

Nile Valley University

College of Post Graduate

THE QR –FACTORIZATION FOR

 COMPUTING THE LAGRANGIAN MULTIPLIERS

AThesis Submitted in partial Fulfillment For The

Degree of M.SC in Mathematics

Prepared by : Almoiz Alsheikh Hamid Ibrahim

Supervised : Dr. Ahmed Abelfadel Mohamed

 August 2011

I

Dedication

To My Family , Wife and Children

II

Acknowledgement

Iwould like to express my deep of gratitude and

thanks to my teacher and supervisor Dr. Ahmed

Abelfadel for useful comments suggestions and

constructive my gratitude is also extended

particularly to Nile Valley University for the great

help and assistance

III

Abstract

 In this research we discussed the Direct Methods for the

Solution of Linear systems and also we discussed the definition

of QR algorithm and the methods for computing the QR

factorization by MATLAB , and then we use the QR factor to

solve optimality condition for linear equality constraints to find

the lagrangian multipliers, finally we use the lagrangian

multipliers to solve nonlinear optimization problems where all

constraints are linear equalities and then we comparing between

the QR- method and traditional methods by MATLAB , and we

find the QR Method is better to solve all nonlinear optimization

problem where all constraints are linear equalities.

IV

 ملخص البحث

في هـذا البحث ناقشنا الطرق المباشرة لحل النظام الخطي و

وطرق استعمال حاسبات QR factorأيضاً ناقشنا تعريف خوارزمية

QR factor من قبلMatlab وبعد ذلك استعملناQR factor لحل

مضاريب لاجرانج و أخيراً لإيجادالأمثلية لقيود المساواة الخطية مسائل

استعملنا مضاريب لاجرانج لحل مسائل تحقيق الأمثلية اللاخطية بشروط

و طرق تقليدية من QR أمثلية بقيود خطية ، و بعد ذلك قارنا بين طريقة

أفضل لحل كل مسائل تحقيق الأمثلية QRريقة وجدنا ط Matlabقبل

 اللاخطية حيث أن كل قيود المساواة خطية .

V

Contents

subject Page
Dedication I

Acknowledgement II
Abstract III

Abstract (Arabic) IV
contents V

Introduction VII
Back Ground History VIII

Research problem IX

Chapter One

MATHEMATICL BACK GROUND

1-1 Matrices 1
1-2 Operations with Matrices 3
1-2-1 Inverse of Matrix 4
1-2-2 Matrices and Linear Mapping 6
1-2-3 Operations with Block- Partitioned Matrices 6
1-3 Trace and Determinant of a Matrix 7
1-4 Eigenvalues and Eigenvector 9
1-5 Similarity Transformation 11
1-6 The singular value decomposition 14
1-7 Matrix Norms 15
1.7.1 Relation between Norms and the Spectral Radius of a matrix 20
1.7.2 Sequences and Series of Matrices 21

Chapter Two

Direct Method for the Solution of Linear system

2-0 Introduction 23
2-1 Stability Analysis of Linear Systems 24
2-1-1 The Condition Number of a Matrix 25
2-1-2 Forward a priori Analysis 26
2-1-3 Backward a priori Analysis 30
2-2 The Gaussian Elimination Methods(GEM) and LU factorization 31
2.2.1 GEM as Factorization Method 35
2-3 The LDM

T
factorization 40

2-4 The Cholsky factorization 41
2-5 Rectangular Matrices : QR factorization 44
2-6 Pivoting 49
2-7 Computing the Inverse of a Matrix 54
2-8 undetermined systems 55

Chapter Three

Approximation of Eigenvalues and Eigenvectors

3-1 Introduction 59
3-2 Geometrical Location of the Eigenvalues 59
3-3 Power Method 62

VI

3-3-1 Approximation of the Eigenvalue of Largest Module 62
3.3.2 Inverse Iteration 66
3.3.3 Implementation Issues 68
3-4 The QR Iteration 71
3-5 The Basic QR Iteration 73
3-6 The QR Method for matrices in Hessenberg Form 75
3-6-1 Householder and Given Transformation Matrices 76
 3-6-2 Reducing a Matrix in Hessenberg Form 80
3-6-3 QR factorization of a Matrix in Hessenberg 83
 3-6-4TheBasic QR Iteration Starting from Upper Hessenberg Form 84
3-6-5 Implementation of transformation Matrices 87
3-7 The QR Iteration with Shifting Techniques 91
 3-7-1 The QR Iteration Method with single shift 91
3-7-2 The QR Iteration Method with Double shift 95
3-8 Computing The Eigenvector from the Schur Form of a Matrix 98
3-8-1 The Hessenberg Inverse Iteration 98
3-8-2 Computing the Eigenvectors from the Schur Form of a matrix 99
 3-8-3 Approximate Computation of the SVD of a matrix 100
3-9 The Generalized Eigenvalue Problem 102
3-9-1 Computing the Generalized Real Schur Form 103
3-9-2 Generalized Real Schur Form of Symmetric –Definite Pencils 105

Chapter Four

Applications

4-0 Basic Concepts 107
4-0-1 linear constraints 107
4-0-2 Null and Range Spaces 115
4-0-3 Generating Null-Space Matrices 118
4.0.3.1 Variable Reduction Method 118
4.0.3.2 Orthogonal Projection Matrix 123
4.0.3.3 Other Projections 125
4.0.3.4 The QR Factorization 126
4-0-4 The Chain Rule 127
4-1 Introduction 130
4.2 Optimality Conditions for Linear Equality Constraints 131
4-3 The Lagrange Multipliers and the Lagrange Function 140
4.4 Computing the Lagrange Multipliers 143
4-5 Comparison and conclusion 153
References 156

VII

Introduction

 Since the early 1960s the standard algorithms for calculating the

eigenvalues and (optionally) eigenvectors of "small" matrices have been

the QR algorithm [1] and its variants. This is still the case in the year

2000 and is likely to remain so for many years to come. For us a small

matrix is one that can be stored in the conventional way in a computer's

main memory and whose complete eigenstructure can be calculated in a

matter of minutes without exploiting whatever sparsity the matrix may

have had. If a matrix is small, we may operate on its entries. In particular,

we are willing to perform similarity transformations, which will normally

obliterate any sparseness the matrix had to begin with.

 If a matrix is not small, we call it large. The boundary between

small and large matrices is admittedly vague, but there is no question that

it has been moving steadily upward since the dawn of the computer era.

In the year 2000 the boundary is around n = 1000, or perhaps a bit higher.

 Eigenvalue problems come in numerous guises. Whatever the form

of the problem, the QR algorithm is likely to be useful. For example, for

generalized eigenvalue problems , the method of choice is a

variant of the QR algorithm called QZ. Another variant of QR is used to

calculate singular value decompositions (SVD) of matrices. The QR

algorithm is also important for solving large eigenvalue problems. Most

algorithms for computing eigenvalues of large matrices repeatedly

generate small auxiliary matrices whose eigensystems need to be

computed as a subtask. The most popular algorithms for this subtask are

the QR algorithm and its variants.

VIII

Back Ground History

 In this research we discuss the QR algorithm. The subject was

born in the early 1950s with Rutishauser's quotient-difference algorithm

[2] which he formulated as a method for calculating the poles of a

meromorphic function. He then reformulated it in terms of matrix

operations and generalized it to the LR algorithm [3] . The QR algorithm

was published by Kublanovskaya [4] and Francis [1] in 1961. The Francis

paper is particularly noteworthy for the refinements it includes. The

double-shift implicit QR algorithm laid out there is only a few details

removed from codes that are in widespread use today.

And what codes are in use today? By far the most popular tool for

matrix computations is Matlab. If we use Matlab to compute your

eigenvalues, we will use one of its four QR-based computational kernels.

Each of these is just a few refinements removed from codes in the

public-domain software packages EISPACK [5] and LINPACK [6]. In

particular, the algorithm for computing eigenvalues of real, non

symmetric matrices is just the Francis double-shift QR algorithm with

some modifications in the shift strategy.

A newer public-domain collection is LAPACK [7], which was

designed to perform well on vector computers, high-performance work

stations, and shared-memory parallel computers. It also has a double-shift

implicit QR code, which is used on matrices (or portions of matrices)

under 50 × 50. For larger matrices a multishift QR code is used.

For many years the QR algorithm resisted efforts to parallelize it.

The prospects for a massively parallel QR algorithm for distributed

memory parallel computers were considered dim.

The pessimism was partly dispelled by van de Geijn and Hudson

[8], who demonstrated the first successful highly parallel QR code.

IX

 [

]

 ∑

However, their code relies on an unorthodox distribution of the

matrix over the processors, which makes it hard to use in conjunction

with other codes. Subsequently, Henry [9] wrote a successful parallel QR

code that uses a standard data distribution. This is an implicit double-shift

code that performs the iterations in pipeline fashion. This code is

available in ScaLAPACK [10], a collection of matrix computation

programs for distributed-memory parallel computers .

On the theoretical side, the first proof of convergence of the LR

algorithm (without pivoting or shifts of origin) was provided by

Rutishauser [2]. His proof was heavily laden with determinants, in the

style of the time. Wilkinson [11] proved convergence of the unshifted QR

algorithm using matrices, not determinants. Wilkinson [12] also proved

global convergence of a shifted QR algorithm on symmetric, tridiagonal

matrices.

Research problem :

 A class of common optimization problems subject to equality

constraints may be nicely handled by the Lagrange multiplier method.

Consider an optimization problem with M equality constraints.

According to the Lagrange multiplier method, this problem can be

converted to the following unconstrained optimization problem:

 The solution of this problem, if it exists, can be obtained by setting

the derivatives of this new objective function l(x, λ) with respect to x and

λ to zero:

 ∑

X

Note that the solutions for this system of equations are the extreme

of the objective function. We may know if they are minima/maxima,

from the positive/negative- definiteness of the second derivative (Hessian

matrix) of l(x, λ) with respect to x.

Imposing the QR method as the solving technique is the research

problem.

1

Chapter One

MATHEMATICL BACK GROUND

1-1 Matrices:

 Let and be two positive integers. We call a matrix having

rows and columns, or a matrix , or a matrix () with

element , a set of scalars , with and

 , represented in the following rectangular array

 [

] (1.1)

When or we shall respectively write or

 , to explicitly outline the numerical fields which the elements of

belong to. Capital letters will be used to denote the matrices, while the lower

case letters corresponding to those upper case letters will denote the matrix

entries.

We shall abbreviate (1.1) as () which and

 . The index is called row index, while is column index. The set

() is called the row of , likewise, () is

the column of .

 If the matrix is called squared or having order and the set of the

entries () is called its main diagonal.

 A matrix have one row or one column is called row vector or column

vector respectively. Unless otherwise specified, we shall always assume that a

vector is a column vector. In the case , the matrix will simply

denote a scalar of .

2

Sometimes it turns out to be useful to distinguish within a matrix the set

made up by specified rows and column. This prompts us to introduce the

following definition.

Definition 1.1 Let be a matrix Let and

 two sets of contiguous indexes. The matrix

 () of entries with and is called a

submatrix of . If and for is called a principal

submatrix of .

Definition 1.2 A matrix () is called block partitioned or said to be

partitioned into submatrices if

 [

]

where are submatrices of .

Among the possible partitions of , we recall in particular the partition

by columns

 ()

 being the column vector of . In a similar way the partition by rows

of can be defined. To fix the notations , if is a matrix we shall

denote by

 () ()

The submatrix of of size () () that lies

between the rows and and the columns and . Likewise, if is a vector

of size we shall denote by () the vector of size made up by

the notations are convenient in view of programming the algorithms that

will be presented throughout the volume in the MATLAB language.

3

1-2 Operations with Matrices:

 Let () and () be two matrices over . We say

that is equal to if for Moreover,

we define the following operations:

- matrix sum: the matrix sum is matrix () The neutral

element in matrix sum is the null matrix, still denote by 0 and made up

only null entries;

- matrix multiplication by a scalar : the multiplication of by , is a

matrix ()

- matrix product: the product of two matrices and of size () and

() respectively, is a matrix () whose entries are

∑

 .

 The matrix product is associative and distributive with respect to the

matrix sum, but is not in general commutative. The square matrices for which

the property A holds, will be called commutative .

 In the case of square matrices , the neutral element in the matrix product

is a square matrix of order called the unit matrix of order or, more

frequently, the identity matrix given by () The identity matrix is, by

definition, the only matrix such that for all square

matrices . In the following we shall omit the subscript unless it is strictly

necessary. The identity matrix is special instance of diagonal matrix of order

, that is a square matrix of the type (). We will use in the following

the notation ().

 Finally, if is square matrix of order and is an integer, we define

as the product of with itself iterated times. We let

4

 Let us now address the so-called elementary row operations that can be

performed on a matrix. They consist of :

- multiplying the row of a matrix by a scalar this operation is

equivalent to pre-multiplying by the matrix

 () where occupies the position ;

- exchanging the and rows of a matrix , this can be denote

by premultiplying by the matrix () of elements

()

 {

 (1.2)

 where denotes the identity matrix of order

(henceforth, matrices with size equal to zero will correspond to the empty set).

Matrices like (1.2) are called elementary permutation matrices. The product of

elementary permutation matrices is called a permutation matrix, and it performs

the row exchanges associated with each elementary permutation matrix. In

practice, a permutation matrix is a reordering by rows of the identity matrix;

- adding times the row of a matrix to its row. This

operation can also be performed by pre-multiplying by the matrix

()

, where
()

 is a matrix having null entries except the one in

position whose value is

 1-2-1 Inverse of Matrix:

 Definition 1.3 A square matrix of order is called invertible(or regular or

nonsingular)if there exists a square matrix of order such that

 is called the inverse matrix of and is denoted by A matrix which is not

invertible is called singular.

5

 If is invertible its inverse is also invertible, with ()

Moreover, if and are two invertible matrices of order , their product is

also invertible, with () The following property holds

Property 1.1 A square matrix is invertible iff its column vector are linearly

independent.

Definition 1.4 We call the transpose of a matrix the matrix

, denoted by , that is obtained by exchanging the rows of with the column

of .

 Clearly, () () () and

() If is invertible, then also () ()

Definition 1.5 Let ; the matrix is called the

conjugate transpose (or adjoint) of IF ̅ , where ̅ is the complex

conjugate of .

 In analogy with the case of the real matrices, it turns out that

 () () and () ̅

Definition 1.6 A matrix is called symmetric if , while it is

antisymmetric if . Finally, it is called orthogonal if

, that is .

Permutation matrices are orthogonal and the same is true for their products.

Definition 1.7 A matrix is called hermition or self- adjoint if

 ̅ that is, if , while it is called unitary if , is

called normal .

As a consequence, a unitary matrix is one such that .

 Of course, a unitary matrix is also normal, but it is not in general hermitian.

For instance, the matrix of the Example 1.1 is unitary, although not symmetric

6

(if). We finally notic that the diagonal entries of an hermitian matrix

must necessarily be real.

 1-2-2 Matrices and Linear Mapping:

Definition 1.8 A linear map from into is a function such

that () () () and

The following result links matrices and linear maps.

Property 1.2Let be a linear map. Then, there exists a unique

matrix such that

 () (1.3)

Conversely, if then the function defined in (1.3) is a linear map

from into .

Example 1.1 An important example of a linear map is the counterclockwise

rotation by an angle in the plane () The matrix associated with such a

map is given by

 () 0

1 () ()

and it is called a rotation matrix.

1-2-3 Operations with Block- Partitioned Matrices:

 All the operations that have been previously introduced can be extended

to the case of a block- partitioned matrix , provided that the size of each

single block is such that any single matrix operation is well- defined.

Indeed, the following result can be shown([15]).

Property 1.3 Let and be the block matrices

 [

] [

]

7

where and are matrices () and () Then we have

1. [

], <

=,

2. if and , then

 [

] ,

3. if and then, letting ∑

 ,

 [

].

1-3 Trace and Determinant of a Matrix:

 Let us consider a square matrix of order . The trace of a matrix is the

sum of the diagonal entries of , that is () ∑

We call the determinant of the scalar defined through the following formula

 () ∑ ()

where * ()
 + is the set of the vectors that are

obtained by permuting the index vector () and sign() equal

to1(respectively,-1)if an even (respectively, odd) number of exchanges is

needed to obtain from .

The following properties hold

 () () () () () () () ⁄

 () ()̅̅ ̅̅ ̅̅ ̅̅ ̅ , () ()

8

 Moreover, if two rows or columns of a matrix coincide, the determinant

vanishes, while exchanging two rows (or columns) produces a change of sign

in the determinant. Of course, the determinant of a diagonal matrix is the

product of the diagonal entries.

 Denoting by the matrix of order obtained from by eliminating

the row and the column, we call the complementary minor

associated with the entry the determinant of the matrix . We call the

 principal (dominating) minor of , , the determinant of the principal

submatrix of order , () If we denote by

 ()
 () the cofactor of the entry , the actual computation of

the determinant of can be performed using the following recursive relation

 () {

∑

 (1.4)

which is known as the Laplace rule. If is a square invertible matrix of order

, then

 ()

where is matrix having entries

 As a consequence, a square matrix is invertible if its determinant is non

vanishing. In the case of nonsingular diagonal matrices the inverse is still a

diagonal matrix having entries given by the reciprocals of the diagonal entries

of the matrix.

