the form  ̅       where        Since the new point must be feasible, in 

general there is an upper limit on how large α can be. 

        For an equality constraint we have   
         and so 

  
  (  ̅      )      

  ̅       

 

 

 

 

 

 

 

Figure 4.2. Movement to and away from the boundary. 

for all values of    . For an active inequality constraint we have   
       , and 

so 

  
  (  ̅      )      

   ̅       

for all values of      . Thus only the inactive constraints are relevant when 

determining 

 



114 
 

an upper bound on   . 

     Because   ̅  is feasible,    
   ̅       for all inactive constraints. Thus, if  

  
       , the 

         constraint remains satisfied for all α ≥ 0. As α increases, the movement is 

away from the boundary of the constraint. On the other hand, if    
        the 

inequality will remain valid only if     (  
   ̅    ) (   

   )  Apositive step 

along  p is a move towards the boundary, and any step larger than this bound 

will violate the constraint. (See Figure 4.2.) The maximum step length  ̅ that 

maintains feasibility is obtained from a ratio test: 

 ̅        *(  
   ̅      ) (   

   )     
      +   

        where the minimum is taken over all inactive constraints. If   
        for 

all inactive constraints, then an arbitrarily large step can be taken without 

violating feasibility. 

Example 4.4 (Ratio Test).       ̅    (   )  and      (    ) . Suppose that 

there are three inactive constraints with 

  
    (   )                   

  
   (   )                   

  
    (   )                   

Then 

  
                   

                            
             

so only the first two constraints are used in the ratio test: 

 ̅        *(  
   ̅      ) (   

   )     
      +   

      * (     )   (     )   +         
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Notice that the point  ̅     ̅    ( 
 

 
 
 

 
)   is on the boundary of the second 

constrain 

4.0.2 Null and Range Spaces: 

     Let   be an       matrix with      . We denote the null space of   by 

 ( )  *               +  

       The null space of a matrix is the set of vectors orthogonal to the rows of 

the matrix. Recall that the null space represents the set of feasible directions for 

the constraints       . It is easy to see that any linear combination of two 

vectors in  ( ) is also in  ( )  and thus the null space is a subspace of   . It 

can be shown that the dimension of this subspace is         ( )  When A 

has full row rank (i.e., its rows are linearly independent), this is just 

     . 

       Another term that will be important to our discussions is the range space 

of a matrix. 

       This is the set of vectors spanned by the columns of the matrix (that is, the 

set of all linear combinations of these columns). In particular, we are interested 

in the range space of   , 

defined by 

 (  )  *                               + . 
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Figure 4.3. Null space and range space of     (  )  

Throughout this text, if we mention a range space without specifying a matrix, 

it refers to the range space of   . The dimension of the range space is the same 

as the rank of   , orequivalently the rank of  . 

        There is an important relationship between  ( ) and  (  ): they are 

orthogonal subspaces. This means that any vector in one subspace is 

orthogonal to any vector in theother. To verify this statement, we note that any 

vector        ) can be expressed as          for some       , and 

therefore, for any vector      ( ) we have 

                

       There is more. Because the null and range spaces are orthogonal subspaces 

whose dimensions sum to  , any               vector   can be written 

uniquely as the sum of a null-space and a range-space component: 

           

where      ( ) and      (  )  Figure 3.5  illustrates the null and range 

spaces for     (  )  where a is a two-dimensional nonzero vector. Notice that 

the vector   is orthogonal to the null space and that any range-space vector is a 

scalar multiple of  . The decomposition of a vector x into null-space and range-

space components is also shown in 

Figure 4.3. 

        How can we represent vectors in the null space of  ?  For this purpose, we 

define a matrix   to be a null-space matrix for   if any vector in  ( ) can be 

expressed as a linear combination of the columns of  . The representation of a 

null-space matrix is not unique. 

      If   has full row       , any matrix   of dimension       and rank 

      that satisfies 
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       is a null-space matrix. The column dimension   must be at least 

(     ). In the special case where   is equal to      , the columns of   are 

linearly independent, and   is then called a basis matrix for the null space of A. 

If   is an       null-space matrix, the null space can be represented as 

 ( )    *                              +   

thus  ( )     ( )  This representation of the null space gives us a practical 

way to generate feasible points. If  ̅ is any point satisfying       , then all 

other feasible points can be written as 

     ̅       

for some vector  . 

As an example consider the rank-two matrix 

   .
     
    

/ 

The null space of A is the set of all vectors p such that 

    .
     
    

/:

  
  
  
  

;  .
     
     

/  .
 
 
/ 

that is, the vector must satisfy         and         . Thus any null-space 

vector must 

have the form 

   :

  
  
  
   

; 

for some scalars    and   . A possible basis matrix for the null space of   is 
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   :

  
  
 
 

 
  

; 

and the null space can be expressed as 

 ( )  *                         +   

The matrix 

 ̅   :

   
   
 
 

 
  

  
 

; 

is also a null-space matrix for  , but it is not a basis matrix since its third 

column is a linear combination of the first two columns. The null space of A 

can be expressed in terms of  ̅ 

as 

 ( )  *        ̅ ̅              ̅      +  

 

4.0.3 Generating Null-Space Matrices: 

     We present here four commonly used methods for deriving a null-space 

matrix for  . Thediscussion assumes that   is an     matrix of full row rank 

(and hence      ). Two of the approaches, the variable reduction method and 

the QR factorization, yield an     (     )  basis matrix for  ( )  The other 

two methods yield an       null-space matrix. 