 Every orthogonal matrix is invertible, its inverse is given by ,

moreover ()

9

1-4 Eigenvalues and Eigenvectors:

 Let be a square matrix of order n with real complex entries , the

number is called an eigenvalue of if there exists a nonull vector

 such that .The vector is the eigenvector associated with

the eigenvalue and the set of the eigenvalue of is called the spectrum of ,

denoted by () . We say that and are respectively a right eigenvector and a

left eigenvector of , associated with the eigenvalue , if

 The eigenvalue corresponding to the eigenvector can be determined by

computing the Rayleigh quotient () . The number is the

solution of the characteristic equation

 () ()

 Where () is the characteristic polynomial. since this latter is a

polynomial of degree with respect to ּג,

There certainly exist eigenvalue of not necessarily distinct. The following

properties can be proved

 () ∏

 , () ∑

 (1.5)

And since () () () one concludes that

 () () and,in an analogous way, that () (̅).

From the first relation in (1.5) it can be concluded that a matrix is singular if it

has at least one null eigenvalue, since () () ∏

 .

 Secondly, if has real entries, () turns out to be a real –

coefficient polynomial so that complex eigenvalues of shall necessarily occur

in complex conjugate pairs.

11

 Finally, due to the Cayley-Hamilton Theorem if () is the

characteristic polynomial of , then () , where () denotes a

matrix polynomial.[16].

 The maximum module of the eigenvalues of is called the spectral radius

of and is denoted by

 () | | ()
 (1.6)

Characterizing the eigenvalue of a matrix as the roots of a polynomial implies

in particular that ּג is an eigenvalue of if ̅ is an eigenvalue of . An

immediate consequence is that () (). M0reover,

 () and () , ()-

 Finally, assume that is block triangular matrix

 [

]

As () () ()) (), the spectrum of is given by the

union of the spectra of each single diagonal block. As a consequence if is

triangular, the eigenvalue of are its diagonal entries.

For each eigenvalue of a matrix A the set of eigenvectors associated with

, together with the null vector, identifies a subspace of which is called the

eigenspace associated with and corresponds by definition to ker(A-)

.The dimension of the eigenspace is

 , ()] = ()

 and is called geometric multiplicity of the eigenvalue . It can never be

greater than the algebraic multiplicity of , wich is the multiplicity of as a

root of the characteristic polynomial. Eigenvalue having geometric multiplicity

11

strictly less than algebraic one are called defective . matrix having at least

one defective eigenvalue is called defective.

 The eigenspace associated with an eigenvalue of a matrix is invariant

with respect to A in the sense of the following definition.

Definition 1.9 subspace in is called invariant with respect to a square

matrix if wher is the transformed of through

1-5 Similarity Transformations:

Definition 1.10 Let be a square nonsingular matrix having the same order as

the matrix

 We say that the matrices and are similar and the trans formation

from to is called a similarity transformation. Moreover, we say that

the two matrices are unitarily similar if is unitary.

Tow similar matrices share the same spectrum and the same characteristic

polynomial .Indeed, it is easy to check that if () is an eigenvalue –

eigenvector pair of , () is the same for the matrix since

 ()

 We notice in particular that the product matrices and , with

and , are not similar but satisfy the following property([17])

 () * +⁄ () * +⁄

 That is and share the same spectrum apart from null eigenvalues so

that () ().

 The use of similarity transformation aims at reducing the complexity of the

problem of evaluating the eigenvalues of a matrix. Indeed, if a given matrix

could be transformed into a similar matrix in diagonal or triangular form, the

computation of the eigenvalues would be immediate. The main result in this

direction is the following theorem([18]).

12

Property 1.4 (schur decomposition) Given , there exists unitary

such that

 [

]

Where are the eigenvalues of .

 It thus turns out that every matrix is unitary similar to an upper triangular

matrix . The matrices and are not necessarily unique .

The Schur decomposition theorem gives rise to several important result, among

them, we recall:

1- Every hermitian matrix is unitarily similar to a diagonal real matrix m

that is, when is hermitian every Schur decomposition of is diagonal.

In such an event, since

 ()

it turns out that that is for so that the

column vectors of are the eigenvectors of . Moreover , since the

eigenvectors are orthogonal two by two, it turns out that anhermitian

matrix has a system of orthogonal eigenvectors that generates the whole

space . Finally , it can be shown that a matrix of order is similar to

a diagonal matrix iff the eigenvectors of form a basis for [19]

2- A matrix is normal iff it is unitarily similar to diagonal matrix

.As a consequence , a normal matrix admits the following

spectral[20] decomposition ∑

 being unitary

and diagonal.

3- Let and be two normal and commutative matrix, then, the generic

eigenvalue of is given by the sum , where and are

the eigenvalues of and associated with the same eigenvector .

13

 There are, of course, non symmetric matrices that are similar to

diagonal matrices, but these are not unitarily similar .

 The Schur decomposition can be improved as follows ([21]) .

Property 1.5 (Canonical Jordan Form):

 Let be any square matrix. Then, there exists a nonsingular matrix

which transforms into a block diagonal matrix such that

 (() () ())

which is called canonical Jordan form, being the eigenvalues of and

 ()

if and

 ()

[

]

 for

 If an eigenvalue is defective, the size of the corresponding Jordan block is

greater than one. Therefore , the canonical Jordan form tells us that a matrix

can be diagonalized by a similarity transformation iff it is non defective. For

this reason, the non defective matrices are called diagonalizable. In particular,

normal matrices are diagonalizable.

 Partitioning by columns, () it can be seen that the

vectors associated with the Jordan block () satisfy the following recursive

relation

 ∑

 (1.7)

 if

The vector are called principal vector or generalized eigenvectors of

14

1-6 The Singular Value Decomposition (SVD):

 Any matrix can be reduced in diagonal form by a suitable pre and post

multiplication by unitary matrices. Precisely, the following result holds.

Property 1.6

 Let There exist two unitary matrices and

such that

 ∑ ()
 with () (1.8)

And Formula (1.8) is called Singular Value Decomposition

or (SVD) of and the numbers (()) are called singular value of .

If is a real–valued matrix , and will also be real –value and in (1.8)

must be written instead of The following characterization of the singular

values holds

 () √ (
) (1.9)

Indeed , from (1.8) it follows that ∑ ∑ so that , and

 being unitary , ∑ , that is , (
) (∑

)

(())
 Since and are hermitian matrices , the columns of ,

called the left singular vectors of , turn out to be the eigenvectors of and

,therefore ,they are not uniquely defined. The same holds for the columns of ,

which are the right singular vectors of .

 Relation (1.9) implies that if is hermitian with eigenvalues

given by ,then the singular values of concide with the modules of

the eigenvalues of .Indeed because , √

 = | | for

 As far as rank is concerned , if

 ,

15

Then the rank of is , the kernel of is the span of the column vectors of

 * + and the range of is the span of the column vectors of

 * +

Definition 1.11

 Suppose that has rank equal to and that it admits a AVD of the

 ∑ Then matrix ∑
 is called the Mooer-Penrose pseudo –

inverse matrix , being

∑ .

 / (1.10)

The matrix is also called the generalized inverse of . Indeed , if

 () then () , while if (() ,

 .

1-7 Matrix Norms:

 Definition 1.12 A matrix norm is mapping ‖ ‖ such that :

1. ‖ ‖ and ‖ ‖ if and only if ;

2. ‖ ‖ | |‖ ‖ and (homogeneity);

3. ‖ ‖ ‖ ‖ ‖ ‖ (triangular inequality).

 Unless otherwise specified we shall employ the symbol ‖ ‖ ,to denote

matrix norms .

 We can better characterize the matrix norms by introducing the concepts

of compatible norm and induced by a vector norm.

16

Definition 1.13 We say that a matrix norm ‖ ‖ is compatible or consistent

with a vector norm ‖ ‖ if

‖ ‖ ‖ ‖‖ ‖ (1. 11)

 More generally , given three norms, all denoted by ‖ ‖ , albeit defined

on , and , respectively, we say that they are consistent if

 , we have that ‖ ‖ ‖ ‖‖ ‖ .

In order to single out matrix norms of practical interest , following property is

in general required .

 Definition 1.14 We say that a matrix norm ‖ ‖ is sub- multiplicative if

‖ ‖ ‖ ‖‖ ‖ (1. 12)

 This property is not satisfied by any matrix norm. For example ([22]),

the norm ‖ ‖ | | .does not satisfy

(1.12) if applied to the matrices

 0

1

since ‖ ‖ ‖ ‖ ‖ ‖

 Notice that , given a certain sub-multiplicative matrix norm ‖ ‖ , there

always exists a consistent vector norm. For instance , given any fixed vector

 in , it suffices to define the consistent vector norm as

‖ ‖ ‖ ‖

As a consequence , in the case of sub-multiplicative matrix norms it is no

longer necessary to explicitly specify the vector norm with respect to the matrix

norm is consistent .

17

Theorem 1.1 Let ‖ ‖ be a vector norm. The function

‖ ‖
‖ ‖

‖ ‖
 (1.13)

is a matrix norm called induced matrix norm or natural matrix norm.

Proof. We start by noticing that (1.13) is equivalent to

‖ ‖ ‖ ‖ ‖ ‖ (1.14)

 Indeed, one can define for any the unit vector ‖ ‖⁄ so that

(1.13) becomes

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

This being taken as given , let us check that (1.13)(or equivalently, (1.14) is

actually a norm, making direct use of Definition 1.9.

1. If ‖ ‖ , then it follows that ‖ ‖ ‖ ‖ ‖ ‖ .

Moreover

‖ ‖
‖ ‖

‖ ‖
 ‖ ‖

and if and only if , therefore ‖ ‖ .

2. Given a scalar ,

‖ ‖ ‖ ‖ | | ‖ ‖ | |‖ ‖

3. Finally , triangular inequality holds. Indeed , by definition of supremum ,

if then

‖ ‖

‖ ‖
 ‖ ‖ ‖ ‖ ‖ ‖‖ ‖

 so that, taking with unit norm, one gets

‖() ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

from which it follows that ‖()‖ ‖() ‖ ‖ ‖

‖ ‖ ‖ ‖

18

Relevant instances of induced matrix norms are so-called p- norm defined as

‖ ‖
‖ ‖
‖ ‖

The and the infinity norm are easily computable since

‖ ‖

∑| |

 ‖ ‖

∑| |

 and they called the column sun norm and the row sum norm, respectively .

 Moreover, we have ‖ ‖ ‖
 ‖ and , if is self- adjoint or real

symmetric , ‖ ‖ ‖ ‖ .

 A special discussion is deserved by the or spectral norm for

which the following theorem holds.

Theorem 1.2 Let () be the largest singular value of .Then

‖ ‖ √ (
) √ () () (1.15)

In particular , if is hermitian (or real and symmetric), then

‖ ‖ () (1.16)

while, if is unitary , ‖ ‖ .

Proof. Since () is hermitian , there exists a unitary matrix such that

 ()

where are the (positive) eigenvalues of . Let then

‖ ‖ √
()

()
 √

()

()

 √∑ | |

 ∑ | |

 ⁄ √

from which (1.15) follows, thanks to (1.9).

19

 If is hermitian , the same considerations as above apply directly to .

 Finally , if is unitary

‖ ‖
 () () ‖ ‖

so that ‖ ‖ .

 As a consequence, the computation of ‖ ‖ is much more expensive than

that of ‖ ‖ or ‖ ‖ .However , if only an estimate of ‖ ‖ is required, the

following relations can be profitably employed in the case of square matrices.

| | ‖ ‖

| |

√
‖ ‖ ‖ ‖ √ ‖ ‖

√
‖ ‖ ‖ ‖ √ ‖ ‖

‖ ‖ √‖ ‖ ‖ ‖ .

Moreover, if is normal then ‖ ‖ ‖ ‖ for any and all

Theorem1.3 Let |‖ ‖| be a matrix norm induced by a vector norm ‖ ‖ then

1. ‖ ‖ |‖ ‖|‖ ‖, that is , |‖ ‖| is norm compatible with ‖ ‖,

2. |‖ ‖| ,

3. |‖ ‖| |‖ ‖||‖ ‖| that is , |‖ ‖| is sub-multiplicative.

Proof. Part 1 of the theorem is already contained in the proof of the theorem

1.1, while part 2 follows from the fact that |‖ ‖| ‖ ‖ ‖ ‖ ⁄ . Part 3

is simple to check.

 Notice that the are sub-multiplicative. Moreover, we remark

that the sub- multiplicativety property by itself would only allow us to conclude

that |‖ ‖| |‖ ‖| |‖ ‖| .

21

1.7.1 Relation between Norms and the Spectral Radius of a matrix:

Theorem 1.4 Let ‖ ‖ be a consistent matrix norm, then

 () ‖ ‖ .

Proof. Let be an eigenvalue of and an associated eigenvector . As a

consequence , since ‖ ‖ is consistent, we have

| |‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖‖ ‖

so that | | ‖ ‖.

More precisely, the following property holds ([23]).

Property 1.7 Let and . Then , there exists a consistent matrix

norm ‖ ‖ (depending on) such that

‖ ‖ ()

 As a result, having fixed an arbitrarily small tolerance, there always exists a

matrix norm which is arbitrarily close to the spectral radius of , namely

 () ‖ ‖ , (1.17)

 ‖ ‖

the infimum being taken on the set of all the consistent norms.

 For the sake of clarity, we notice that the spectral radius is a sub-

multiplicative seminorm, since it is not true that () iff .

As an example, any triangular matrix with null diagonal entries clearly has

spectral radius equal to zero. Moreover , we have the following result.

Property 1.7 Let be a square matrix and let ‖ ‖ be a consistent norm. Then

‖ ‖ ⁄ ()

21

1.7.2 Sequences and Series of Matrices:

 A sequence of matrices { ()} is said to converge to a matrix

 if

 ‖
() ‖ .

 The choice of the norm dose not influence the result since in all

norms are equivalent.

 In particular, when studying the convergence of iterative methods for

solving linear system , one is interested in the so-called convergent matrices for

which

() ,

0 being the null matrix .The following theorem holds.

Theorem 1.5 Let be a square matrix , then

() () . (1.18)

Moreover, the geometric series ∑ ()
 is convergent iff () . In such

a case

∑ ()
 () (1.19)

As a result, if () the matrix () is invertible and the following

inequalities hold

 ‖ ‖
 ‖() ‖

 ‖ ‖
 (1.20)

where ‖ ‖ is an induced matrix norm such that‖ ‖ .

Proof. Let us prove (1.18) . Let () , then such that ()

and thus thanks to property 1.6, there exists a consistent matrix norm ‖ ‖ such

that ‖ ‖ () . From the fact that ‖ ‖ ‖ ‖ and from the

definition of convergence it turns out as the sequence { ()} tends to

22

zero. Conversely, assume that
 and let denote an eigenvalue

of . Then , , being () an eigenvector associated with , so

that
 . As consequence, | | and because this is true for a

generic eigenvalue one gets () as desired. Relation (1.19) can be

obtained noting first that the eigenvalues of () are given by

 () () being the generic eigenvalue of . On the other hand, since

 () , we deduce that is nonsingular .Then , from the identity

()() ()

and taking the limit for tending to infinity the thesis follows since

()∑

Finally , thanks to Theorem 1.3, the equality ‖ ‖ holds, so that

 ‖ ‖ ‖ ‖‖() ‖ (‖ ‖)‖() ‖,

giving the first inequality in (1.20). As for the second part, noting that

 and multiplying both sides on the right by () , one gets (

) () . Passing to the norms, we obtain

‖() ‖ ‖ ‖‖() ‖,

and thus the second inequality , since ‖ ‖ .

Remark 1.1 The assumption that there exists an induced matrix norm such that

‖ ‖ is justified by Property 1.6, recalling that is convergent and,

therefore , () .

 Notice that (1.19) suggests an algorithm to approximate the inverse of a

matrix by a truncated series expansion .

23

Chapter Two

Direct Method for the Solution of Linear system

2-0 Introduction:

 A system of linear equations in unknowns consists of algebraic

relations of the form

∑

 (2.1)

 where are the unknowns, are coefficients of the system and are

the components of the right hand side. System (2.1) can be more conveniently

written in matrix form as

 , (2.2)

where we have denoted by ()
 the coefficient matrix , by

 ()
 the right side vector and by ()

 the unknown vector

, respectively. We call a solution of (2.2) any n-tuple of values which

satisfies (2.1).

 We shall be mainly dealing with real- valued square systems of order

that is, systems of the form (2.2) with and In such cases

existence and uniqueness of the solution of (2.2) are ensured if one of the

following (equivalent) hypotheses holds:

1. is invertible;

2. ()

3. the homogeneous system admits only the null solution.

The solution of system (2.2) is formally provided by Cramer s rule

 ()
 , (2.3)

24

 where is the determinant of the matrix obtained by substituting the

 column of with the right hand side . This formula is, however, of

little practical use . Indeed, if the determinants are evaluated by the recursive

relation (1.4)the computational effort of Cramer s rule is of the order of

() ! flops and therefore turns out to be unacceptable even for small

dimensions of (for instance, a computer able to perform flops per second

would take years to solve a linear system of 50 equations).

 For this reason, numerical methods that are alternatives to Cramer s rule

have been developed. They are called direct methods if they yield the solution

of the system in a finite number of steps, iterative if they require (theoretically)

an infinite number of steps. Iterative method will be addressed in the next

chapter . We notice from now on that the choice between a direct and an

iterative method does not depend only on the theoretical efficiency of the

scheme, but also on the particular type of matrix, on memory storage

requirements and, finally, on the architecture of the computer.

2-1 Stability Analysis of Linear Systems:

 Solving a linear system by a numerical method invariably leads to the

introduction of rounding errors. Only using stable numerical methods can keep

a way the propagation of such errors from polluting the accuracy of the

solution. In this section tow aspects of stability analysis will be addressed.

 Firstly, we will analyze the sensitivity of the solution of (2.2) to changes in

the data and (forward a priori analysis). Secondly, assuming that an

approximate solution ̂ of (2.2) is available, we shall quantify the perturbations

on the data and in order for ̂ to be the exact solution of a perturbed system

(backward a priori analysis). The size of these perturbations will in turn allow

us to measure the accuracy of the computed solution ̂ by the use of posteriori

analysis.

25

2-1-1 The Condition Number of a Matrix

 The condition number of a matrix is defined as

 () ‖ ‖‖ ‖, (2.4)

where ‖ ‖ is an induced matrix norm. In general () depends on the choice

of the norm; this will be made clear by introducing a subscript into the notation,

for instance, () ‖ ‖ ‖
 ‖ . More generally, () will denote

the condition number of in the . Remarkable instances are

 and .

 Let us start by noticing that () since

 ‖ ‖ ‖ ‖‖ ‖ ()

Moreover, () () and with () () Finally,

if is orthogonal, () since ‖ ‖ √
 √ () and

 . The condition number of a singular matrix is set equal to infinity.

 For () can be characterized as follows. Starting from (1.15) it

can be proved that

 () ‖ ‖ ‖
 ‖

 ()

 ()

where () and () are the maximum and minimum singular values of

(see property 1.5). As a consequence, in the case of symmetric positive definite

matrices we have

 ()

 () () (2.5)

where and are the maximum and minimum eigenvalues of . To

check (2.5), notice that

‖ ‖ √
 √ () √

26

Moreover, since () ()⁄ one gets ‖ ‖ ⁄ from which

(2.5) follows. For that reason, () is called spectral condition number.

Remark 2.1 Define the relative distance of from the set of singular

matrices with respect to the by

 () 8
‖ ‖
‖ ‖

 9

 It can then be shown that ([36])

 ()

 ()
 . (2.6)

 Equation (2.6) suggests that a matrix with a high condition number can

behave like a singular matrix of the form . In other words, null

perturbation in the right hand side do not necessarily yield non vanishing

changes in the solution since, if is singular, the homogeneous system

() does no longer admit only the null solution. From (2.6) it also

follows that if is nonsingular then

‖ ‖ ‖ ‖ (2.7)

 Relation (2.6) seems to suggest that a natural candidate for measuring the

ill-conditioning of a matrix is its determinant, since from (2.3) one is prompted

to conclude that small determinants mean nearly-singular matrices.

 2-1-2 Forward a priori Analysis

 In this section we introduce a measure of the sensitivity of the system

to changes in the data.

 Due to rounding errors, a numerical method for solving (2.2) does not

provide the exact solution but only an approximate one, which satisfies a

perturbed system. In other words, a numerical method yields an (exact)

solution of the perturbed system.

27

()()= (2.8)

The next result provides an estimate of in terms of and .

Theorem 2.1 Let be a nonsingular matrix and be such

that (2.7) is satisfied for a matrix norm ‖ ‖. Then, if is the solution of

 with () and satisfies (2.8) for ,

‖ ‖

‖ ‖

 ()

 ()‖ ‖ ‖ ‖⁄
(
‖ ‖

‖ ‖

‖ ‖

‖ ‖
). (2.9)

Proof. From (2.7) it follows that the matrix has norm less than 1. Then,

due to Theorem 1.5, is invertible and from (1.20) it follows that

‖ ‖

 ‖ ‖

 ‖ ‖‖ ‖
 . (2.10)

On the other hands, solving for in (2.8) and recalling that one gets

 () ()

from which, passing to the norms and using (2.10), it follows that

‖ ‖
‖ ‖

 ‖ ‖‖ ‖
(‖ ‖ ‖ ‖‖ ‖)

Finally, dividing both sides by ‖ ‖ (which is nonzero since and is

nonsingular) and noticing that ‖ ‖ ‖ ‖ ‖ ‖⁄ the result follows.

Theorem 2.2 Assume that the conditions of the Theorem 3.1hold and let

 Then

 ()

‖ ‖

‖ ‖

‖ ‖

‖ ‖
 ()

‖ ‖

‖ ‖
 (2.11)

Proof. We will prove only the first inequality since the second one directly

follows from (2.9). Relation yields ‖ ‖ ‖ ‖‖ ‖

Multiplying both sides by ‖ ‖ and recalling that ‖ ‖ ‖ ‖‖ ‖ it follows

that ‖ ‖‖ ‖ ()‖ ‖‖ ‖ which is the desired inequality.

28

 In order to employ the inequalities (2.10) and (2.11) in the analysis of

propagation of rounding errors in the case of direct methods, ‖ ‖ and ‖ ‖

should be bounded in terms of the dimension of the system and of the

characteristics of the floating – point arithmetic that is being used.

 It is indeed reasonable to expect that the perturbations induced by a

method for solving a linear system are such that ‖ ‖ ‖ ‖ and ‖ ‖

 ‖ ‖ , being a positive number that depends on the round off unit (for

example, we shall assume henceforth that where is the base and

is the number of digits of the mantissa of the floating – point system). In

such a case (2.9) can be completed by the following theorem.

Theorem 2.3 Assume that ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ with and

 , Then, if () the following inequalities hold

‖ ‖

‖ ‖

 ()

 ()
 (2.12)

‖ ‖

‖ ‖

 ()
 () (2.13)

Proof. From (2.8) it follows that ()()

Moreover, since () and ‖ ‖ ‖ ‖ it turns out that is

nonsingular.

 Taking the inverse of such a matrix and passing to the norms we get

‖ ‖ ‖ ()‖(‖ ‖ ‖ ‖‖ ‖) From Theorem 1.5 it then

follows that

‖ ‖

 ‖ ‖
(‖ ‖ ‖ ‖‖ ‖),

which implies (2.12), since ‖ ‖ () and ‖ ‖ ‖ ‖‖ ‖.

Let us prove (2.13). Subtracting (2.2) from (2.8) it follows that

 ()

29

Inverting and passing to the norms, the following inequality is obtained

‖ ‖ ‖ ‖‖ ‖ ‖ ‖‖ ‖

 ()‖ ‖ ‖ ‖‖ ‖. (2.14)

 Dividing both sides by ‖ ‖ and using the triangular inequality ‖ ‖

‖ ‖ ‖ ‖ we finally get (2.13).

Remarkable instances of perturbations and are those for which | |

| | and | | | | with . Hereafter, the absolute value notation | |

denotes the matrix having entries | | with and the

inequality with has the following meaning

 for

If ‖ ‖ is considered , from (3.14) it follows that

‖ ‖
‖ ‖

‖| || || | | || |‖
 ‖| || |‖ ‖ ‖

 ‖| || |‖
‖| || |‖ (2.15)

Estimate (2.15) is generally too pessimistic; however, the following component

wise error estimates of can be derived from (2.15)

| | | ()
 || || | ,

| |

| |

| ()
 || |

| ()
 |

, (2.16)

 being ()
 the row vector ()

 . Estimates (2.16) are more stringent than

(2.15). The first inequality in (2.16) can be used when the perturbed solution

 is known, being henceforth the solution computed by a

numerical method.

 In the case where | || | | | the parameter in (2.15) is equal

perturbations to the right side. A slightly worse situation occurs when is a

31

triangular M-matrix and has positive entries. In such a case is bounded by

 since

| ()
 || || | ()| |

Example 2.1 Consider the linear system with

 [

] [

]

which has solution () when Let us compare the results

obtained using (2.15) and (2.16). From

| || || | | || | (

) (2.17)

it follows that the supremum of (2.17) is unbounded as exactly as

happens in case of ‖ ‖ . On the other hand, the amplification factor of the

error in (2.16)is bounded. Indeed, the component of the maximum absolute

value, of the solution, satisfies | ()
 || || | ⁄

2-1-3 Backward a priori Analysis

 The numerical methods that we have considered thus far do not require

the explicit computation of the inverse of to solve . However, we

can always assume that they yield an approximate solution of the form

 ̂ where the matrix , due to rounding errors, is an approximation of

 .

In practice, is very seldom constructed; in case this should happen, the

following result yields an estimate of the error that is made substituting

for ([23]) .

31

Property 2.1 Let ; if ‖ ‖ , then and are nonsingular

and

‖ ‖
‖ ‖

 ‖ ‖

‖ ‖

‖ ‖
 ‖ ‖

‖ ‖‖ ‖

 ‖ ‖
 . (2.18)

 In the frame of backward a priori analysis we can interpret as being

the inverse of (for a suitable unknown). We are thus assuming

that () This yields

 ()

and, as a consequence if ‖ ‖ it turn out that

‖ ‖
‖ ‖‖ ‖

 ‖ ‖
 (2.19)

 having used the first inequality in (2.18), where is assumed to be an

approximation of the inverse of (notice that the roles of and can be

interchanged).

2-2 The Gaussian Elimination Methods(GEM) and LU factorization

 The Gaussian elimination method aims at reducing the system to

be an equivalent system (that is, having the same solution) of the form

 ̂ , where is an upper triangular matrix and ̂ is an updated right

side vector . This latter system can then be solved by the backward

substitution method. Let us denote original system by () (). During

the reduction procedure we basically employ the property which states that

replacing one of the equations by the difference between this equation and

another one multiplied by a non null constant yields an equivalent system

(i.e., one with the same solution).

 Thus, consider a nonsingular matrix , and suppose that the

diagonal entry is non vanishing. Introducing the multipliers

32

()

()

 Where
()

 denote the elements of () , it is possible to eliminate

the unknown form the rows other than the first one by simply subtracting

form row with the first row multiplied by and doing

the same on the right side. If we now define

()

()

()

()

()

()

where
()

 denote the components op , we get a new system of the

form .

[

()

()

()

()

()

()

()
]

 <

=

[

()

()

()
]

 which we denote by () () that is equivalent to starting one. Similarly

, we can transform the system in such a way that the unknown is eliminated

from rows In general , we end up with the finite sequence of systems

 () () (2.20)

where , for matrix () takes the following form

 ()

[

()

()

()

()

()

()

()

()

()
]

33

 having assumed that
()
 for . It is clear that for

we obtain the upper triangular system () ()

[

()

()

()

()

()

()
]

[

]

[

()

()

()
]

 Consistently with the notations that have been previously introduced, we

denote by the upper triangular matrix (). The entries
()

 are called

pivots and must obviously be non null for we assume that

()
 and define the multiplier

()

() (2.21)

Then we let

()

()

()

()

()

()
 (2.22)

Example 2.2 Let us use GEM to solve the following system

 () ()

{

 ,

 Which admits the solution () . At the first step we compute

the multipliers

 and

 and subtract from the second and third

equation of the system the first row multiplied by and respectively .

we obtain the equivalent system.

34

 () ()

{

 ,

 If we subtract the second row multiplied by form the third one ,

we end up with the upper triangular system

 () ()

{

 ,

 from which we immediately compute and then , by back

substitution , the remaining unknowns

Remark 2.2 The matrix in Example 2.1 is called the Hilbert matrix of order 3.

In the general case , its entries are

 () ⁄ (2.23)

 To complete Gaussian elimination () () ()⁄

flops are required , plus flops to backsolve the triangular system

 () Therefore, about (⁄)

 Flops are needed to solve the liner system using GEM. Neglecting the

lower order terms , we can state the Gaussian elimination process has a cost

of ⁄ flops .

 As previously noticed, GEM terminates safely iff the pivotal elements

()
 for , are non vanishing . Unfortunately, having non null

diagonal entries in is not enough to prevent zero pivots to arise during the

elimination process. For example , matrix in (2.5) is nonsingular and has

nonzero diagonal entries

35

 [

] () [

] (2.24)

 Nevertheless, when GEM is applied, it is interrupted at the second step

since
()
 .

 More restrictive conditions on are needed to ensure the applicability of

the method . leading dominating minors of are nonzero for

 then the corresponding pivotal entries
()

 must necessarily be non

vanishing. We recall that is the determinant of , the principal

submatrix made by the first rows and columns of . The matrix in the

previous example does not satisfy this condition, having

 Classes of matrices exist such that GEM can be always safely employed in

its basic form (2.22) .Among them, we recall the following ones:

1. Matrices diagonally dominant by rows.

2. Matrices diagonally dominant by columns. In such a case one can even

show that the multipliers are in module less than or equal to 1(see

Property 2.2).

3. Matrices symmetric and positive definite (see Theorem 2.6).

For a rigorous derivation of these results, we refer to the forthcoming sections.

2.2.1 GEM as Factorization Method

We show how GEM is equivalent to performing a factorization of

 the matrix into the product of two matrices , , with (). Since

 and depend only on and not on the right hand side, the same

factorization can be reused when solving several linear systems having the

same matrix but different right hand side , with a considerable reduction of

the operation count (indeed, the main computational effort, about ⁄ flops,

is spent in the elimination procedure).

36

 Let us go back to Example 3.2concerning the Hilbert matrix In practice,

to pass from () to the matrix () at the second step, we have

multiplied the system by the matrix

[

]

 [

]

Indeed,

()

[

]

 ()

 Similarly, to perform the second (and last) step of GEM, we multiply

 () by the matrix

 [

] [

] .

where ()
(). Therefore

() (2.25)

 On the other hand, matrices and are triangular, their product is

still lower triangular, as is their inverse , thus from (2.25) one gets

 ()

which is the desired factorization of .

 This identity can be generalized as follows. Setting

 ()

37

 and defining

[

]

as the Gaussian transformation matrix, one out that

() (
)

On the other hand, from (3.3) we have that

()

()
 ∑()

()

or , equivalently ,

(). (2.26)

As a consequence, at the end of the elimination process the matrices with

and the matrix have been generated such that

The matrices are unit lower triangular with inverse given by

 (2.27)

where (
)(

) are equal to the null matrix if . As a consequence

=(
)(

) (
)

= (∑
)

38

=

[

]

 (2.28)

Defining ()

 it follows that

 We notice that, due to (2.28) the subdiagonal entries of are the

multipliers produced by GEM, while the diagonal entries are equal to one .

 Once the matrices and have been computed , solving the linear

system consists only of solving successively the two triangular systems

 The computational cost of the factorization process is obviously the same

as that required by GEM.

 The following result establishes a link between the leading dominant

minors of a matrix and its factorization induced by GEM.

Theorem 2.4 Let . The factorization of with for

 exists and is unique iff the principal submatrices of of order

 are nonsingular .

Proof. The existence of the factorization can be proved following the steps

of the GEM. Here we prefer to pursue an alternative approach , which allows

for proving at the same time both existence and uniqueness and that will be

used again in later sections.

 Let us assume that the leading minors of are nonsingular for

 and prove , by induction on , that under this hypothesis the

 factorization of () with for exists and is unique .

39

 The property is obviously true if . Assume therefore that there exists

an unique factorization of of the form
() () with

()

 for , and show that there exists an unique

factorization also for We partition by block matrices as

 [

]

and look for a factorization of of the form

() () [

()

] [
 ()

] (2.29)

 having also partitioned by blocks factors () and (). Computing the

product of these two factors and equating by blocks the elements of , it turns

out that the vectors are the solutions to the linear system () ,

 ()

 On the other hand, since () (
()) (()) the

matrices () and () are nonsingular and, as a result, and exist and

are unique .

 Thus, there exists a unique factorization of where is the unique

solution of the equation
 This completes the induction step of

the proof.

 It now remains to prove that, if the factorization at hand exists and is unique,

then the first leading minors of the must be nonsingular. we shall

distinguish the case where is singular and when it is nonsingular .

 Let us start from the second one and assume that the factorization of

with for exists and is unique. Then, due to (2.10), we have

() () for Thus

 () (
()) (()) (()) (2.30)

41

 form which, taking and nonsingular, we obtain

and thus, necessarily , () for .

 Now let be a singular matrix and assume that (at least) one diagonal entry

of is equal to zero . Denote by the null entry of with minimum index

 Thanks to (2.29), the factorization can be computed without troubles until

the step. From that step on, since the matrix () is singular,

existence and uniqueness of vector are certainly lost, and, thus, the same

holds for the uniqueness of the factorization. In order for this not to occur

before the process has factorized the whole matrix , the entries must all

be nonzero up to the index included, and thus due to (2.30) all the

leading minors must be nonsingular for .

 From the above theorem we conclude that, if , with , is

singular , then the factorization may either not exist or not be unique.

2-3 The LDMT factorization.

 It is possible to devise other types of factorization of removing the

hypothesis that the elements of are equal to one . Specifically, we will

address some variant where the factorization of is of the form

 where and are lower triangular, upper triangular and diagonal

matrices, respectively

 After the construction of this factorization, the resolution of the system

can be carried out solving first the lower triangular system , then the

diagonal one , and finally the upper triangular system , with a

cost of flops . In the symmetric case, we obtain and the

factorization enjoys a property analogous to the one in Theorem 2.4 for the

factorization . In particular, the following result holds .

41

 Theorem 2.5 If all the principal minors of a matrix are

nonzero then there exist a unique diagonal matrix , a unique unit lower

triangular matrix and a unique unit upper triangular matrix , such that

Proof. By Theorem 2.1 we already know that there exists a unique

factorization of with If we set the diagonal entries

of equal to (nonzero because is nonsingular), then

 () Upon defining the existence of the

factorization follows , where is a unit upper of the uniqueness of the

 factorization is a consequence of the uniqueness of the

factorization .

 The above proof shows that, since the diagonal entries of coincide with

those of , we could compute and starting from the factorization

of . It suffices to compute as Nevertheless ,this algorithm has the

same cost as the standard factorization.

Likewise, it is also possible to compute the three matrices of the factorization

by enforcing the identity entry by entry

2-4 Symmetric and Positive Definite Matrices: The

 Cholesky factorization

 As already pointed out, the factorization simplifies considerably

when is symmetric because in such a case yielding the so- called

 factorization. The computational cost halves, with respect to the

factorization , to about ()⁄ flops.