4.0.3.1 Variable Reduction Method: 

    This method is the approach used by the simplex algorithm for linear 

programming. It is also used in nonlinear optimization. We start with an 

example. 

 



119 
 

Consider the linear system of equations: 

                 

                

    This system has the form       . We wish to generate all solutions to this 

system. 

      We can solve for any two variables whose associated columns in   are 

linearly independent in terms of the third variable. For example, we can solve 

for    and    in terms of 

   as follows: 

        

          

The set of all solutions to the system can be written as 

    (
 
 
 
+    

where    is chosen arbitrarily. Thus     (     )  is a basis for the null space 

of  . 

      Since the values of    and    depend on   , they are called dependent 

variables. 

    They are also sometimes called basic variables. The variable    which can 

take on any value is called an independent variable, or a nonbasic variable. 

To generalize this, consider the       system       . Select any set of   

variables whose corresponding columns are linearly independent—these will be 

the basic variables. 

Denote by   the       matrix defined by these columns. The remaining 

variables will be the nonbasic variables; we denote the     (     ) matrix 
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of their respective columns by  . The general solution to the system        

is obtained by expressing the basic variables in terms of the nonbasic variables, 

where the nonbasic variables can take on any arbitrary value. 

     For ease of notation we assume here that the first   variables are the basic 

variables. 

Thus 

     (      ) .
  
  
/                 . 

Premultiplying the last equation by    we get 

       
      . 

Thus the set of solutions to the system        is 

    .
  
  
/  .  

   
 

/   

and the     (     ) matrix 

    .  
   
 

/ 

is a basis for the null space of  . 

Consider now the system       . One feasible solution is 

 ̅   .  
   
 

/ 

If   is any point that satisfies       , then   can be written in the form 

     ̅         ̅          .
     
 

/   .  
   
 

/     

        If the basis matrix   is chosen differently, then the representation of the 

feasible points changes, but the set of feasible points does not. 

      In this derivation we assumed that the first   variables were the basic 

variables. If this is not true, the rows in   must be reordered to correspond to 
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the ordering of the basic and nonbasic variables. This technique is illustrated in 

the following example. 

Example 4.5 (Variable Reduction). Consider the system of constraints        

with 

   .
     
    

/   and    .
 
 
/. 

Let   consist of the first two columns of  , and let   consist of the last two 

columns: 

   .
   
  

/      and    .
  
  

/. 

Then 

 ̅    .  
   
 

/   :

  
 
 
 

; 

and 

    .  
   
 

/  :

     
    
 
 

 
 

;   

It is easy to verify that   ̅      and        .  Every point satisfying      

   is of the form 

     :

     
    
 
 

 
 

;.
  
  
/  (

         
       

  
  

,  

If instead   is chosen as columns 4 and 3 of   (in that order), and   as 

columns 2 

and 1, then 
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   .
  
  

/          .
   
  

/   

Care must be taken in defining  ̅ and   to ensure that their components are 

positioned correctly. In this case 

      .
 
 
/ and  ̅   :

 
 
 
 

;  

Notice that the components of      are at positions 4 and 3 in  ̅, 

corresponding to the columns of   that were used to define  . Similarly 

       .
   
   

/  and    :

  
  
  
  

  
 

; 

The rows of       are placed in rows 4 and 3 of    and the rows of   are 

placed in rows 

2 and 1. As before,   ̅      and       . Every point satisfying        is of 

the form 

     :

  
  
  
  

  
 

;.
  
  
/  (

  
  

        
       

, 

       In practice the matrix   itself is rarely formed explicitly, since the inverse 

of   should not be computed. This is not a limitation;   is only needed to 

provide matrix-vector products of the form       , or the form    . These 

computations do not require   explicitly. 

       For example, the vector        may be computed as follows. First we 

compute         
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         Next we compute           , by solving the system         . (This 

should be done via a numerically stable method such as the LU factorization.) 

The vector        is now given 

by     (     )   

       The variable reduction approach for representing the null space is the 

method used in the simplex algorithm for linear programming. This approach 

has been enhanced so that ever larger problems can be solved. These 

enhancements exploit the sparsity that is oftenpresent in large problems, in 

order to reduce computational effort and increase accuracy. 

 

 

  

 

 

 

 

Figure 4.4. Orthogonal projection. 

4.0.3.2 Orthogonal Projection Matrix: 

      Let   be an   dimensional vector, and let   be an       matrix of full 

row rank. Then   can be expressed as a sum of two components, one in  ( ) 

and the other in  (  )  

           

       where         and         for some   dimensional vector  . 

Multiplying this equation on the left by   gives          , from which we 
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obtain     (   )      Substituting for   gives the null-space component of 

   

          (   )       (      (   )   )   

The       matrix 

          (   )    

is called an orthogonal projection matrix into  ( )  The null-space component 

of the vector   can be found by premultiplying   by    the resulting vector    

is also termed the orthogonal projection of   onto  ( ) (see Figure 4.4). 

       The orthogonal projection matrix is the unique matrix with the following 

properties: 

• It is a null-space matrix for    

•       , which means repeated application of the orthogonal projection has 

no further effect; 

•        (              )  

The name ―orthogonal projection‖ may be misleading—unless   is the identity 

matrix it is not orthogonal. 

     There are a number of ways to compute the projection matrix. Selection of 

the method depends in general on the application, the size of        , as well 

as the sparsity of  . We point out that by ―computing the matrix‖ we mean 

representing the matrix so that a matrixvector product of the form    can be 

formed for any vector  . The projection matrix itself is rarely formed explicitly. 

    To demonstrate this point, suppose that   consists of a single row:       , 

where   is an         . Then 
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Forming   explicitly would require approximately      multiplications and 

     storage locations. Forming the product    for some vector   would 

require    additional multiplications. These costs can be reduced dramatically 

if only the vector   and the scalar     are stored. ―Forming‖   this way only 

requires   multiplications in the calculation of (   ). The matrix-vector 

product is computed as           (   ) (   )  This requires only    

multiplications. 

   In the example above the matrix     is the scalar    , which is easy to 

invert. In the more general case where   has several rows, the task of 

―inverting‖     becomes expensive, and care must be taken to perform this in 

a numerically stable manner. Often, this is done by the Cholesky factorization. 

However, if   is dense it is not advisable to form the matrix     explicitly, 

since it can be shown that its condition number is the square of that of  . A 

more stable approach is to use a QR factorization of     

     For the case when   is large and sparse, the QR factorization may be too 

expensive, since it tends to produce dense factors. Special techniques that 

attempt to exploit the sparsity structure of   have been developed for this 

situation. 

4.0.3.3 Other Projections: 

    As before, let   be an       matrix of full row rank. Let   be a positive-

definite        matrix, and consider the       matrix 

           
 (    )     

It is easy to show that    is a null-space matrix for    Also,            An 

      matrix with these two properties is called a projection matrix. An 

orthogonal projection is therefore a symmetric projection matrix. 
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   Many of the new interior point algorithms for optimization use projections of 

this form. In the case of linear programming, the matrix   is generally a 

diagonal matrix with positive diagonal terms. This matrix   changes from 

iteration to iteration, while   remains unchanged. Special techniques for 

computing and updating these projections have been developed. 

4.0.3.4 The QR Factorization: 

    Again let   be an     matrix with full row rank. We perform an 

orthogonal factorization of    : 

         

Let     (     )  where    consists of the first   columns of    and    

consists of the last       columns. Also denote the top       triangular 

submatrix of   by   . The rest of   is an (     )     zero matrix. Since   

is an orthogonal matrix, it follows that 

       , or 

        
  and        . 

Thus 

       

is a basis for the null space of  . This basis is also known as an orthogonal 

basis, since 

        . 

Example 4.6 (Generating a Basis Matrix Using the QR Factorization). 

Consider the matrix 

   .
     
    

/. 

An orthogonal factorization of    yields 
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is a basis for the null space of  . 

    The QR factorization method has the important advantage that the basis   

can be formed in a numerically stable manner. Moreover, computations 

performed with respect to the resulting basis   are numerically stable. 

However, this numerical stability comes at a  price, since computing the QR 

factorization is relatively expensive. If   is small relative to    some savings 

may be gained by not forming   explicitly. An additional drawback of the QR 

method is that the basis   can be dense even when   is sparse. As a result it 

may be unsuitable for large sparse problems 

4.0.3   The Chain Rule: 

        The rule for obtaining the derivative of a function of a function is called 

the chain rule. 

     Consider a function  ( )     (         )  and suppose that each    is in 

turn a function 

of the variables            that is         (         ) for              We 

examine the composite function 

 ( )     ( (  ))  

The chain rule states that if   is continuously differentiable in   , and 

          are continuously differentiable in   , then h is continuously 

differentiable in    and 
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  ( )      ( )  ( (  ))  

where 

  ( )    (   ( )          ( ) ) . 

The chain rule can be generalized to the case where g is a k-dimensional vector 

of functions   . In this case   will also be a k-dimensional vector of functions. 

If    denotes the       matrix whose      column is     , and    denotes the 

      matrix whose      column is     , then the above formula remains 

valid. 

Example 4.7 (Chain Rule). Suppose that 

  ( )      
         

  ( )       
       

  , 

where 

       (        )                   

       (        )      
      

and let  ( )     ( ( ))  Then 

  ( )   (
    
  
   

+ 

and 

  ( ( ))   (
   ( )    ( )     

 ( )
   ( )    ( )

* 

 4
 (          )  (  

    )   (          )
 

 (          )  (  
    )

5 

hence 
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  ( )  

 (
    
  
   

+4
 (          )  (  

    )   (          )
 

 (          )  (  
    )

5 

A particular application of the chain rule is if 

    .
 ( )
 
/ 

If  ( )     ( ( ))  then 

  ( )      ( )  ( ( ))    (  ( )       ) (
   ( ( ))

   ( ( ))
*  

    ( )   ( ( )  )     ( ( )  )  

Note that    refers to the gradient of a function with respect to the vector of 

variables   . 

       The chain rule can also be used to obtain second derivatives. We will 

assume here that g is a scalar function. If g and    are twice continuously 

differentiable, then   is twice continuously differentiable in     and 

   ( )       ( )  ( ( ))    ( )   ( ( ))  ( )   

where a product of the form (   )  is interpreted as 

(   )   ∑(     ( ))  

 

   

 

 

4-1  Introduction: 

     In this part we study techniques for solving nonlinear optimization 

problems. We concentrate on problems that can be written in the general form 

                                             minimize       ( ) 

                                             subject to       ( )    ,     
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                                                                   ( )    ,      

      Here   is an index set for the equality constraints and   is an index set for 

the inequality constraints. 

        We assume that the objective function   and the constraint functions    

are twice continuously differentiable. 

         Hear we study the conditions satisfied by solutions to the constrained 

optimization problem. We shall focus only on local solutions, for the same 

reasons as in the unconstrained case. In the case of convex problems, that is, 

when the feasible region is convex and   is a convex function, any local 

solution is also a global solution. 