 As an example , the Hilbert matrix of order 3 admits the following

factorization

42

[

]

[

]

[

]

[

]

 In the case that is also positive definite, the diagonal entries of in the

 factorization are positive . Moreover, we have the following result .

Theorem 2.6 Let be a symmetric and positive definite matrix. Then,

there exists a unique upper triangular matrix with positive diagonal entries

such that

 (2.31)

 This factorization is called cholesky factorization and entries of can

be computed as follows : √ and, for

 (∑)

 ⁄

 (∑
)

 ⁄
 (2.32)

Proof. Let us prove the theorem proceeding by induction on the size of the

matrix (as done in Theorem 2.4), recalling that if
 is symmetric

positive definite, then all its principal submatrices enjoy the same property.

 For the result is obviously true. Thus, suppose that it holds for

and prove that it also holds for . There exists an upper triangular matrix

such that
 . Let us partition as

 [

] ,

43

with and look for a factorization of of the form

 6

7 [

]

 Enforcing the equality with the entries of yields the equation

 and . The vector is thus uniquely determined, since
 is

nonsingular. As for due to properties of determinants

 () (
) ()

 (())

 we can conclude that it must be a real number . As result , √ is

the desired diagonal entry and this concludes the inductive argument .

 Let us now prove formulae (2.32). The fact that √ is an

immediate consequence of the induction argument for . In the case of

generic , relations (2.16) are the forward substitution formulae for the solution

of the linear system
 ()

 while formulae (2.16) state that √ , where .

 The algorithm which implements (2.32) requires about ()⁄ flops and

it turns out to be stable with respect to the propagation of rounding errors . It

can indeed be shown that the upper triangular matrix ̃ is such that ̃ ̃

 where is perturbation matrix such that ‖ ‖ ()

 () (see [24]).

 Also, for the Cholesky factorization it is possible to overwrite the matrix

 in the lower triangular portion of , without any further memory storage .

By doing so, and factorization are preserved, noting that is stored in the

upper triangular section since it is symmetric and its diagonal entries can be

computed as

 ∑

 An example of implementation of the Cholesky factorization is coded in

the Program

44

Program 1 -chol2: the Cholesky factorization

 , -

, - ()

 () (() () () () ⁄

 () () () ()

end

 () (())

2-5 Rectangular Matrices : QR factorization:

 Definition(2.1) matrix , with , admits a QR factorization

if there exist an orthogonal matrix and an upper trapezoidal

matrix with null rows from the n+1-th one on, such that

 (2.33)

 This factorization can be constructed either using suitable transformation

matrices (Givens or Householder matrices , see section(3.4.1) or using the

Gram-Schmidt orthogonalization algorithm discussed below.

 It is also possible to generate a reduced version of the QR factorization

(2.33) , as stated in the following result .

Property 2.3 Let be a matrix of rank for which a QR factorization

is known . Then there exists a unique factorization of of the form

 ̃ ̃ (2.34)

where ̃ and ̃ are submatrices of and given respectively by

 ̃ () ̃ () (2.35)

45

 Moreover , ̃ has orthonormal vector columns and ̃ is upper triangular

and coincides with the Cholesky factor of the symmetric positive definite

matrix ̃ ̃ .

 If has rank (i.e., full rank),then the column vector of ̃ form an

orthonormal basis for the vector space range () (() *

). As a consequence , constructing the QR factorization can

also be interpreted as a procedure for generating an orthonormal basis for a

given set of vectors.

 If has rank the QR factorization does not necessarily yield an

orthonormal basis for rang () . However , one can obtain a factorization of

the form

 0

1

 =

 FIGURE 2.1 The reduced factorization. The matrices of the QR

factorization are drawn in dashed lines

 where Q is orthogonal , P is a permutation matrix and is a

nonsingular upper triangular matrix of order .

 In general, when using the QR factorization , we shall always refer to its

reduced form (2.34) as it finds a remarkable application in the solution of

overdetermined system.

 The matrix factor ̃ and ̃ in (2.34) can be computed using the

Gramschmidt orthogonalization . Starting from a set of linearly independent

 ̃ ̃

46

vectors , this algorithm generates a new set of mutually orthogonal

vector , , given by

 ,

 ∑
()

()

 , (2.36)

Denoting by the column vectors of , we set ̃ ‖ ‖ ⁄ and ,

for

 , compute the column vectors of ̃ as

 ̃ ‖ ‖ ⁄ ,

where

 ∑ (̃) ̃

 .

Next, imposing that ̃ ̃ and exploiting the fact that ̃ is orthogonal (that is

 ̃ ̃), the entries of ̃ can easily be computed . The overall

computational cost of the algorithm is of the order of flops.

 It is also worth noting that if has full rank , the matrix is symmetric

and positive definite (see Section 1.6) and thus it admits a unique Chollesky

factorization of the form . On the other hand , since the orthogonality of ̃

implies

 ̃ ̃ ̃ ̃ ̃ ̃ ,

 we conclude that ̃ is actually the Cholesky factor of . Thus , the diagonal entries

 of ̃ are all nonzero only if has full rank .

 The Gram- Schmidt method is of little practical use since the generated

vectors lose their linear independence due to rounding errors . Indeed , in

floating-point arithmetic the algorithm produces very small values of ‖ ‖

47

and ̃ with a consequent numerical instability and loss of orthogonlity for

matrix ̃ (see Example 2.3) .

 These drawbacks suggest employing a more stable version, known as

modified Gram-Schmidt method . At the beginning of the -th step, the

projection of the vectors along the vectors ̃ ̃ are progressively

subtracted form .On the resulting vector, the orthogonalization step is

then carried out. In practice , after computing (̃ ̃) ̃

at the -th step, this vector is immediately subtracted from . As an

example , one lest

()

 (̃) ̃ .

This new vector
()

 is projected along the direction of ̃ and the obtained

projection is subtracted from
()

 yielding

()

()
 (̃

()
) ̃

and so on , until
()

 is computed .

 It can be checked that
()

 coincides with the corresponding vector in

the standard Gram-Schmidt process , since due to the orthogonality of vectors

 ̃ ̃ ̃ ,

()

 (̃) ̃ (̃ (̃) ̃) ̃

 ∑(̃

) ̃

 Program 2 implements the modified Gram-Schmidt method .Notice that it

is not possible to overwrite the computed QR factorization on the matrix . In

general, the matrix ̃ is overwrite on , whilst ̃ is stored separately. The

computational cost of the modified Gram-Schmidt has the order of flops.

48

program 2-mod_grams: Modified Gram-Schmidt method:

 , - ()

, - () ;

 () () () () ()

R(k,k)=norm(A(1:m,k)); Q(1:m,k)=A(1:m,k)/R(k,k);

for j=k+1:n

R(k,j)=Q(1:m,j)*A(1:m,j);

A(1:m,j)=A(1:m,j)-Q(1:m,k) *R(k, j) ;

end

end

Example 2.3 Let us consider the Hilbert matrix of order 4 (see (2.23)).The

matrix ̃ , generated by the standard Gram-Schmidt algorithm , is orthogonal

up to the order of ,being

 ̃ ̃ [

]

and ‖ ̃ ̃‖

 . Using the modified Gram-Schmidt

method , we would obtain

 ̃ ̃ [

]

and this time ‖ ̃ ̃‖

 =301686. .

49

 An improved result can be obtained using, instead of program 2, the

intrinsic function QR of MATLAB. This function can be properly employed to

generate both the factorization (2.33) as well as its reduced version (2.34).

2-6 Pivoting:

 As previously out , the GEM process breaks down as soon as zero pivotal

entry is computed. In such an event, one needs to resort to the so called

pivoting technique which amounts to exchanging rows (or columns) of the

system in such a way that non vanishing pivots are obtained.

Example 2.4 Let us go back to matrix (2.24)for which GEM furnishes at the

second step a zero pivotal element. By simply exchanging the second row with

the third one, we can execute one step further of the elimination method ,

finding a nonzero pivot . The generated system is equivalent to the original one

and it can be noticed that it is already in upper triangular form. Indeed

 () [

]

while the transformation matrices are given by

 () [

] () [

]

 From algebraic standpoint , a permutation of the rows of has been

performed. In fact, it now no longer holds that

 , but rather

 , P being the permutation matrix

 [

] (2.37)

 The pivoting strategy adopted in Example 3.4 can be generalization by

looking , at each step of the elimination procedure, for a nonzero pivotal

51

entry by searching within the entries of subcolumn ()() For that

reason, it is called partial pivoting (by rows) .

 From (2.21)it can be seen that a large value of (generated for example

by a small value of the pivot
()

 might amplify the rounding errors affecting

the entries
()
 Therefore, in order to ensure a better stability , the pivotal

element is chosen as the largest entry (in module) of the column ()()

and partial pivoting is generally performed at every step of the elimination

procedure, even if not strictly necessary (that is , even if nonzero pivotal entries

are found).

 Alternatively, the searching process could have been extended to the whole

submatrix ()() ending up with a complete pivoting (see Figure

2.2). Notice , however , that while partial pivoting requires an additional cost of

about searches , complete pivoting need about ⁄ , with a considerable

increase of the computational cost of GEM.

 k

 r r

FIGURE 2.2. Partial pivoting by row (left) or complete pivoting (right).

Shaded areas of the matrix are those involved in the searching for the

pivotal entry

Example 2.5 Let us consider the linear system with

 0

1

 and where is chosen in such a way that () is the exact solution.

Suppose we use base 2 and 16 significant digits. GEM without pivoting would

q k

0 0

k

r

k

r

k

51

give ()
 while GEM plus partial pivoting

furnishes the exact solution up to the digit.

 Let us analyze how partial pivoting affects the LU factorization induced by

GEM. At the first step of GEM with partial pivoting , after finding out the entry

 of maximum module in the first column , the elementary permutation

matrix which exchanges the first row with r-th row is constructed(if r =1,

 is identity matrix). Next , the firs Gaussian transformation matrix is

generated and we set ()
() similar approach is now taken on

 (), searching for a new permutation matrix and a new matrix such that

 ()
()

() .

 Executing all the elimination steps, the resulting upper triangular matrix

is now given by

 ()
() (2.38)

 Letting and we obtain that

 and , thus, () It can easily be checked that the matrix

 is unit lower triangular , so that the factorization reads

 (2.39)

 and

 while

 Once and are available solving the initial linear system amounts to

solving the triangular systems Notice that the entries

of the matrix coincide with the multipliers computed by factorization ,

without pivoting, when applied to the matrix .

 If complete pivoting is performed , at the first step of the process , once

the element of largest module in submatrix () has been found ,

we must exchange the first row and column with the row and the

permutation matrices by rows and by columns, respectively.

52

 As a consequence, the action of matrix is now such that ()

() Repeating the process, at the last step, instead of (2.22) we obtain

 ()
()

In the case of complete pivoting the factorization becomes

 where is permutation matrix accounting for all

permutations that have been operated . By construction, matrix is still lower

triangular, with module entries less than or equal to 1 .As happens in partial

pivoting, the entries of are the multipliers produced by the factorization

process without pivoting , when applied to the matrix

 Program 3 is an implementation of the factorization with complete

pivoting . For an efficient computer implementation of the factorization

with partial pivoting, we refer to the MALAB intrinsic function .

Program 3 –LU pivtot : LU factorization with complete pivotin:

function [L,U,P,Q]=LU pivtot(A,n)

P=eye(n) ; Q=P;Minv=P;

for k=1:n-1

[PK,QK]=pivot(A,K,n) ; A=PK*A*QK;

[MK,MKinv]=MGauss(A,K,n) ;

A=MK*A; P=PK*K; Q=Q*QK;

Minv*PK*MKinv;

end

U=triu(A) ; L=P*Minv;

function[MK,MKinv]=MGauss(A,K,n)

53

MK=eye(n) ;

fori=k+1:n, MK(i,K)=-A(I,k)/A(K,K) ; end

Mkinv=2*eye(n)-Mk;

function [PK,QK]=pivot(A,k,n)

[y,i]=max(abs(A(k:n,k:n))) ; [piv,jpiv]=max(y) ;

ipiv=i(jpiv) ; jpiv=jpiv+k-1; ipiv=ipiv+k-1;

pk=eye(n) ; pk(ipiv,ipiv)=0; pk(k,k)=0; pk(k,ipiv)=1; pk(ipiv,k)=1;

 jpiv.jpiv)=0; Qk(k,k)=0; Qk(k,jipv)=1; Qk(jpiv,k)=1;)Qk=eye(n)

; Qk

Remark 2.3 The presence of large pivotal entries is not in itself sufficient to

guarantee accurate solution, as demonstrated by the following example (taken

from [25] .For the linear system

[

] [

] =[

]

 at the first step the pivotal entry coincides with the diagonal entry -400

itself . However , executing GEM on such a matrix yields the solution

 ̂ , -

whose first component drastically differs from that of exact solution

 , - . The cause of this

behaviour should be ascribed to the wide variation among the system

coefficients. Such cases can be remedied by a suitable scaling of the matrix.

Remark 2.4 (pivoting for symmetric matrices) As already noticed, pivoting

is not strictly necessary if is symmetric and positive definite. separate

comment is deserved when is symmetric but not positive definite, since

pivoting could destroy the symmetry of the matrix . This can be avoided by

54

employing a complete pivoting of the form , even though this pivoting

can only turn out into a reordering of the diagonal entries of . As a

consequence, the presence on the diagonal of of small entries might inhibit

the advantages of the pivoting .To del with matrices of this kind, special

algorithms are needed (like the Parlett-Reid method [26] or the Aasen method

[27] for whose description we refer to [28], and to [29] for the case of sparse

matrices.

2-7 Computing the Inverse of a Matrix:

 The explicit computation of the inverse of matrix can be carried out using

the UL factorization as follows. Denoting by the inverse of a nonsingular

matrix , the column vectors of are the solutions to linear systems

 for .

 Supposing that , where is partial pivoting permutation matrix,

we must solve triangular systems of the form

i.e., a succession of linear systems having the same coefficient matrix but

different right hand sides. The computation of the inverse of matrix is a costly

procedure which can sometimes be even less stable than MEG.

 An alternative approach for computing the inverse of is provided by the

faddev or leverrier formula, which, letting recursively computes

 ()

Since if we get

 and the computational cost of the method for a full matrix is equal to

() flops (for further details [30],[31]).

55

2-8 undetermined systems:

 We have seen that the solution of the linear system exists and is

unique if and is nonsingular. In this section we give a meaning to the

solution of a linear system both in the overdetermined case, where , and

in the underdetermined case, corresponding to . We notice that an

underdetermined system generally has no solution unless the right side is an

element of range (A)

For a detailed presentation, we refer to [32], [22]and [33].

 Given with , we say that is a solution of

the linear system in the least-square sense if

Φ() ‖ ‖
 ‖ ‖

Φ() (2.40)

The problem thus consists of minimizing the Euclidean norm of the residual.

The solution of (2.40) can be found by imposing the condition that the gradient

of the function Φ in (2.40) must be equal to zero at . From

Φ() () ()

we find that

 Φ()

from which it follows that must be the solution of the square system

 (2.41)

 known as the system of normal equation. The system is nonsingular if

has full rank and in such a case the least- squares solution exists and is unique.

We notice that is a symmetric and positive definite matrix. Thus, in

order to solve the normal equations, one could first compute the cholesky

factorization and then solve the two systems and

 . However, due to roundoff errors, the computation of may be

56

affected by a loss of significant digits, with a consequent loss of positive

definiteness or nonsingularity of the matrix, as happens in the following

example(implemented in MATLAB) where for a matrix with full rank, the

corresponding matrix fl () turns to be singular

 [

] fl () 0

1 .

 Therefore, in the case of ill-conditioned matrices it is more convenient to

utilize the QR factorization introduced in Section 2.5. Indeed, the following

result holds.

Theorem 2.7 let , with , be a full rank matrix. Then the

unique solution of (3.40) is given by

 ̃ ̃ (2.42)

where ̃ and ̃ are the matrices defined in (2.35) starting

from the QR factorization of . Moreover, the minimum of Φ is given by

Φ() ∑ ,() -

Proof. The QR factorization of exists and is unique since has full rank.

Thus, there exists two matrices, and such that

where Q is orthogonal. Since orthogonal matrices preserve the Euclidean scalar

product it follows that

‖ ‖
 ‖ ‖

 .

Recalling that R is upper trapezoidal, we have

‖ ‖
 ‖ ̃ ̃ ‖

 ∑ ,() -

so that the minimum is achieved when .

57

 is If does not have full rank, the solution techniques above fail, since

in this case if a solution to (2.40), the vector , with () , is a

solution too. We must therefore introduce a further constraint to enforce the

uniqueness of solution. Typically , one requires that has minimal Euclidean

norm, so that the least-squares problem can be formulated as find with

minimal Euclidean norm such that

‖ ‖
 ‖ ‖

 (2.43)

This problem is consistent with (2.40) if has full rank, since in this case

(2.40) has a unique solution which necessarily must have minimal Euclidean

norm.

 The tool for solving (2.43) is singular value decomposition (or SVD, see

Section 1.6), for which the following theorem holds.

Theorem (2.8) Let with SVD given by ∑ Then the unique

solution to (2.43) is

 (2.44)

where is the pseudo- inverse of introduced in Definition (1.11).

 As for the stability of problem (2.43), we point out that if the matrix

does not have full rank, the solution is not necessarily a continuous function

of the data, so that small changes on these latter might produce large variation

in .