        In the unconstrained case the optimality conditions were derived by using 

a Taylor series approximation to examine the behavior of the objective function 

   about a local minimizer   . In particular, at points ―near‖    the value of    

does not decrease. 

        A similar approach is used in the constrained case. Taylor series 

approximations are used to analyze the behavior of the objective    and the 

constraints    about a local constrained minimizer     . In this case, at feasible 

points ―near‖    the value of    does not decrease. 

        The optimality conditions will be derived in stages, first for problems with 

linear constraints, and then for problems with nonlinear constraints. The 

intuition in both cases is similar, but is easier to comprehend when the 

constraints are linear. In the nonlinear case the details are more complicated 

and can disguise the basic ideas involved. 

      If all the constraints are linear, feasible movements are completely 

characterized by feasible directions. (See Section 4.1.) At a local minimizer 

there can be no feasible directions of descent for    , hence 

                                      (  )    for all feasible directions p at   . (4.1) 
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The first-order optimality condition is a direct result of this statement. 

         If the problem has nonlinear constraints, it may no longer be possible to 

move to nearby points along feasible directions. Instead, movements will be 

made along feasible curves. Analyzing movement along curves is more 

complicated than along directions, and more complicated situations can arise. 

Even so, the basic idea is that the objective value will not decrease at feasible 

points near   . 

             Some new concepts arise in the constrained case, in particular, the 

Lagrange multipliers and the Lagrangian function. The Lagrange multipliers 

are analogous to the dual variables in linear optimization. The Lagrangian is a 

single function that combines the objective and constraint functions; it plays a 

central role in the theory and algorithms of constrained optimization.  

4.2 Optimality Conditions for Linear Equality Constraints: 

     In this section we discuss the optimality conditions for nonlinear problems 

where all constraints are linear equalities: 

                                   minimize       ( ) 

                                   subject to        , 

where   is an     matrix. We assume that   is twice continuously 

differentiable overthe feasible region. We also assume that the rows of    are 

linearly independent, that is,  has full row rank. This is not an unduly 

restrictive assumption since in theory, if a problemis consistent, we can discard 

any redundant constraints. 

         The main idea is to transform this constrained problem into an equivalent 

unconstrained problem. The theory and methods for unconstrained optimization 

can then beapplied to the new problem. 

     To demonstrate the approach consider the problem 
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                     minimize      ( )    
        

       

                     subject to                     . 

At any feasible point, the variable    can be expressed in terms of    and    

using             . Substituting this into the formula for   ( ), we obtain 

the equivalent unconstrained problem 

                         minimize       
     

             

(The number of variables has been reduced from three to two.) It is easy to 

verify that a strict local minimizer to the unconstrained problem is     

          . The solution to the original problem is    

(             ) with an optimal objective value of  (  )      . 

          Any problem with linear equality constraints       can be recast as an 

equivalent unconstrained problem. Suppose we have a feasible point  ̅, that is, 

A ̅   . Then any otherfeasible point can be expressed as    ̅    , where   

is a feasible direction. Any feasible direction must lie in the null space of   , 

the set of vectors p satisfying      . Denoting this null space by  ( ), the 

feasible region can be described by *     ̅       ( )+  

         Let   be an     null-space matrix for   (with          ). Then the 

feasible region is  given by *         ̅                    +. 

Consequently, our constrained problem in x is equivalent to the unconstrained 

problem 

                                ( )   ( ̅     )     
            

The function φ is the restriction of f onto the feasible region; we shall refer to it 

as the reduced function. 

         If Z is a basis matrix for the null space of  , then   will be a function of 

  –    variables. Not only has the constrained problem been transformed into 
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an unconstrained problem, but also the number of variables has been reduced as 

well. 

Example 4.8 (Reduced Function). Consider again the problem 

                      minimize     ( )    
        

    
       

                      subject to               . 

Select 

                                      Z = (
   
  
  

+  

as a null-space matrix for the constraint matrix     (      ). Using the 

(arbitrary) feasible point   ̅   (     ) , any feasible point can be written as 

                                   ̅        (
 
 
 
+  (

   
  
  

+   

for some     (     )
  . Substituting into   , we obtain the reduced function 

 ( )     
     

           .This is the same reduced function as before, 

except that now the variables are called    and    rather than    and   . 

       The optimality conditions involve the derivatives of the reduced function. 

If       ̅      , then by the chain rule , 

                         ( )      ( ̅     )      ( ) 

and 

                         ( )       ( ̅     )       ( )    

The vector     ( )      ( ) is called the reduced gradient of  at  . If Z is an 

orthogonal projection matrix, it is sometimes called the projected gradient. 

Similarly the matrix    ( )       ( )  is called the reduced Hessian matrix, 

or sometimes the projected Hessian matrix. The reduced gradient and Hessian 
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matrix are the gradient and Hessian of the restriction of   onto the feasible 

region, evaluated at  . 

         If    is a local solution of the constrained problem, then     ̅        

for some   , and    is a local minimizer of  . Hence   (  )    and    (  ) 

is positive semidefinite. 

Using the formulas for the reduced gradient and Hessian matrix, we obtain the 

first- and second-order necessary conditions for a local minimizer. They are 

summarized in the following lemma. 

Lemma 4.1 (Necessary Conditions, Linear Equality Constraints). If    is a 

local minimizer 

of f over *           + and   is a null-space matrix for  , then 

                          •     (  )   ,   and 

                         •     (  )   is positive semidefinite; 

that is, the reduced gradient is zero and the reduced Hessian matrix is positive 

semidefinite. 