 In the case of underdetermined systems, for which , if has full

rank the QR factorization can be used. In particular, when applied to the

transpose matrix , the method yields the solution of minimal Euclidean

norm. If, instead, the matrix has not full rank, one must resort to SVD.

58

Remark 2.5 If (square system), both SVD and QRfactorization can be

used to solve the linear system , as alternatives to GEM. Even though

these algorithms require a number of flops far superior to GEM (SVD, for

instance, requires flops), they turn out to be more accurate when the

system is ill-conditioned and nearly singular.

59

Chapter Three

Approximation of Eigenvalues and Eigenvectors

3.1 Introduction:

 We deal with approximation of the eigenvalues and eigenvectors of a

matrix .Two main classes of numerical methods exist to this purpose,

partial methods, which compute the extremal eigenvalues of (that is, those

having maximum and minimum module), or global methods, which

approximate the whole spectrum of .

 It is worth noting that methods which are introduced to solve the matrix

eigenvalue problem are not necessarily suitable for calculating the matrix

eigenvectors . For example , the power method provides an approximation to

particular eigenvalue/ eigenvector pair .

 The QR method (a global method) instead computes the real Schur from

of , a canonical form that displays all the eigenvalues of but not its

eigenvectors . These eigenvectors can be computed, starting from the real

Schur form of , with an extra amount of work.

 Finally , some ad hoc methods for dealing effectively with special case

where is a symmetric () matrix .

3-2 `Geometrical Location of the Eigenvalues:

 Since the eigenvalues of are the roots of the characteristic polynomial

 ()(see Section 1-4) , iterative methods must be used for their

approximation when . Knowledge of eigenvalue location in complex

plane can thus be helpful in accelerating the convergence of the process .

A first estimate is provided by Theorem 1.4

| | ‖ ‖ () (3.1)

61

 for any consistent matrix norm ‖ ‖ Inequality (4.1), which is often quite

rough, states that all eigenvalues of are contained in a circle of radius

 ‖ ‖ ‖ ‖ centered at the origin of the Gauss plane.

Theorem 3.1 If , let

 () ⁄ and () ⁄

be the hermition and skew-hermition parts of , respectively, being the

imaginary unit. For any () .

 () () () () () () (3.2)

Proof. From the definition of and it follows that Let ,

‖ ‖ be the eigenvector associated with the eigenvalue the Rayleigh

quotient (introduced in Section 1.4)

 (3.3)

 Notice that both and are hermitian matrices, whiles is skew-hermitian.

Matrices and are thus unitarily similar to real diagonal matrix(see Section

2.4) and therefore their eigenvalues are real . In such case, (3.3) yields

 () ()

form which (3.2) follows.

An a priori bound for the eigenvalues of is given by the following result.

Theorem 3.2 (of the Gershgorin circles) Let . Then

 () ⋃

 * | | ∑ | | +

 (3.4)

The sets are called Gershgorin circles.

Proof. Let us decompose as where is diagonal part of ,

whilst for For () (with)

61

let us introduce the matrix () Since is singular ,

there exists a non –null vector such that This means that

(()) that is passing to the ‖ ‖ norm,

 () ‖ ‖ ‖()
 ‖ ‖ ‖

and thus

 ‖() ‖ ∑
| |

| |

 ∑

| |

| |

 (3.5)

for a certain Inequality (4.5) implies and thus (3.4).

The bounds (3.4)ensure that any eigenvalue of lies within the union of the

circles Moreover, since and share the same spectrum, Theorem 3.2

also holds in the form.

 () ⋃

 , * | | ∑ | | +

 (3.6)

The circles in the complex plane are called row circles, and column

circles . The immediate consequence of (3.4) and (3.6) is the following.

property 3.1(First gershgorin theorem) For a given matrix ,

 () . (3.7)

The following two location theorems can also be proved ([30], [31).

property 3.2(Second gershgorin theorem) Let

 ⋃

 ⋃

 .

If , then contains exactly eigenvalues of , each one being

accounted for with its algebraic multiplicity , while the remaining eigenvalues

are contained in .

Remark 3.1 Properties 3.1 and 3.2 do not exclude the possibility that there

exist circles containing no eigenvalues .

62

Definition 3.1 A matrix is called reducible if there exists a

permutation matrix such that

 [

] ,

where and are square matrices , is irreducible if it is not reducible.

To check if a matrix is reducible , the oriented graph of the matrix can be

conveniently employed, that the oriented graph of a real matrix is obtained

by joining points (called vertices of the graph) through a line

oriented from to if the corresponding matrix entry . An oriented

graph is strong connected if for any pair of distinct vertices and there

exists an oriented path from to . The following result holds ([32]).

Property 3.3 A matrix is irreducible iff its oriented graph is strongly

connected.

Property 3.4 (Third Gershgorin theorem) Let be an irreducible

matrix . An eigenvalue () cannot lie on the boundary of unless it

belongs to the boundary of every circle , for .

3-3 Power Method:

 The power method is very good at approximating the extremal eigenvalues

of the matrix, that is eigenvalues having largest and smallest module, denoted

by and respectively, as well their associated eigenvectors.

3-3-1 Approximation of the Eigenvalue of Largest Module:

 Let be a diagonalizable matrix and let be the matrix of

its eigenvector for . Let us also suppose that eigenvalues of are

ordered as

| | | | | | | | (3.8)

63

where has algebraic multiplicity equal to 1. Under these assumptions, is

called the dominant eigenvalue of matrix .

 Given an arbitrary initial vector () of unit Euclidean norm, consider

for the following iteration based on the computation of powers of

matrices, commonly known as the power method :

 () ()

 () () ‖ ()‖

⁄ (3.9)

 () (()) ()

 Let us analyze the convergence properties of method (3.9). By induction

on one check that

 ()
 () ()

‖ () ()‖

 (3.10)

 This relation explains the role played the power of in the method.

Because is diagonalizable , its eigenvectors form a basis of ; it is thus

possible to represent () as

 () ∑

 (3.11)

Moreover , since , we have

 () ()
 (∑

.

/

 * (3.12)

 Since | ⁄ | as increases the vector () ()

(and thus also (), due to (3.10)) , tends to assume an increasingly singnificant

component in the direction of the eigenvector decrease. Using (3.10) and

(3.12) , we get

 ()

 (
())

‖
 (

())‖

()

‖
()‖

64

where is the sign of
 and () denotes a vector that vanishes as

 As the vector () thus aligns it self along the direction of

eigenvector , and the following error estimate holds at step .

Theorem 3.4 Let be a diagonalizable matrix whose eigenvalues

satisfy (3.8). Assuming that there exists a constant such that

‖ ̃() ‖ |

|

 (3.13)

where

 ̃()
 ()‖ () ()‖

 ∑

(

)

 (3.14)

Proof. Since is diagonalizable , without losing generality, we can pick up the

nonsingular matrix in such a way that is columns have unit Euclidean length,

that is ‖ ‖ for . From (3.12) it thus follows that

‖ ∑[

(

)]

‖

 ‖∑

(

)

‖

 4∑ [

]

(

)

5

 ⁄

 |

|

4∑ [

]

5

 ⁄

that is (3.13) with (∑ ()⁄
) ⁄ .

Estimate (3.13) expresses the convergence of the sequence ̃() towards .

Therefore the sequence of the Rayleigh quotients

((̃())

 ̃()) ‖ ̃()‖

 (()) ⁄ ()

will converge to .As a consequence,
 and the convergence

will be faster when the ratio | ⁄ | is smaller.

 If the matrix is real and symmetric it can be proved, always assuming that

 that ([33])

65

|
 | | |

 () |

|

 (3.15)

where () |
 ()| Inequality (3.15) out lines that the convergence

of the sequence to is quadratic with respect to the ratio | ⁄ |.

We conclude the section by proving a stopping criterion for the iteration (3.9).

For this purpose, let us introduce the residual at step

 () () () ()

and, for the matrix () (), ()- with ‖ ()‖

since

 () () () (3.16)

an eigenvalue of the perturbed matrix ().

From (3.16) it follows that ‖ ()‖

 for .Plugging this identity

back into |

()|

| |
 and approximating the partial derivative in it by the

incremental ratio |
 | ⁄ we get

|
 |

‖ ()‖

| ()|
 (3.17)

 where is the angle between the right and the left eigenvectors, and

associated with . Notice that, if is an hermitian matrix, then () ,

so that (3.17)yields an estimate which is analogue to(()| ̂ |
‖ ̂‖

‖ ̂‖
).

 In practice, in order to employ the estimate (3.17) it is necessary at each

step to replace | ()| with the module of the scalar product between two

approximations () and () of and , computed by the power method.

The following a posteriori estimate is thus obtained

|
 |

‖ ()‖

|(()) ()|
 (3.18)

66

3.3.2 Inverse Iteration:

 We look for an approximation of the eigenvalue of matrix which

is closest to a given number where () For this, the power

iteration (3.17) can be applied to the matrix ()
 () , yielding the

so-called inverse iteration or inverse power method. The number is called a

shift.

 The eigenvalues of ()
 are ()

 ; let us assume that there

exists an integer such that

| | | | and (3.19)

 This amounts to requiring that the eigenvalue which is closest to

has multiplication equal to 1. Moreover, (3.19) shown that is the eigenvalue

of ()
 with largest module; in particular, if , turns out to be the

eigenvalue of with smallest module.

 Given an arbitrary initial vector () of unit Euclidean norm, for

 the following sequence is constructed :

() () ()

 () () ‖ ()‖

⁄ (3.20)

 () (()) ()

 Notice that the eigenvectors of are the same as those of since

 ()
 , where () For this reason, the

Rayleigh quotient in(3,28) is computed directly on the matrix (and not on

()
).The main difference with respect to (3.9) is that at each step a linear

system with coefficient matrix must be solved. For numerical

convenience, the LU factorization of is computed once for all at so

67

that at each step only two triangular systems are to be solved, with a cost of the

order of flops.

 Although being more computationally expensive than the power method

(3.9), the inverse iteration has the advantage that it can converge to any desired

eigenvalue of (namely, the one closest to the shift). Inverse iteration is thus

ideally suited for refining an initial estimate of an eigenvalue of , which can

be obtained, for instance, by applying the localization techniques introduced in

Section 3.1. Inverse iteration can be also effectively employed to compute the

eigenvector associated with a given (approximate) eigenvalue, as described in

Section 3.8.1.

 In view of the convergence analysis of the iteration (3.20) we assume that

 is diagonalizable, so that () can be represented in the form (3.11).

Proceeding in the same way as in the power method, we let

 ̃() ∑

(

)

 ,

 where are the eigenvector of ()
 (and thus also of), while are as in

(3.11). As a consequence, recalling the definition of and using (3.19), we get

 ̃
() ,

() .

Convergence will be faster when is closer to . Under the same

assumptions made for proving (3.18), the following a posteriori estimate can be

obtained for the approximation error on

|
()|

‖ ̂()‖

|(̂()) ()|
 , (3.20)

where ̂() () () () and ̂() is the iteration of the inverse

power method to approximate the left eigenvector associated with .

68

3.3.3 Implementation Issues:

 The convergence analysis shows that the effectiveness of the power method

strongly depends on the dominant eigenvalues being well-separated (that is

| | | |⁄) Let us now analyze the behavior of iteration (3.9) when two

dominant eigenvalues of equal module exist (that is, | | | |). Three cases

must be distinguished :

1. : the two dominant eigenvalues are coincident. The method is

still convergent, since for sufficiently large(3.12)yields

 ()
 ()

 which is an eigenvector of .For , the sequence ̃() (after a

suitable

 redefinition) converges to vector lying in the subspace spanned by the

eigenvectors

 and , while the sequence () still converges to .

2. : the two dominant eigenvalues are opposite. In this case the

eigenvalue of largest module can be approximated by applying the power

method to the matrix Indeed, for (
) , ()-

 , so

that

 and the analysis falls into the previous case, where the

matrix is now .

3. ̅ : the two dominant eigenvalues are complex conjugate. Here

undamped oscillations arise in the sequence of vectors () and the

power method is not convergent ([24]).

 As for the computer implementation of (3.9), it is worth noting that

normalizing the vector () to 1 keeps away from overflow (when | |) or

underflow(when | |) in (3.12). We also point out that the requirement

 (which is a priori impossible to fulfil when no information about the

69

eigenvector is available) is not essential for the actual convergence of the

algorithm .

 Indeed, although it can be proved that, working in exact arithmetic, the

sequence (3.9) converges to the pair () if , the arising of

(unavoidable) rounding errors ensures that in practice the vector () contains a

non-null component also in the direction of .

 This allows for the eigenvalue to ''show-up'' and the power method to

quickly converge to it.

An implementation of the power method is given in Program 5. Here and in the

following algorithm, the convergence check is based on the a posteriori

estimate(3.18).

 Here and in the remainder of the chapter, the input z0, tool and nmax are

the initial vector, the tolerance for the stopping test and the maximum

admissible number of iterations, respectively. In output, the vectors nu1 and err

contain the sequences { ()} and 2‖ ()‖

| ()|⁄ 3 (see(3.18)), whilst

and niter are the approximation of the eigenvector and the number of

iterations taken by the algorithm to converge, respectively.

Program 5 –powerm :power method:

function [nu1,x1,niter,err]=powerm(A,z0,toll,nmax)

q=z0/norm(z0);q2=q;err=[];nul=[];res=toll+1;nier=0;z=A*q;

while(res>=toll& niter<=nmax)

q=z/norm(z) ;z=A*q; lam=q*z;x1=q;

z2=q2`*A;q2=z2/norm(z2) ;q2=q2;

y1=q2;costheta=abs(y1`*x1);

if(costheta >=5e-2),

71

niter =niter+1;res=norm(z-lam*q)/costheta ;

err=[err,res];nul=[nul;lam];

else

disp (` Multiple eigenvalue `);break;

 end

end

 A coding of the inverse power method is provided in Program 6. The

input parameter mu is the initial approximation of the eigenvalue. In output, the

vectors sigma and err contain the sequences { ()} and

2‖ ̂()‖

|(̂()) ()|⁄ 3 (see (3.21)). The LU factorization (with partial

pivoting) of the matrix is carried out using the MATLAB intrinsic function

1u.

Program 6 – invpower :Inverse power method:

function [sigma,x,niter,err]=invpower(A,z0,mu,toll,nmax)

n=max(size(A)); M=A-mu*eye(n); [L,U,P]=lu(M);

q=z0/norm(z0); q2=q`; err=[]; sigma=[]; res=tool+1; niter=0;

while(res>=tool&niter<=nmax)

niter=niter+1; b=P*q; y=L/b; z=U/y;

q=z/norm(z); z=A*q; lam=q`*z;

b=q2; y=U`/b; w=L`/y;

q2=(P`*w)`; q2=q2/norm(q2); costheta=abs(q2*q);

if (costheta >=5e-2),

 res=norm(z-lam*q)/costheta ; err=[err; res]; sigma=[sigma; lam];

else

71

 disp(' Multiple eigenvalue '); break;

end

x=q;

end

3-4 The QR Iteration:

 We present some iterative techniques for simultaneously approximating all

the eigenvalues of a given matrix .The basic idea consists of reducing , by

means of suitable similarity transformations, into a form for which the

calculation of the eigenvalues is easier than on the starting matrix .

 The problem would be satisfactorily solved if the unitary matrix of the

Schur decomposition theorem 1.4 , such that . T being upper

triangular and with () for could be determined in direct

way, that is , with a finite number of operations. Unfortunately , it is a

consequence of Abel`s theorem that for the matrix cannot be

computed in an elementary way. Thus, our problem can be solved only

resorting to iterative techniques.

 Let , given an orthogonal matrix () and letting

 () (()) () for until convergence , the QR iteration

consists of :

determine () () such that

 () () () (QR factorization), (3.22)

 then , let

 () () ()

 At each step , the first phase of the iteration is the factorization of

the matrix () into product of an orthogonal matrix () with an upper

72

triangular matrix () (see Section3.6.3) . The second phase is a simple matrix

product. Notice that

 () () () (()) (() ()) () (()) () ()

 (() () ())

 ((() () ()) (3.23)

i.e., every matrix () is orthogonally similar to . This is particularly relevant

for the stability of the method .

 A basic implementation of the QR iteration (3.22), assuming () ,

while a more computationally efficient version, starting from () in upper

Hessenberg form, is described in detail in Section 3.6.

 If has real eigenvalues, distinct in module, it will be seen in Section 3.5

that the limit of () is an upper triangular matrix (with the eigenvalues of on

the main diagonal). However, if has complex eigenvalues the limit of ()

cannot be an upper triangular matrix . Indeed if it were would necessarily

have real eigenvalues, although it is similar to .

 Failure to converge to triangular matrix may also happen in more general

situations, as addressed in Example 3.1.

 For this, it is necessary to introduce variants of the QR iteration (3.22),

based on deflation and shift techniques (see Section 3.7 and, for a more detailed

discussion of the subject, [18], ,[35]).

 These techniques allow for () to converge to an upper quasi-triangular

matrix , known as the real Schur decomposition of , for which the following

result holds (for the proof we refer to [22]).

73

Property 3.5 Given a matrix ,there exists an orthogonal matrix

 such that

 [

] (3.24)

where each block is either a real number or matrix of order having

complex conjugate eigenvalues, and

 ,
() () ()- (3.25)

 ()being the orthogonal matrix generated by the factorization step of

the QR iteration (3.22).

 The QR iteration can be also employed to compute all the eigenvectors of a

given matrix. For this purpose, we describe in Section 3.8 two possible

approaches, one based on the coupling between (3.22) and the inverse iteration

(3.20), the other working on the real Schur form (3.24).

3-5 The Basic QR Iteration:

 In the basic version of the QR method , one sets () in such a way that

 () . At each step the QR factorization of the matrix () can be

carried out using the modified Gram-Schmidt procedure introduced 2.4with a

cost of the order of flops (for a full matrix). The following convergence

result holds ([22]).

property 3.6 (convergence of QR method) Let be a

matrix such that

| | | | | | .

Then

74

() [

] (3.26)

As for the convergence rate , we have

|
()
| (|(

) |) , for (3.27)

aim of accelerating it, one can resort to the so-called shift technique, which will

be addressed in in Section 3.7.

Remark 3.2 It is always possible to reduce the matrix into a triangular form

by means of an iterative algorithm employing nonorthogonal similarity

transformations .In such a case, the so-called iteration (known also as

Rutishauser method, [2]) can be used, form which the QR method has actually

been derived (see also[24]). The iteration is based on the factorization of

the matrix into the product of two matrices and , respectively unit lower

triangular and upper triangular , and on the (nonorthogonal) similarity

transformation

 ()

 The rare use of the method in practical computations is due to the loss

of accuracy that can arise in the factorization because of the increase in

module of the upper diagonal entries of R . This aspect, together with the

details of the implementation of the algorithm and some comparisons with the

QR method, is examined in [24].

Example 3.1 we apply the QR method to the symmetric matrix such

that for and for whose

eigenvalues are (to three significant figures) ,

 and . After 20 iterations, we get

75

 () [

]

 Notice the almost-diagonal structure of the matrix () and, at the same

time, the effect of rounding errors which slightly alter its expected symmetry.

Good agreement can also be found between the under-diagonal entries and the

estimate (3.27).

 A computer implementation of the basic QR iteration is given in program

7. The QR factorization is executed using the modified Gram-Schmidt method

(program2).The input parameter niter denotes the maximum admissible number

of iterations, while the output parameters and are the matrices and

 in (3.22) after niter iteration of the QR procedure.

program 7 –basicqr :Basic QR iteration:

function [T,Q,R]=basicqr(A,niter)

T=A

fori=1:niter,

[Q,R]=mod –grams(T);

T=R*Q;

end

3-6The QR Method for matrices in Hessenberg Form:

 The naïve implementation of the QR method discussed in the previous

section requires (for full matrix) a computational effort of the order of flops

per iteration. In this section we illustrate a variant for the QR iteration, known

as Hessenberg –QR iteration, with a greatly reduced computational cost. The

idea consists of starting the iteration from a matrix () in upper Hessenberg

76

form, that is
()
 for . Indeed ,it can be checked that with this

choice the computation of () in (3.22) requires only an order of flops

per iteration.

 To achieve maximum efficiency and stability of the algorithm, suitable

transformation matrices are employed. Precisely , the preliminary reduction of

a matrix into upper Hessenberg form is realized with Householder matrices,

whilst the QR factorization of () is carried out using Givens matrices,

instead of the modified Gram-Schmidt procedure introduced in Section 3.4.3.

We briefly describe Householder and Givens matrices in the next section,

referring to Section 3.6.5 for their implementation. The algorithm and examples

of computations of the real Schur form of starting from its upper

Hessenberg form are then discussed in Section 3.6.4.

3-6-1 Householder and Given Transformation Matrices:

 For any vector , let us introduce the orthogonal and symmetric

matrix

 ‖ ‖
 ⁄ (3.28)

 Given a vector , the vector is the reflection of with

respect to the hyperplane * + formed by the set of the vectors that

are orthogonal to (see Figure 3.1,left). Matrix and the vector are called

the Householder reflection matrix and the householder vector, respectively.

FIGURE 3.1. Reflection across the hyperplane orthogonal to (left), rotation by an

angle in the plane () (right)

X

X1 y

X

X1

X

y

V

77

 Householder matrices can be used to set to zero a block of components of

a given vector . If, in particular, one would like to set to zero all the

components of , except the one , Householder vector ought to be

chosen as

 ‖ ‖ (3.29)

 being the unit vector of .The matrix computed by (3.28)

depends on the vector itself, and it can be checked that

 , ‖ ‖ ⏟

 - (3.30)

Example 3.2 Let , - and , then

 <

= ,

 [

] , <

=

 If , for some , the first components of must remain unaltered ,

while the components from on are to be set to zero, the Householder

matrix () takes the following form

 () [

]
 ()(())

‖ ()‖

 . (3.31)

As usual, is the identity matrix of order , while is the elementary

Householder matrix of order associated with the reflection across the

hyperplane orthogonal to the vector () . According to (4.29), the

Householder vector is given by

 () () ‖ ()‖

()

, (3.32)

78

 where () is the vector formed by the last components of

and
()

 is the first unit vector of the canonical basis of . We notice

that () is a function of through () will be discussed in Section 3.6.5.

 The components of the transformed vector () read

>

 ‖
()‖

 The Householder matrices will be employed in Section 3.6.2 to carry out

the reduction of a given matrix to a matrix () in upper Hesssnberg form.

 This is the first step for an efficient implementation of the QR iteration

(3.22)with () () (see Section 3.6).

Example 3.3 Let , - and (this means that we want to set

to zero the components , with) The matrix () and the

transformed vector () are given by

 ()

[

]

 ,

[

]

 The Givens elementary matrices are orthogonal rotation matrices that

allow for setting to zero in a selective way the entries of a vector or matrix.

 For a given pair of indices and , and a given angle , these matrices

are defined as

 () (3.33)

79

where is a null matrix expect for the following entries :

 () () A Givens matrix is of the form

 ()

[

 ()

 ()

 ()

 ()

]

 For a given vector , the product (()) is equivalent

to rotating counterclockwise by an angle in the coordinate plane () (

see Figure 3.4, right). After letting it follows that

 >

 (3.34)

Let √

 and notice that if and satisfy ⁄

 ⁄ (in each a case, (⁄)) , we get ,

and for Similarly , if ⁄ ⁄ (that is

, (⁄)) , then and for

Remark 3.3 (Householder deflation for power iterations)

 The elementary Householder transformations can be conveniently

employed to compute the first (largest or smallest) eigenvalues of given matrix

 .

 Assume that the eigenvalues of are ordered as in (3.8) and suppose that

the eigenvalue/ eigenvector pair () has been computed using the power

81

method. Then the matrix can be transformed into the following block form (

[34])

 (

*

 where , is the Householder matrix such that for

some , the matrix
() () and the eigenvalues of are the

same as those of except for . The matrix can be computed using (3.28)

with ‖ ‖

 The deflation procedure consists of computing the second dominant (sub

dominant) eigenvalue of by applying the power method to provided that

‖ ‖ ‖ ‖ Once is available , the corresponding eigenvector can be

computed by applying the inverse power iteration to the matrix taking

(see Section 3.3.2) and proceeding in the same manner with the remaining

eigenvalue/eigenvector pair.

 3-6-2 Reducing a Matrix in Hessenberg Form:

 A given matrix can be transformed by similarity transformations

into upper Hessenberg form with a cost of the order of flops. The algorithm

takes steps and similarity transformation Q can be computed as the

product of Householder matrices () (). For this, the reduction

procedure is commonly known as the Householder method.

 Precisely , the step consists of similarity transformation of

through the Householder matrix () which aims at setting to zero the elements

in positions of the column of , for () (see

Section 3.6.1). For example , in the case the reduction process yields

81

[

 ∎ ∎

∎ ∎

∎

∎

∎

∎

∎ ∎ ∎ ∎

∎ ∎ ∎ ∎]

 ⃗ ()

[

 ∎ ∎

∎ ∎

∎

∎

∎

∎

∎ ∎ ∎ ∎

∎ ∎ ∎ ∎]

 ⃗ ()

[

 ∎ ∎

∎ ∎

∎

∎

∎

∎

∎ ∎ ∎ ∎

∎ ∎ ∎ ∎]

 having denoted by ∎ the entries of the matrices that are a priori non zero.

Given () the method generates a sequence of matrices () that are

orthogonally similar to

 () ()
 () () (())

 (())

 ()
 () (3.35)

 For any the matrix () is given by (3.31), where is substituted

by the column vector in matrix () .From the definition (3.31) it is

easy to check that the operation ()
 () ()

() does the same on the

first columns. After steps of Householder reduction, we obtain a matrix

 () in upper Hessenberg form.

Remark 3.4 (The symmetric case) If is symmetric , the transformation (3.35)

maintains such a property. Indeed

(()) (()
 ())

 ()

 so that must be tridiagonal. Its eigenvalues can be efficiently computed

using the method of Sturm sequences with a cost of the order of flops.

 A coding of the Householder reduction method is provided in Program 8.

To compute the Householder vector , Program 11 is employed . In output , the

tow matrices and respectively in Hessenberg form and orthogonal, are

such that

82

Program 8 – Houshess :Hessenberg- Householder method:

function [H,Q]=houshess(A)

n=max(size(A)); Q=eye(n); H=A;

for k=1:(n-2),

 [v,beta]=vhouse(H(k+1:n,k)); I=eye(k); N=zeros(k,n-k);

 m=length(v); R=eye(m)-beta*v*v`; H(k+1:n,k:n)=R*H(k+1:n,k:n);

 H(1:n,k+1:n)=H(1:n,k+1:n)*R; P=[1,N;N`;R]; Q=Q*P;

end

 The algorithm coded in Program 8 requires a cost of ⁄ flops and is

well- conditioned with respect to rounding errors . Indeed, the following

estimate holds ([34])

 ̂ () ‖ ‖
 ‖ ‖ (3.36)

where ̂ is the Hessenberg matrix computed by Program 8, Q is an orthogonal

matrix , is a constant, is the roundoff unit and ‖ ‖ is the Frobenius norm .

Example 3.3 Consider the reduction in upper Hessenberg form of the Hilbert

matrix
 . Since is symmetric, its Hessenberg form should be a

triadigonal symmetric matrix .Program 8 yields the following results

 <

= [

]

The accuracy of the transformation procedure (3.35) can be measured by

computing the ‖ ‖ norm of the difference between and . This yields

‖ ‖
 , which confirms the stability estimate (3.36).

83

 3-6-3 QR factorization of a Matrix in Hessenberg Form:

 We explain how to efficiently implement the generic step of the QR

iteration, starting form a matrix () () in upper Hessenberg form.

 For any the first phase consists of computing the QR factorization of

 () by means of Givens rotation

(()) () (
()
) (

()
) () () (3.37)

where, for any
()
 ()

() is , for any the

 Gives rotation matrix (3.43) in which is chosen according to (3.34) in

such a way that the entry of indices (j+1,j) of the matrix

(
()
) (

()
) () is set equal to zero. The product (3.37) requires a

computational cost of the order of flops.

 The next step consists of completing the orthogonal similarity transformation

 () () () () .
()

()
/ (3.38)

The orthogonal matrix () .
()

()
/ is in upper Hessenberg form

.Indeed , taking for instance and recalling Section (3.6.1), we get

 ()
()

()
 [
∎ ∎
∎ ∎

] [

 ∎ ∎
 ∎ ∎

] 6
∎ ∎ ∎
∎ ∎ ∎
 ∎ ∎

7 .

 Also (3.38) requires a cost of the order of operations, for an overall

effort of the order of flops. In conclusion, performing the QR factorization

with elementary Givens rotations on a starting matrix in upper Hessenberg

form yields a reduction of operation count of one order of magnitude with

respect to the corresponding factorization with the modified Gram Schmidt

procedure of Section 3.4.

84

3-6-4 The Basic QR Iteration Starting from Upper:

Hessenberg Form.

 A basic implementation of the QR iteration to generate the real Schur

decomposition is given in Program 9.

 This program uses Program 8 to reduce in upper Hessenberg form ,

then each QR factorization step in (4.22) is carried out with Program 10 which

utilizes Givens rotations. The overall efficiency of the algorithm is ensured by

pre-and post-multiplying with Givens matrices as explained in Section 3.6.5,

and by constructing the matrix ()
()

()
 in the function prodgiv ,

with a cost of flops and without explicitly forming the Givens matrices

()
 for .

 As for the stability of the QR iteration with respect to rounding error

propagation, it can be shown that the computed real Schur form ̂ is

orthogonally similar to a matrix "close" to , i.e.

 ̂ ()

 where Q is orthogonal and ‖ ‖ ‖ ‖ , u being the machine roundoff unit.

 Program 9 returns in output, after niter iterations of the QR procedure , the

matrices T,Q and R in (3.22).

Program 9- hessqu :Hessenberg – QR method:

function [T,Q,R]=hessqr(A,niter)

n=max(size(A));

[T,Qhess]=houshess(A);

for j=1:niter

 [Q,R,c,s]=qrgivens(T);

T=R;

85

for k=1:n-1

 T=gacol(T,c(k),s(k),1,k+1,k,k+1);

 end

end

Program 10 - givensqr :QR factorization with Givens rotations:

function [Q,R,c,s]=qrgivens(H)

[m,n]=size(H);

for k=1:n-1

 [c(k),s(k)]=givcos(H(k,k),H(k+1,k));

 H=garow(H,c(k),s(k),k,k+1,k,n);

end

R=H; Q=prodgiv(c,s,n);

function Q=prodgiv(c,s,n)

n1=n-1;n2=n-2;

Q=eye(n);Q(n1,n1)=c)n1)=-s(n1);

for k=n2:-1:1,

k1=k+1;Q(k,k)=c(k);Q(k1,k)=-s(k);

q=Q(k1,k1:n); Q(k,k1:n)=s(k)*q;

Q(k1,k1:n)=c(k)*q;

end

86

Example 3.5 consider the matrix (already in Hessenberg form)

[

]

 To compute its eigenvalues, given by and , we apply the QR

method and we compute the matrix () after 40 iteration of Program 9.

Notice that the algorithm converges to the real Schur decomposition of

(3.24), with three blocks of order 1 () and with the block

 ()() having eigenvalues equal to

 ()

[

]

Example 3.6 Let us now employ the QR method to generate the Schur real

decomposition of the matrix below, after reducing it to upper Hessenberg

form

[

]

 The eigenvalues of are real and given (to four significant figures) by

 ,and and After 40 iterations of

Program 9, the computed matrix reads

 ()

[

]

87

It is not upper triangular, but block upper triangular, with a diagonal block

 and the two blocks

 0

1 0

1

having spectrums given by () and () respectively.

 It is important to recognize that matrix () is not the real Schur

decomposition of , but only a "cheating" version of it . In fact, in order for

the QR method to converge to the Schur decomposition of , it is mandatory

to resort to the shift techniques introduced in Section 3.7.

3-6-5 Implementation of transformation Matrices:

 In the definition (3.32) it is convenient to choose the minus sign, obtaining

 () () ‖ ()‖

()

 , in such a way that the vector
()

is a positive multiple of
()

 If is positive, in order to avoid numerical

cancellations, the computation can be rationalized as follows

()

 ‖ ()‖

 ‖
()‖

 ∑

 ‖
()‖

The construction of the Householder vector is performed by Program 11, which

takes as input a vector (formerly, the vector ()) and returns a

vector (the Householder vector ()), with a cost of the order of

flops .

 If is the generic matrix to which the Householder matrix

(3.28) is applied (where is the identity matrix of order and) letting

 , then

 ‖ ‖
 ⁄ (3.39)

Therefore, performing the product amounts to a matrix- vector product

() plus an external product vector- vector (). The overall

88

computational cost of the product is thus equal to () flops.

Similar consideration hold in the case where the product is to be computed

; defining we get

 (3.40)

 Notice that (3.39) and (3.40) do not require the explicit construction of

the matrix This reduces the computational cost to an order of flops ,

whilst executing the product without taking advantage of the special

structure of would increase the operation count to an order of flops.

Program 11 - vhouse :Construction of the Householder vector:

function [v,beta]=vhouse(x)

n=length(x); x=x/norm(x); s=x(2:n)`*x(2:n); v=[1;x(2:n)];

if (s==0), beta=0;

else

 mu=sqrt(x(1)^2+s);

if (x(1)<=0), v(1)=x(1)=x(1)-mu;

else, v(1)=-s/(x(1)+mu); end

beta=2*v(1)^2/(s+v(1)^2); v=v/v(1);

end

 Concerning the Givens rotation matrices, the computation of and is

carried out as follows. Let and be two fixed indices and assume that the

 component of a given vector must be set to zero. Letting

 √

 , relation (3.34)yields

0

1 0

1 0

1 (3.41)

89

 hence there is no need of explicitly computing , nor evaluating any

trigonometric function.

 Executing Program 12 to solve system (3.41), requires 5 flops, plus the

evaluation of a square root. As already noticed in the case of Householder

matrices, even for Givens rotations we don't have to explicitly compute the

matrix () to perform its product with a given matrix . For

that purpose Program 13 and 14 are used, both at the cost of flops. Looking

at the structure (3.33) of matrix () , it is clear that the first algorithm

only modifies rows and of .

 We conclude by noticing that the computation of Householder vector

and of the Givens sine and cosine (), are well-conditioned operations with

respect to rounding errors ([33]). parameters are the vector components and

 , whilst the output data are the Givens cosine and sine and .

Program 12 –givcos :Computation of Givens cosine and sine:

function [c,s]=givcos{xi,xk)

if (xk==0), c=1; s=0;else,

 if abs(xk)> abs(xi)

 t=-xi/xk; s=1/sqrt(1+t^2); c=s*t;

else

t=-xk/xi; c=1/sqrt(1+t^2); s=c*t;

 end

end

 Program 13 and 14 compute () and () respectively.

The input parameters and are the Givens cosine and sine .In Program 13,

the indices and identify the rows of the matrix , while and are

91

indices of the columns involved in the computation. Similarly, in Program 14

and identify the columns effected by the update (), while

 and are the indices of the rows involved in the computation .