         A point at which the reduced gradient is zero is a stationary point. Such a 

point may be a local minimizer of   , or a local maximizer, or neither, in which 

case it is a saddle point. 

        Second derivative information is used to distinguish local minimizers from 

other stationary points. 

 

      The second-order condition is equivalent to the condition 

                               (  )       for all  . 

Observing that        is a null-space vector, this can be rewritten as 

                                (  )         for all      ( )  
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that is, the Hessian matrix at    must be positive semidefinite on the null space 

of  . 

      This condition does not require that the Hessian matrix itself be positive 

semidefinite. It is a less stringent requirement. If the Hessian matrix at    is 

positive semidefinite, however, then of course the second-order condition will 

be satisfied. 

      The second-order sufficiency conditions are also analogous to the 

unconstrained case. 

We will assume that   is a basis matrix for the null space of  , so that the 

columns of   are linearly independent. The corresponding second-order 

sufficiency conditions are given in the lemma below.  

Lemma 4.2 (Sufficient Conditions, Linear Equality Constraints). If    satisfies 

                                   •        , 

                                  •     (  )   , and 

                                  •      (  )  is positive definite, 

where   is a basis matrix for the null space of   , then    is a strict local 

minimizer of    over *           +  

       The following example illustrates the optimality conditions. 

Example 4.9 (Necessary Conditions for Optimality). We examine again the 

problem 

                      minimize      ( )    
        

      

                    subject to                  

Since    ( )   (                )
  then at the feasible point     

 (           )  

the gradient of f is (3,−3, 6)T. Selecting 



136 
 

   (
   
  
  

+ 

as the null-space matrix of     (      ), it is easily verified that 

    (  )    (   )
 . 

Thus, the reduced gradient vanishes at   , and the first-order necessary 

condition for a local 

minimum is satisfied at this point. Checking the reduced Hessian matrix, we 

find that 

     (  )  .
   
    

/(
   
   
    

+(
   
  
  

+  .
   
   

/ 

The reduced Hessian matrix is positive definite at   . Hence the second-order 

sufficiency conditions are satisfied, and    is a strict local minimizer of f . 

Notice that    (  ) itself is not positive definite. 

     Let us choose some other feasible point, say     (     ) . The reduced 

gradient at this point is 

                                               ( )  .
 
 
/  .

 
 
/ ;  

hence this point is not a local minimizer. To move to a better point we should 

use a descent direction. Any vector     (     )
   such that   (    ( ))  

      will be a descent direction for the reduced function at this point. The 

corresponding direction        will be a feasible descent direction for   . 

         Let us take another look at the first-order necessary condition. Let    be a 

local minimum, and let   be any       null-space matrix for   . Breaking 

   (  ) into its null-space and range-space components gives 

   (  )           
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where    is in    and    is in   . Premultiplying by    and recalling that the 

reduced gradient vanishes at   , we find that        . This can occur only if 

     , that is, if the null-space component of the gradient is zero. Therefore, 

if    is a local minimizer, 

                                         (  )     
                                                (4.2) 

for some m-vector   . Thus, at a local minimum the gradient of the objective is 

a linear combination of the gradients of the constraints. The vector    gives the 

coefficients of this linear combination. It is known as the vector of Lagrange 

multipliers. Its     component is the Lagrange multiplier for the     constraint. 

        The optimality conditions are demonstrated in Figure (4.5). This problem 

involves a single linear constraint        . At the minimizer    the gradient 

is parallel to the vector a. Therefore there exists some number    such that 

   (  )         On the other hand, at the point  ̅ the gradient is not parallel to 

the vector a; thus there is no λ that satisfies 

   ( ̅)      , and the point is not optimal. 

 

 

 

 

 

 

 

Figure 4.5. Existence of Lagrange multipliers. 

Example 4.10  (Necessary Conditions for Optimality—Lagrange Multipliers). 

Consider 
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again the problem in Example 4.8. The first-order necessary condition is 

                                  (

     
   

      
+  (

 
  
 
+    

This implies that                         and           . Since the 

solution must be feasible, we substitute these values into the constraint 

  −  +2   = 2 to obtain    = 3 asthe only solution. This indicates that    = 

(           )  is the unique stationary point. 

Since we have seen that the second-order sufficiency conditions are satisfied at 

  , this isthe unique local solution. 

       In Example 4.10 we used condition (4.2) to obtain a local solution. In most 

cases,however, these equations will not have a closed-form solution. This is 

demonstrated in Example 4.11. 

Example 4.11 (Intractability of the Optimality Conditions). Consider the 

problem  

Minimize     ( )     
   
    

   
  

 

 
  
          

subject to                . 

The first-order necessary condition implies that, at a local minimum, 

:

   
   
       

       
   
      

   
   
   

;  (
 
 
 
+  

        for some number  . These three equations together with the constraint 

  +  +     give four equations in the four unknowns   ,   ,   , and  . 

These equations are not easy to solve, however. If we try to solve them 

numerically, there is no guarantee that the solution will be a local minimizer; it 

may be a saddle point or even a local maximizer. 
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       We have shown that if the reduced gradient is zero, then there exists a 

vector of Lagrange multipliers    that satisfies the optimality condition (4.2).             

     The reverse is also true; that is, (4.2) implies that the reduced gradient 

vanishes. Thus, the two versions of the first-order optimality condition are 

equivalent. From a practical point of view there is a difference, however. If the 

reduced gradient at a given point is nonzero, it can be used to find a descent 

direction for the reduced function, and in turn for  . In contrast, the fact that 

Lagrange multipliers do not exist at a point does not assist in finding a better 

estimate of a solution. 