Program 13 –garow : Product ()

function [M]=garow(M,c,s,i,k,j1,j2)

for j=j1:j2

 t1=M(i,j);

 t2=M(k,j);

 M(i,j)=c*t1-s*t2;

 M(k,j)=s*t1+c*t2;

end

Program 14 –gacol :Product ()

function [M]=gacol(M,c,s,j1,j2,i,k)

for j=j1:j2

 t1=M(j,i);

 t2=M(j,k);

 M(j,i)=c*t1-s*t2;

 M(j,k)=s*t1+c*t2;

End

91

3-7 The QR Iteration with Shifting Techniques:

 Example 3.9 reveals that the QR iteration does not always converge to the

real Schur form of a given matrix . To make this happen, an effective

approach consists of incorporating in the QR iteration (3.22) a shifting

technique similar to that introduced for inverse iteration in Section 3.3.2.

 This leads to the QR method with single shift described in Section 3.7.1,

which is used to accelerate the convergence of the QR iteration when has

eigenvalues with moduli very close to each other.

 In Section 3.7.2, a more sophisticated shifting technique is considered,

which guarantees the convergence of the QR iteration to the (approximate)

Schur form of matrix (see Property3.5). The resulting method (known as QR

iteration with double shift) is the most popular version of the QR iteration

(3.22) for solving the matrix eigenvalue problem, and is implemented in the

MATLAB intrinsic function eig.

3-7-1 The QR Method with single shift:

 Given , the shifted QR iteration is defined as follows. For

until convergence :

determine () () () (QR factorization);

 then , let (3.42)

 () () () .

where () (()) () is in upper Hessenberg form. Since the QR

factorization in (3.52) is performed on the shifted matrix () , the

scalar is called shift. The sequence of matrices () generated by (3.42) is

still similar to the initial matrix , since for any

 () () (())

(() () () ())

92

 (())

(() ()) () (())

 () ()

 (() () ())

 (() () ())

Assume is fixed and that the eigenvalues of are ordered in such a way that

| | | | | |

Then it can be shown that, for the subdiagonal entry
()

 tends to

zero with a rate that is proportional to the ratio

|() ()⁄ |

.

This extends the convergence result (3.27) to the shifted QR method ([35]).

 The result above suggests that if is chosen in such a way that

| | | | ,

 Then the matrix entry
()

 in iteration (3.42) tends rapidly to zero as

increases. (In the limit, if were equal to an eigenvalue of (), that is of ,

then
()

 and
()
 . In practice one takes

()

 , (3.43)

yielding the so called QR iteration with single shift. Correspondingly, the

convergence to zero of the sequence 2
()

3 is quadratic in the sense that if

|
()

| ‖ ()‖

 ⁄ for some then |

()
| ‖ ()‖

 (

) ⁄ ([18], [22]).

 This can be profitably taken into account when programming the QR

iteration with single shift by monitoring the size of the subdiagonal entry

|
()

| In practice,
()

 is set equal to zero if

|
()

| |
()

| |
()
| (3.44)

93

 for a prescribed , in general of the order of the roundoff unit. If is an

Hessenberg matrix, when for a certain
()

 is set to zero,
()

 provides the

desired approximation of . Then the QR iteration with shift can continue on

the matrix ()() and so on. This is a deflation algorithm.

Example 3.7 We consider again the matrix as in Example 3.6. Program 15,

with toll equal to the roundoff unit, converges in 14 iterations to the following

approximate real Schur form of , which displays the correct eigenvalues of

matrix on its diagonal (to six significant figures)

 ()

[

]

 .

We also report in Table 3.1 the convergence rate () of the sequence 2
()

3

 () computed as

 ()

()

() , .

The results show good agreement with the expected quadratic rate.

 |
()

| ‖ ()‖

⁄ ()

0 0.13865

1 1.5401. 2.1122

2 1.2213. 2.1591

3 1.8268. 1.9775

4 8.9036. 1.9449

94

TABLE 3.1. Convergence rate of the sequence 2
()

3 in the QR iteration

with single shift

 The coding of the QR iteration with single shift (3.42) is given in Program

15. The code utilizes Program 8 to reduce the matrix in upper Hessenberg

from and Program 10 to perform the QR factorization step. The input

parameters toll and itmax are the tolerance in (3.44) and the maximum

admissible number of iterations, respectively . In output, the program returns

the (approximated) real Schur form of and the number of iterations needed

for its computation.

Program 15 – qrshift :QR iteration with single shift

function[T,itr]=qrshift(A,toll,itmax)

n=max(size(A)); iter=0; [T,Q]=houshess(A);

for k=n:-1:n

I=eye(k);

while abs(T(k,k-1))> tool*(abs(T(k,k)+abs(T(k,k-1)))

 iter=iter+1;

 if(iter>itmax),

 return

 end

 mu=T(k,k); [Q,R,c,s]=qrgivens(T(1:k,1:k)-mu*I);

 T(1:k,1:k)=R*Q+mu*I;

 end

T(k,k-1)=0;

end

95

3-7-2 The QR Iteration Method with Double shift:

 The single-shift QR iteration (3.42) with the choice (3.43) for is effective

if the eigenvalues of are real, but not necessarily when complex conjugate

eigenvalues are present, as happens in the following example.

Example 3.8 The matrix (reported below to five significant figures)

 [

]

 has eigenvalues * + being imaginary unit. Running Program 15

with toll equal to the roundoff unit yields after 100 iterations

 () [

]

 The obtained matrix is the real Schur form of , where the block

 () (2:3,2:3) has complex conjugate eigenvalues These eigenvalues

cannot be computed by the algorithm (3.42)-(3.43) since is real .

 The problem with this example is that working with real matrices

necessarily yields a real shift, whereas a complex one would be needed. The

QR iteration with double shift is set up to account for complex eigenvalues and

allows for removing the diagonal blocks of the real Schur form of .

 Precisely, suppose that the QR iteration with single shift (3.42) detects at

some step a diagonal block
()

 that cannot be reduced into upper

triangular form. Since the iteration is converging to the real Schur form of the

matrix the two eigenvalues of
()

 are complex conjugate and will be

denoted by () and ̅(). The double shift strategy consists of the following

steps:

96

 determine () () such that

 () () () () (first QR factorization);

then, let

 () () () () ;

determine () () such that [3.45]

 () () () ̅() (second QR factorization)

then, let

 () () () ̅()

 Once the double shift has been carried out the QR iteration with single

shift is continued until a situation analogous to the one above is encountered.

 The QR iteration incorporating the double shift strategy is the most

effective algorithm for computing eigenvalues and yields the approximate

Schur form of a given matrix . Its actual implementation is far more

sophisticated than the outline above and is called QR iteration with Francis

shift ([18] ,[22]). As for the case of the QR iteration with single shift, quadratic

convergence can also be proven for the QR method with Francis shift.

However, special matrices have recently been found for which the method fails

to converge. We refer for some analysis and remedies to [39],[40], although the

finding of a shift strategy that guarantees convergence of the QR iteration for

all matrices is still an open problem.

Example 3.9 Let us apply the QR iteration with double shift to the matrix in

Example 3.8. After 97 iterations of Program 16, with toll equal to the roundoff

unit, we get the following (approximate) Schur form of , which displays on its

diagonal the four eigenvalues of

97

 ()

[

()

()

()]

 where
()

 ,
()

 and

()

 , respectively .

 A basic implementation of the QR iteration with double shift is provided

in Program 16. The input/output parameters are the same as those of Program

15 . The output matrix T is the approximate Schur form of matrix .

Program 16 -qr2shift :QR iteration with double shift

 function [T,iter]=qr2shift(A,toll,itmax)

 n=max(size(A)); iter=0; [T,Q]=houshess(A);

 for k=n:-1:2

 I=eye(k);

 while abs(T(k,k-1))>toll*(abs(T(k,k))+abs(T(k-1,k-1)))

 iter=iter+1; if (iter > itmax), return, end

 mu=T(k,k); [Q,R,c,s]=qrgivens(T(1:k,1:k)-mu*I);

 T(1:k,1:k)=R*Q+mu*I;

 if (k>2),

 T diag2=abs(T(k-1,k-1))+abs(T(k-2,k-2));

 if abs(T(k-1,k-2)) i=toll*T diag2;

 [Iambda]=eig(T(k-1:k,k-1:k));

 [Q,R,c,s]=qrgivens(T(1:k,1:k)-Iambda(1)*I);

 T(1:k,1:k)=R*Q+Iambda(1)*I;

98

 [Q,R,c,s]=qrgivens(T(1:k,1:k)-Iambda(2)*I);

 T(1:k,1:k)R*Q+Iambda(2)*I;

end

end

end, T(k,k-1)=0;

end

I=eye(2);

while (abs(T(2,1))>toll*(abs(T(2,2))+abs(T(1,1))))&(iter<=itmax)

 iter=iter+1; mu=T(2,2);

 [Q,R,c,s]=qrgivens(T(1:2,1:2)-mu*I); T(1:2,1:2)=R*Q+mu*I;

end

3-8 Computing The Eigenvector and the SVD of a Matrix:

 The power and inverse iteration described in Section 3.3.2 can be used to

compute a selected number of eigenvalue/eigenvector pairs. If all the

eigenvalues and eigenvectors of matrix are needed, the QR iteration can be

profitably employed to compute the eigenvectors as shown in Section 3.8.1and

3.8.2. In Section 3.8.3 we deal with the computation of the singular value

decomposition (SVD) of a given matrix.

3-8-1 The Hessenberg Inverse Iteration:

 For any approximate eigenvalue computed by the QR iteration as

described in Section 3.7.2, the inverse iteration (3.20)cab be applied to the

matrix in Hessenberg form, yielding an approximate eigenvector .

Then, the eigenvector associated with is computed as Clearly, one

can take advantage of the structure of the Hessenberg matrix for an efficient

99

solution of the linear system at each step of (3.20). Typically, only one iteration

is required to produce an adequate approximation of the desired eigenvector

 ([22]).

 3-8-2 Computing the Eigenvectors from the Schur Form of a matrix:

 Suppose that the (approximate) Schur form of a given matrix

 has been computed by the QR iteration with double shift, a

unitary matrix and being upper triangular.

 Then if , we have i.e letting

 holds. Therefore is eigenvector of , so that to compute the

eigenvectors of we can work directly on Schur form

 Assume for simplicity that is a simple eigenvalue of . Then the

upper triangular matrix can be decomposed as

 <

=,

where
() () and

() () are upper triangular

matrices, , and () ()

Thus, letting (

) with
 , and

 ,

the matrix eigenvector problem () can be written as

>

()

 ()

 (3.46)

 Since is simple, both matrices and are

nonsingular, so that the third equation in (3.46) yield and the first

equation becomes

() .

111

Setting arbitrarily and solving the triangular system above for

yields (formally)

 (
 ()

+ .

The desired eigenvector can then be computed as .

 Invoking this function with the format , - () yields the matrix

whose columns are the right eigenvectors of and the diagonal matrix

contains its eigenvalues. Further details can be found in strvec subroutine in the

LAPACK library, while for the computation of eigenvectors in the case where

 is symmetric, we refer to [22], [37].

3-8-3 Approximate Computation of the SVD of a matrix:

 We describe the Golub-Kahan-Reinsh algorithm for computation of the

SVD of a matrix with ([22]). The method consists of two

phases, a direct one and an iterative one.

 In the first phase is transformed into an upper trapezoidal matrix of the

form

 .

/ (3.47)

where and are two orthogonal matrices and is upper bidiagonal.

The matrices and are generated using Householder matrices

 as follows.

The algorithm initially generates in such a way that the matrix ()

has
()
 if Then, is determined so that () () has

()
 for , preserving at the same time the null entries of the previous

step. The procedure is repeated starting from (), and taking such that

 ()
() has

()
 for and in such a way that () ()

111

has
()
 for , yet preserving the null entries already generated. For

example, in the case the first two steps of the reduction process

yield

 ()

[

∎ ∎ ∎ ∎
 ∎ ∎ ∎

∎
∎
∎

∎
∎
∎

∎
∎
∎]

 () ()

[

∎ ∎
 ∎ ∎ ∎

∎
∎
∎

∎
∎
∎

∎
∎
∎]

having denoted by ∎the entries of the matrices that in principle are different

than zero. After at most steps, we find (3.47) with

 In the second phase, the obtained matrix is reduced into a diagonal matrix

∑ using the QR iteration. Precisely, a sequence of upper bidiagonal matrices

 () are constructed such that, as , their off-diagonal entries tend to zero

quadratically and the diagonal entries tend to the singular values of . In the

limit, the process generates two orthogonal matrices and such that

 ∑ ()

The SVD of is then given by

 .
∑

/,

with () and .

 The computational cost of this procedure is

 flops,

which reduces to

 flops if only the singular values are computed.

In this case, recalling what was stated in Section 3.8 about the method

described in the present section is preferable to computing directly the

eiagenvalues of and then taking their square roots.

112

 As for the stability of this procedure, it can be shown that the computed

 turn out to be the singular values of the matrix with

‖ ‖ ‖ ‖

 being a constant dependent on and the roundoff unit For other

approaches to the computation of the SVD of a matrix, ([22] , [34]).

3-9 The Generalized Eigenvalue Problem:

 Let be two given matrices, for any , we call a

matrix pencil and denote it by (). The set ()of the eigenvalues of

() is defined as

 () * () +

The generalized matrix eigenvalue problem can be formulated as : find

 () and a nonnull vector such that

 (3.48)

 The pair () satisfying (3.48) is an eigenvalue/eigenvector pair of the

pencil (). Note that by setting in (3.48) we recover the standard

matrix eigenvalue problem considered thus far.

 Problems like (3.48) arise frequently in engineering applications, e.g., in

the study of vibrations of structures (buildings, aircrafts and bridges) or in the

mode analysis for waveguides ([37] , [38]). Another example is the

computation of the extermal eigenvalues of a preconditioned matrix (in

which case in (3.48) when solving a linear system with an iterative

method (see Remark 3.2).

 Let us introduce some definitions. We say that the pencil () is regular

if () is not identically zero, otherwise the pencil is singular. When

() is regular, () () is the characteristic polynomial of the

pencil; denoting by the degree of the eigenvalues of () are defined as :

113

1. the roots of ()

2. (with multiplicity equal to).

Example 3.10

 0

1 0

1 () ()

 0

1 0

1 () () * +

 0

1 0

1 () ()

 The first pair of matrices shows that symmetric pencils, unlike symmetric

matrices, may exhibit complex conjugate eigenvalues. The second pair is

regular pencil displaying an eigenvalue equal to infinity, while the third pair is

an example of singular pencil.

3-9-1 Computing the Generalized Real Schur Form:

 The definitions and examples above imply that the pencil ()has

finite eigenvalues iff is nonsingular.

 In such a case, a possible approach to the solution of problem (3.48) is to

transform it into the equivalent eigenvalue problem where the matrix

 is the solution of the system then apply the QR iteration to . For

actually computing the matrix , one can use Gauss elimination with pivoting

or the techniques shown in Section 2.7. This procedure can yield inaccurate

result if is ill-conditioned, since computing is sffected by rounding errors

of the order of ‖ ‖ ‖
 ‖ ([22]).

 A more attractive approach is based on the following result, which

generalizes the Schur decomposition theorem 1.5 to the case of regular pencils

to ([34]).

114

Property 3.9 (Generalized Schur decomposition) Let () be a regular

pencil. Then, there exist two unitary matrices and such that ,

 where and are upper triangular. For the eigenvalues

of () are given by

 ⁄

 Exactly as in the matrix eigenvalue problem, the generalized Schur form

cannot be explicitly computed, so the counterpart of the real Schur form (3.24)

has to be computed. Assuming that the and are real, it can be shown that

there exist two orthogonal matrices ̃ and ̃ such that ̃ ̃ ̃ is upper

quasi-triangular ̃ ̃ ̃ is upper triangular. This decomposition is known as

the generalized real Schur decomposition of a pair () and can be computed

by a suitably modified version of the QR algorithm, known as iteration,

which consists of the following steps ([22], ,[34):

1. reduce and into upper Hessenberg form and upper triangular form,

respectively, i.e., find two orthogonal matrices and such that

 is upper Hessenberg and is upper triangular ;

2. the QR iteration is applied to the matrix to reduce it to real Schur

form.

 To save computational resources, the QZ algorithm overwrites the matrices

 and on their upper Hessenberg and triangular forms and requires

flops; an additional cost of operations is required if and are also

needed.

115

3-9-2 Generalized Real Schur Form of Symmetric –Definite Pencils:

 A remarkable situation occurs when both and are symmetric, and one

of them, say , is also positive definite. In such a case, the pair () forms a

symmetric-definite pencil for which the following result holds.

Theorem 3.5 The symmetric-definite pencil () has real eigenvalues and

linearly independent eigenvectors. Moreover, the matrix and can be

simultaneously diagonalized. Precisely, there exists a nonsingular matrix

 such that

 ()

where for are the eigenvalue of the pencil ().

Proof. Since is symmetric positive definite, it admits a unique Cholesky

factorization , where is upper triangular (see Section 2.4). From

(3.48) we deduce that with , where ()is an

eigenvalue/eigenvector pair ().

 The matrix is stmmetric; therefore, its eigenvalues are real and a set of

orthonormal eigenvectors () exists. As a consequence, letting

 allows for simultaneously diagonalizing both and since

 ()

 The following QR –Cholesky algorithm computes the eigenvalues and

corresponding eigenvectors of a symmetric-definite pencil (), for

 ([22], [34]):

1. compute the Cholesky factorization

2. compute

3. for compute the eigenvalues and eigenvectors of the

symmetric matrix using the QR iteration. Then construct from the set

116

* + an orthonormal set of eigenvectors * + (using, for instance, the

modified Gram-Schmidt procedure of Section 3.4);

4. for compute the eigenvectors of pencil () by solving

the systems .