           Then why do we care about Lagrange multipliers? The Lagrange 

multipliers provide important information in sensitivity analysis. Furthermore, 

for problems with inequality constraints, estimates of the multipliers can 

indicate how to improve an estimate of the solution. Consequently, the two 

equivalent optimality conditions are used together in optimization software. A 

common procedure is to find a point    for which the reduced gradient is zero; 

at    condition (4.2) is consistent and the corresponding Lagrange multipliers 

can be computed. 

     Our derivation assumes that the matrix   has full row rank, that is, its rows 

are linearly independent. This assumption is called a regularity assumption. 

The results in this section can be extended to the case where the rows of   are 

linearly dependent, but then the vector of Lagrange multipliers will not 

generally be unique. For problems with nonlinear constraints, some 

assumption, such as a regularity assumption on the gradients of the constraints 

at the local minimum, is needed to state the optimality condition 

4-3The Lagrange Multipliers and the Lagrange Function:  

      The Lagrange multipliers express the gradient at the optimum as a linear 

combination of the rows of the constraint matrix  . These multipliers have a 
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significance which goes beyond this purely mathematical interpretation. In this 

section we shall see that they indicate the sensitivity of the optimal objective 

value to changes in the data. We also present the Lagrangian function and show 

how it can be used to express the optimality conditions in a concise way. 

        In most applications, only approximate data are available. Measurement 

errors, fluctuations in data, and unavailability of information are some of the 

factors that contribute to imprecision in the optimization model. In the absence 

of precise data, there may be no choice but to solve the problem using the best 

available estimates. Once a solution is obtained, the next step is to assess the 

quality of the resulting solution. A key question is, how sensitive is the solution 

to variations in the data? 

         Here we address this question for the particular case where small 

variations are made in the right-hand side of the constraints and investigate 

their effect on the optimal objective value. Our presentation will be informal. 

Amore formal proof is somewhat more complex. 

        We start with the problem 

                                                      minimize           ( ) 

                                                     subject to             

We assume that   is twice continuously differentiable, and that   is an     

matrix of full row rank. We also assume that a local minimizer    has been 

found, with correspondingoptimal objective value   (  )  Suppose now that the 

right-hand side   is perturbed to      where   is a vector of ―small‖ 

perturbations. We shall investigate how the optimal objective value changes as 

a result of these perturbations. If the perturbations are sufficiently small, it is 

reasonable to assume that the new problem has an optimum that is close to   . 

In fact this can be shown to be true, provided that the second-order sufficiency 
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conditions are satisfied at   . For  ̅ close to    with    ̅       , we can use a 

Taylor series approximation to obtain 

  (  ̅)      (  )    (   ̅      )
    (  ) 

                                                                        (  )   (   ̅ –   )
 
     

                                                                        (  )     
    

                                                                        (  )   ∑       
 
    

In particular, this is valid if  ̅ is the minimizer of the perturbed problem. If the 

right-hand side of the     constraint changes by   , then the optimal objective 

value changes by approximately      . Hence     represents the change in the 

optimal objective per unit  change in the     right-hand side. For this reason, 

the Lagrange multipliers are also called  shadow prices or dual variables. 

Example 4.12 (Solution of a Perturbed Problem). Consider again the problem 

minimize        ( )     
        

    
      

subject to                            

In Example 4.10 we determined that     (           )
 , with  (  )  

     and       . 

Consider now the perturbed problem 

                               minimize        ( )     
        

    
      

                                    subject to                              

and denote its minimum value by   ( ). The interpretation of the Lagrange 

multipliers as shadow prices indicates that a first-order estimate of this 

minimum value is 

                                                             ( )             . 

For example           , the approximate optimal objective value is zero. 
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The precise solution to the perturbed problem is                     

           , 

and             , with an objective value of 

                                                  ( )                       

If        , the true value of the optimal objective is       . 

        Let us now take another look at the optimality conditions (5.2). Since any 

solution must be feasible, a local optimum is the solution to the system of 

      equations in the        unknowns   and  : 

   ( )            

      . 

This is another representation of the first-order optimality conditions. 

        These conditions were used by Lagrange, although his work was done in a 

moregeneral setting ( [35 ]) . Following Lagrange’s approach we can construct 

a 

function of   and  : 

 (   )     ( )–∑  (  
     )    ( )   

 (    )

 

   

  

where   
   denotes the     row of  . This function is called the Lagrangian 

function. The gradient of the Lagrangian with respect to   is    (   )   

    ( )     , and the gradient with respect to   is    (   )          . 

Hence, the first-order optimality conditions can simply be stated as 

  (     )       

Thus a local minimizer is a stationary point of the Lagrangian function. 

4.4  Computing the Lagrange Multipliers: 
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         Consider the linear equality-constrained problem 

     minimize       ( ) 

    subject to            . 

Assume that the regularity condition holds, that is, that the rows of   are 

linearly independent. Consider the optimality condition 

          (  )  

        This is a system of   equations in       unknowns, and so it cannot 

normally be expected to have a solution. At most feasible points   , this 

overdetermined system will be inconsistent, but if    is a local solution of the 

optimization problem, then the system will have a solution. How can such a 

solution   be computed? 

          A useful tool is a matrix known as the right inverse. We define an 

      matrix    to be a right inverse for the       matrix   , if       

   . It is easy to see that a matrix   has a right inverse only if it has full row 

rank. In this case, and if      , then the right inverse is unique, and     

    . If      , the right inverse is generally not unique. For  example, the 

matrices 

                                                   

(

 
 
 

 

 
  

 

 
 

 
 

 

 
 

 )

 
 
 

   and  :

 
 
 
 

  
  

;  

are both right inverses for the matrix 

                                                 .
     
    

/ 



144 
 

               To see how right inverses are of use in solving the system       

    (  ), suppose  that a solution to this system exists. If both sides of this 

equation are multiplied by   
   , then we obtain 

                                            
    (  ) 

 (Here   
  refers to (   )

  and not (  )  .) If the system          (  ) is 

consistent, its solution        
    (  ) is unique, even though the right 

inverse may not be unique. To verify this, note that           (  ) implies 

that             (  )  and so the unique solution is 

     (  
 )      (  )  

(If   has full row rank, the matrix     is positive definite, and hence its 

inverse exists.) The linear system           (  ) is consistent if and only if 

   (  ) is a linear combination of the rows of  . Hence a vector λ∗ computed 

via      
    (  ) will be a solution to the system if and only if 

(        
 )   (  )     

          In practice we will almost never find a point    that satisfies the 

optimality conditions  precisely. Rather, we will (if successful) find some point 

   that satisfies the optimality  conditions to within some specified tolerance. 

The point    will be an estimate of the optimal solution. Correspondingly, the 

vector       
    (  )  will be only an estimate of the  vector of Lagrange 

multipliers at the solution. It is sometimes termed a first-order estimate, 

because, for sufficiently small    , if ‖       ‖     ( ),     ‖       ‖   

  ( )  also . 

       In the rest of this section, we discuss methods for computing a right-

inverse matrix. 

To avoid unnecessary work, the computation of a right-inverse matrix for a 

matrix   should be performed in conjunction with the computation of the null-
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space matrix for  . We will show that each of the methods for computing a 

null-space matrix for   .( see Section 4.0.3) provides a right-inverse matrix at 

little or no additional cost. The discussion assumes that   is an       matrix 

of full row rank. 

• The variable reduction method.( see Section 4.0.3.1) In this method the 

variables are partitioned into   basic and       nonbasic variables. The 

matrix   is partitioned into basic and nonbasic columns correspondingly. 

Assuming that the first   columns are basic, we have     (   ) where   is 

an       nonsingular matrix, and the      (     ) matrix 

  .  
   
 

/ 

is a basis matrix for the null space of  . The matrix 

   .
   

 
/ 

is a right-inverse matrix for   that is available with no additional computation. 

• Orthogonal projection matrix . Let the       matrix 

          (   )    

be the orthogonal projection matrix( see Section 4.0.3.2)  into the null space of 

 . A right inverse for  associated with the orthogonal projection is the matrix 

     
 (   )    

This matrix, which we will denote by   , is a special right inverse. It satisfies 

the following four conditions: 

                    (    )         

                       (    )          
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     It can be shown that, for any     matrix  , there is a unique     

matrix     that satisfies these conditions.     is called the Penrose–Moore 

generalized inverse of  . 

         If   has full row rank, then        (   )  , and if     has full column 

rank, then      (   )    . Formulas for    can also be developed when   

does not have  full row or column rank; [41]. 

Given a point    , the vector of Lagrange multiplier estimates (  )    (  ) 

obtained from the Penrose–Moore generalized inverse has the appealing 

property that it solves the problem 

                             ‖      (  )‖     
         

 For this reason it is termed the least-squares Lagrange multiplier estimate at 

   Because the condition number of     is the square of the condition number 

of   , the computation of (   )   is potentially unstable. The QR factorization 

provides a stable approach to computing this matrix that is practical for smaller 

problems  

• A nonorthogonal projection (see Section 4.0.3.3) Let   be a positive-definite 

      matrix. Then the       projection matrix 

           
 (    )    

is a null-space matrix for  . A right inverse for   associated with this 

projection is 

       
 (    )  . 

• The QR factorization . (see Section 5.0.3.4)The QR factorization represents 

   as a product of an orthogonal matrix   and an upper triangular matrix  . 

Denoting the first   columns of   by    and the last       columns by   , 

we have 
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          (      ) .
  
 
/ 

where    is an       triangular matrix. The     (     ) matrix 

       

is an orthogonal basis for the null space of  . The matrix 

         
   

is a right inverse for   available from the QR factorization at little additional 

cost. In fact, this matrix need not be formed explicitly: a computation of the 

form      
   (  ) 

        may be done by first computing       
   (  )   and then solving the 

triangular system         . It is easy to show that      
 (   )  , and 

hence this right inverse is in fact the Penrose–Moore generalized inverse of   . 

       Just as with the ―regular‖ matrix inverse, a right inverse is a useful 

notational tool, but it should rarely be formed explicitly. Instead, computations 

with respect to the right inverse  should use the specific matrix factorizations 

that were employed to obtain the null-space matrix. 

 

 

Example 4.13 (Right Inverses). We will construct several right inverses for 

  .
     
    

/ 

If variable reduction is used, with columns 2 and 3 of   being selected as the 

basic columns, then 

  .
   
  

/          .
  
  

/ 

From these we determine that 
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  :

 
 

 
 

   
  

;    and        :

 
  

 
 

  
  

; 

 (For all the right inverses that we compute in this example, it is straightforward 

to verify that        and         .) 

      If the orthogonal projection matrix is used, then 

  

          (   )    

(

 
 
 
 
 

 

 

 

 
  

 

 

 

 
  

 
 
 
 

 

 
  

 

  

 
 

 )

 
 
 
 
 

 

 

 

 

 

 

The corresponding right inverse is 

    
 (   )   

(

 
 
 

 

 
  

 

 
 

 
 

 

 
 

 )

 
 
 

. 

      A nonorthogonal projection can also be used. If 
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  :

  
  

 
 
 
 

    
    

; 

then 

           
 (    )    

(

 
 
 
 
 

 

 

 

 
  

 

 

 

 
  

 
 
 
 

 

 
  

 

  

 
 

 )

 
 
 
 
 

 

The corresponding right inverse is 

     
 (    )   

(

 
 
 
 
 

 

 
  

 

 
 

 
 

 

 
 

 )

 
 
 
 
 

 

 

 

 

If a QR factorization of      is used, then 

   

(

 
 
 
 

  

√ 
 

  

 

  

 
 

√ 
 

  

 

  

 

 
 

  

√ 
  

√ 

 

 
  

 

  

 
 

 )

 
 
 
 

    and     (

 √ 
 

 

 √ 
  
  

, 

  consists of the last two columns of   : 
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(

 
 
 
 
 

  

 
  

 

  

 
  

 
 

 

  

 
  

 

 

 )

 
 
 
 
 

 

The right inverse is obtained from the formula 

       
   

where    consists of the first two columns of  , 

    

(

 
 
 
 
 
 

  

√ 
 

√ 

 
 

 
  

√ 

 
  

√ )

 
 
 
 
 
 

 

and    consists of the first two rows of  , 

   (
 √  

  √ 
* 

 

Hence 

   

(

 
 
 
 
 

 

 
  

 

 
 

 
 

 

 
 

 )
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If 

   ( )    (            )  , 

then for all of the above right inverses, 

    
   ( )  .

 
  
/ 

No matter which right inverse is used, the same values of the Lagrange 

multipliers are obtained. 

Program 17 Lagrange _ Multiplier _ Method: 

 clear 

A=[1 -1 0 0;0 0 1 1] 

Deltaf=[7 -7 -2 -2]' 

%A=input('Please, Enter A matrix  ') 

%Deltaf=input('Please, Enter ?f (x) matrix ') 

 [Q,R]=qr(A') 

[m,n]=size(R) 

Q1=Q(1:m,1:n) 

R1=R(1:n,1:n) 

y1=Q1'*Deltaf 

c=length(y1) 

lambda(c)=y1(c)/R1(c,c) 

for i=c-1:-1:1 

    s=0; 

    for k=i+1:c 

        s=s+R1(i,k)*lambda(k); 
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    end 

    lambda(i)=(y1(i)-s)/R1(i,i); 

end 

lambda=lambda' 

Program 18 Lagrange _ Multiplier _ Method1:  

% clear  

% clc 

   ] A=[4 1 1 1;1 4 1 1;1 1 4 1;1 1 1 4 

  ] Deltaf=[1 1 1 1 

A=input('Please, Enter A matrix ')   %  

Deltaf=input('Please, Enter ?f (x) matrix ')  %  

Deltaf=Deltaf' 

 [Q,R]=qr(A ') 

(m,n]=size(R [ 

Q1=Q(1:m,1:n )  

R1=R(1:n,1:n )  

y1=Q1'*Deltaf 

c=length(y1 )  

lambda(c)=y1(c)/R1(c,c)  

for i=c-1:-1:1 

   ; s=0 

    for k=i+1:c 

        s=s+R1(i,k)*lambda(k); 
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    end 

   ); lambda(i)=(y1(i)-s)/R1(i,i 

end 

lambda=lambda' 

Program19 traditional _ methods :                             

clc 

] A=[4 1 1 1;1 4 1 1;1 1 4 1;1 1 1 4 

   Deltaf=[1 1 1 1] 

lambda=inv(A)* Deltaf' 

lambda=lambda' 

5-5  Comparison and conclusion: 

      We use the QR-methods to solve the previous problem , and as we know it 

was an under determinant problem which lead us to the following observations: 

 In under determinant problems in optimization  (the problem in linear 

mathematics which the number of linear equation is less than the number 

of unknown is called the under determinate problem and has infinite 

solutions) the QR-methods can solve easily as the example shows. The 

traditional methods fails to   get a solutions. 

 In well determinant problems in optimization  (the problem in linear 

mathematics which the number of linear equation is equal the number of 

unknown is called the well determinate problem and has just unique 

solution) the QR-methods can solve easily as the following example 

shows.  

o Run the m-files Lagrange_Multiplier_Method1.m and 

traditional_methods.m 
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o Use the MATLAB Command TIC-TOC to get the time of 

execution for each m-files 

o We get the following result 

 QR-method = Elapsed time is 0.001140 seconds. 

 The traditional Method = Elapsed time is 0.000470 seconds. 

Although , the time of traditional methods is a little bit faster than the QR 

Method we have to keep in mind it depend on the Matrix A itself. We 

can conduct another experiment and  get result that shows the QR-

method is faster. Another advantage of QR-method is that what if A is 

Singular or semi singular that will lead to fail of the traditional methods . 

 In over determinant problems in optimization  (the problem in linear 

mathematics which the number of linear equation is greater than the 

number of unknown is called the over determinate problem and has no 

solutions) the QR-methods can solve it. The over determinant problem 

are un likely to happen in optimization ,but it happen when the model is 

built by normal people (not professionals). So, we can say that the QR-

method can help the normal user to try to improve their work by using 

optimizations techniques and not afraid of complicates of the solution of 

the model. 

 The computations methods is much more faster than traditional methods 

and make the computer is much useful tool by applying the numerical 

techniques  . 
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