This algorithm requires an order of flops and it can be shown ([22])

that if ̂ is a computed eigenvalue, then

 ̂ () with ‖ ‖ ‖ ‖ ‖
 ‖

Thus, the generalized eigenvalue problem in the symmetric-definite case

may become unstable with respect to rounding errors propagation if is ill-

conditioned. For a stabilized version of the QR-Cholesky method, [22] and

the references cited therein.

117

Chapter Four

4.0 Basic Concepts

4.0.1 Linear Constraints

 In this chapter we examine ways of representing linear constraints. The goal

is to write.

 The constraints in a form that makes it easy to move from one feasible point

to another.

 The constraints specify interrelationships among the variables so that, for

example, if we increase the first variable, retaining feasibility might require

making a complicated sequence of changes to all the other variables. It is much

easier if we express the constraints using acoordinate system that is ―natural‖

for the constraints. Then the interrelationships among the variables are taken

care of by the coordinate system, and moves between feasible pointsare almost

as simple as for a problem without constraints.

 In the general case these constraints may be either equalities or inequalities.

Since any inequality of the ―less than or equal‖ type may be transformed to an

equivalent constraint of the ―greater or equal‖ type, any problem with linear

constraints may be written as follows:

minimize ()

subject to

 Each here is a vector of length and each is a scalar. is an index set

for the equality constraints and is an index set for the inequality constraints.

We denote by the matrix whose rows are the vectors
 and denote by b the

vector of right-hand side coefficients .

118

Let be the set of feasible points. A set of this form, defined by a finite number

of linear constraints, is sometimes called a polyhedron or a polyhedral set. In

this chapter we are notconcerned with the properties of the objective function

 .

Example 4.1 (Problem with Linear Constraints). Consider the problem

minimize ()

subject to

Figure 4.1. Feasible directions.

For this example * + * + The vectors * + that

determine the constraints

are

 ()
 ()

 () ()

and the right-hand sides are

119

 We start by taking a closer look at the relation between a feasible point

and its neighboring feasible points. We shall be interested in determining how

the function value changes as we move from a feasible point ̅ to nearby

feasible points.

 First let us look at the direction of movement. We define to be a feasible

direction at the point ̅ if a small step taken along leads to a feasible point in

the set. Mathematically, is a feasible direction if there exists some

such that ̅ for all

 Thus, a small movement from ̅ along a feasible direction maintains

feasibility. In addition, since the feasible set is convex, any feasible point in the

set can be reached from ̅ by moving along some feasible direction. Examples

of feasible directions are shown in Figure 4.1.

 In many applications, it is useful to maintain feasibility at every iteration.

For example, the objective function may only be defined at feasible points. Or

if the algorithm is terminated before an optimal solution has been found, only a

feasible point may have practical value. These considerations motivate a class

of methods called feasible-point methods. These methods have the following

form.

Algorithm 4.1.

Feasible-Point Method

1. Specify some initial feasible guess of the solution

2. For

(i) Determine a feasible direction of descent at the point . If none exists,

stop.

(ii) Determine a new feasible estimate of the solution

 where

111

 () ()

 In this chapter we are mainly concerned with representing feasible

directions with respect to in terms of the constraint vectors . We begin by

characterizing feasible directions with respect to a single constraint.

Specifically, we determine conditions that ensure that small movements away

from a feasible point ̅ will keep the constraint satisfied.

 Consider first an equality constraint
 . Let us examine the effect

of taking asmall positive step in the direction . Since
 ̅ , then

 (̅) will hold if

and only if

Example 4.2 (An Equality Constraint). Suppose that we wished to solve

 ()

 For this constraint ()
 and . Let ̅ () so that ̅

satisfies the constraint.

 Then ̅ will satisfy the constraint if and only if
 , that is,

For this example

 (̅) (̅ ̅) () () ()

as expected.

 The original problem is equivalent to

 (̅)

where ̅ () , as before, and where () is a vector satisfying

111

Expressing feasible points in the form ̅ will be a way for us to

transform constrained problems to equivalent problems without constraints.

 Continuing to inequality constraints, consider first some constraint

 which

is inactive at ̅ . Since
 ̅ , then

 (̅) for all α

sufficiently small. Thus, we can move a small distance in any direction p

without violating the constraint.

If the inequality constraint is active at ̅, we have
 ̅ . Then to

guarantee that

 (̅) for small positive step lengths α, the direction p must

satisfy
 .

Example 4.3 (An Inequality Constraint). Suppose that we wished to solve

 ()

For this constraint ()
 and . If ̅ () , then the

constraint is inactive and any nearby point is feasible.

 If ̅ () , then the constraint is active and nearby points can be

expressed in the form ̅ with
 . For this example this

corresponds to the condition or

 In summary, we conclude that the feasible directions at a point ̅ are

determined by the equality constraints and the active inequalities at that point.

Let ̂ denote the set of active inequality constraints at ̅. Then is a feasible

direction with respect to the feasible set at ̅ if and only if

 ̂

112

In the following, it will be convenient to consider separately problems that have

only equality constraints, or only inequality constraints.

 The general form of the equality-constrained problem is

 ()

It is evident from our discussion above that a vector p is a feasible direction for

the linear equality constraints if and only if

We call the set of all vectors p such that the null space of . A

direction is a feasible direction for the linear equality constraints if and only

if it lies in the null space of .

 The general form of the inequality-constrained problem is

 ()

Let ̅ be a feasible point for this problem. We have observed already that the

inactive constraints at ̅ do not influence the feasible directions at this point.

Let ̂ be the submatrix of corresponding to the rows of the active constraints

at ̅. Then a direction is a feasible direction for at ̅ if and only if

 ̂ .

 Since the inactive constraints at a point have no impact on its feasible

directions, such constraints can be ignored when testing whether the point is

locally optimal. In particular, if we had prior knowledge of which constraints

are active at the optimum, we could cast aside the inactive constraints and treat

the active constraints as equalities. A solution of the inequality-constrained

113

problem is a solution of the equality-constrained problem defined by the active

constraints.

 The theory for inequality-constrained problems draws on the theory for

equality-constrained problems. For this reason, it is important to study

problems with only equality constraints. In particular, it will be useful to study

ways to represent all the vectors in the null space of a matrix.

 Once a feasible direction is determined, the new estimate of the solution

is of the form ̅ where Since the new point must be feasible, in

general there is an upper limit on how large α can be.

 For an equality constraint we have
 and so

 (̅)

 ̅

Figure 4.2. Movement to and away from the boundary.

for all values of . For an active inequality constraint we have
 , and

so

 (̅)

 ̅

for all values of . Thus only the inactive constraints are relevant when

determining

114

an upper bound on .

 Because ̅ is feasible,
 ̅ for all inactive constraints. Thus, if

 , the

 constraint remains satisfied for all α ≥ 0. As α increases, the movement is

away from the boundary of the constraint. On the other hand, if
 the

inequality will remain valid only if (
 ̅) (

) Apositive step

along p is a move towards the boundary, and any step larger than this bound

will violate the constraint. (See Figure 4.2.) The maximum step length ̅ that

maintains feasibility is obtained from a ratio test:

 ̅ *(
 ̅) (

)
 +

 where the minimum is taken over all inactive constraints. If
 for

all inactive constraints, then an arbitrarily large step can be taken without

violating feasibility.

Example 4.4 (Ratio Test). ̅ () and () . Suppose that

there are three inactive constraints with

 ()

 ()

 ()

Then

so only the first two constraints are used in the ratio test:

 ̅ *(
 ̅) (

)
 +

 * () () +

115

Notice that the point ̅ ̅ (

) is on the boundary of the second

constrain

4.0.2 Null and Range Spaces:

 Let be an matrix with . We denote the null space of by

 () * +

 The null space of a matrix is the set of vectors orthogonal to the rows of

the matrix. Recall that the null space represents the set of feasible directions for

the constraints . It is easy to see that any linear combination of two

vectors in () is also in () and thus the null space is a subspace of . It

can be shown that the dimension of this subspace is () When A

has full row rank (i.e., its rows are linearly independent), this is just

 .

 Another term that will be important to our discussions is the range space

of a matrix.

 This is the set of vectors spanned by the columns of the matrix (that is, the

set of all linear combinations of these columns). In particular, we are interested

in the range space of ,

defined by

 () * + .

116

Figure 4.3. Null space and range space of ()

Throughout this text, if we mention a range space without specifying a matrix,

it refers to the range space of . The dimension of the range space is the same

as the rank of , orequivalently the rank of .

 There is an important relationship between () and (): they are

orthogonal subspaces. This means that any vector in one subspace is

orthogonal to any vector in theother. To verify this statement, we note that any

vector) can be expressed as for some , and

therefore, for any vector () we have

 There is more. Because the null and range spaces are orthogonal subspaces

whose dimensions sum to , any vector can be written

uniquely as the sum of a null-space and a range-space component:

where () and () Figure 3.5 illustrates the null and range

spaces for () where a is a two-dimensional nonzero vector. Notice that

the vector is orthogonal to the null space and that any range-space vector is a

scalar multiple of . The decomposition of a vector x into null-space and range-

space components is also shown in

Figure 4.3.

 How can we represent vectors in the null space of ? For this purpose, we

define a matrix to be a null-space matrix for if any vector in () can be

expressed as a linear combination of the columns of . The representation of a

null-space matrix is not unique.

 If has full row , any matrix of dimension and rank

 that satisfies

117

 is a null-space matrix. The column dimension must be at least

(). In the special case where is equal to , the columns of are

linearly independent, and is then called a basis matrix for the null space of A.

If is an null-space matrix, the null space can be represented as

 () * +

thus () () This representation of the null space gives us a practical

way to generate feasible points. If ̅ is any point satisfying , then all

other feasible points can be written as

 ̅

for some vector .

As an example consider the rank-two matrix

 .

/

The null space of A is the set of all vectors p such that

 .

/:

; .

/ .

/

that is, the vector must satisfy and . Thus any null-space

vector must

have the form

 :

;

for some scalars and . A possible basis matrix for the null space of is

118

 :

;

and the null space can be expressed as

 () * +

The matrix

 ̅ :

;

is also a null-space matrix for , but it is not a basis matrix since its third

column is a linear combination of the first two columns. The null space of A

can be expressed in terms of ̅

as

 () * ̅ ̅ ̅ +

4.0.3 Generating Null-Space Matrices:

 We present here four commonly used methods for deriving a null-space

matrix for . Thediscussion assumes that is an matrix of full row rank

(and hence). Two of the approaches, the variable reduction method and

the QR factorization, yield an () basis matrix for () The other

two methods yield an null-space matrix.

4.0.3.1 Variable Reduction Method:

 This method is the approach used by the simplex algorithm for linear

programming. It is also used in nonlinear optimization. We start with an

example.

119

Consider the linear system of equations:

 This system has the form . We wish to generate all solutions to this

system.

 We can solve for any two variables whose associated columns in are

linearly independent in terms of the third variable. For example, we can solve

for and in terms of

 as follows:

The set of all solutions to the system can be written as

 (

+

where is chosen arbitrarily. Thus () is a basis for the null space

of .

 Since the values of and depend on , they are called dependent

variables.

 They are also sometimes called basic variables. The variable which can

take on any value is called an independent variable, or a nonbasic variable.

To generalize this, consider the system . Select any set of

variables whose corresponding columns are linearly independent—these will be

the basic variables.

Denote by the matrix defined by these columns. The remaining

variables will be the nonbasic variables; we denote the () matrix

121

of their respective columns by . The general solution to the system

is obtained by expressing the basic variables in terms of the nonbasic variables,

where the nonbasic variables can take on any arbitrary value.

 For ease of notation we assume here that the first variables are the basic

variables.

Thus

 () .

/ .

Premultiplying the last equation by we get

 .

Thus the set of solutions to the system is

 .

/ .

/

and the () matrix

 .

/

is a basis for the null space of .

Consider now the system . One feasible solution is

 ̅ .

/

If is any point that satisfies , then can be written in the form

 ̅ ̅ .

/ .

/

 If the basis matrix is chosen differently, then the representation of the

feasible points changes, but the set of feasible points does not.

 In this derivation we assumed that the first variables were the basic

variables. If this is not true, the rows in must be reordered to correspond to

121

the ordering of the basic and nonbasic variables. This technique is illustrated in

the following example.

Example 4.5 (Variable Reduction). Consider the system of constraints

with

 .

/ and .

/.

Let consist of the first two columns of , and let consist of the last two

columns:

 .

/ and .

/.

Then

 ̅ .

/ :

;

and

 .

/ :

;

It is easy to verify that ̅ and . Every point satisfying

 is of the form

 :

;.

/ (

,

If instead is chosen as columns 4 and 3 of (in that order), and as

columns 2

and 1, then

122

 .

/ .

/

Care must be taken in defining ̅ and to ensure that their components are

positioned correctly. In this case

 .

/ and ̅ :

;

Notice that the components of are at positions 4 and 3 in ̅,

corresponding to the columns of that were used to define . Similarly

 .

/ and :

;

The rows of are placed in rows 4 and 3 of and the rows of are

placed in rows

2 and 1. As before, ̅ and . Every point satisfying is of

the form

 :

;.

/ (

,

 In practice the matrix itself is rarely formed explicitly, since the inverse

of should not be computed. This is not a limitation; is only needed to

provide matrix-vector products of the form , or the form . These

computations do not require explicitly.

 For example, the vector may be computed as follows. First we

compute

123

 Next we compute , by solving the system . (This

should be done via a numerically stable method such as the LU factorization.)

The vector is now given

by ()

 The variable reduction approach for representing the null space is the

method used in the simplex algorithm for linear programming. This approach

has been enhanced so that ever larger problems can be solved. These

enhancements exploit the sparsity that is oftenpresent in large problems, in

order to reduce computational effort and increase accuracy.

Figure 4.4. Orthogonal projection.

4.0.3.2 Orthogonal Projection Matrix:

 Let be an dimensional vector, and let be an matrix of full

row rank. Then can be expressed as a sum of two components, one in ()

and the other in ()

 where and for some dimensional vector .

Multiplying this equation on the left by gives , from which we

124

obtain () Substituting for gives the null-space component of

 () (())

The matrix

 ()

is called an orthogonal projection matrix into () The null-space component

of the vector can be found by premultiplying by the resulting vector

is also termed the orthogonal projection of onto () (see Figure 4.4).

 The orthogonal projection matrix is the unique matrix with the following

properties:

• It is a null-space matrix for

• , which means repeated application of the orthogonal projection has

no further effect;

• ()

The name ―orthogonal projection‖ may be misleading—unless is the identity

matrix it is not orthogonal.

 There are a number of ways to compute the projection matrix. Selection of

the method depends in general on the application, the size of , as well

as the sparsity of . We point out that by ―computing the matrix‖ we mean

representing the matrix so that a matrixvector product of the form can be

formed for any vector . The projection matrix itself is rarely formed explicitly.

 To demonstrate this point, suppose that consists of a single row: ,

where is an . Then

125

Forming explicitly would require approximately multiplications and

 storage locations. Forming the product for some vector would

require additional multiplications. These costs can be reduced dramatically

if only the vector and the scalar are stored. ―Forming‖ this way only

requires multiplications in the calculation of (). The matrix-vector

product is computed as () () This requires only

multiplications.

 In the example above the matrix is the scalar , which is easy to

invert. In the more general case where has several rows, the task of

―inverting‖ becomes expensive, and care must be taken to perform this in

a numerically stable manner. Often, this is done by the Cholesky factorization.

However, if is dense it is not advisable to form the matrix explicitly,

since it can be shown that its condition number is the square of that of . A

more stable approach is to use a QR factorization of

 For the case when is large and sparse, the QR factorization may be too

expensive, since it tends to produce dense factors. Special techniques that

attempt to exploit the sparsity structure of have been developed for this

situation.

4.0.3.3 Other Projections:

 As before, let be an matrix of full row rank. Let be a positive-

definite matrix, and consider the matrix

 ()

It is easy to show that is a null-space matrix for Also, An

 matrix with these two properties is called a projection matrix. An

orthogonal projection is therefore a symmetric projection matrix.

126

 Many of the new interior point algorithms for optimization use projections of

this form. In the case of linear programming, the matrix is generally a

diagonal matrix with positive diagonal terms. This matrix changes from

iteration to iteration, while remains unchanged. Special techniques for

computing and updating these projections have been developed.

4.0.3.4 The QR Factorization:

 Again let be an matrix with full row rank. We perform an

orthogonal factorization of :

Let () where consists of the first columns of and

consists of the last columns. Also denote the top triangular

submatrix of by . The rest of is an () zero matrix. Since

is an orthogonal matrix, it follows that

 , or

 and .

Thus

is a basis for the null space of . This basis is also known as an orthogonal

basis, since

 .

Example 4.6 (Generating a Basis Matrix Using the QR Factorization).

Consider the matrix

 .

/.

An orthogonal factorization of yields

127

(

 √

√

 √

 √

)

is a basis for the null space of .

 The QR factorization method has the important advantage that the basis

can be formed in a numerically stable manner. Moreover, computations

performed with respect to the resulting basis are numerically stable.

However, this numerical stability comes at a price, since computing the QR

factorization is relatively expensive. If is small relative to some savings

may be gained by not forming explicitly. An additional drawback of the QR

method is that the basis can be dense even when is sparse. As a result it

may be unsuitable for large sparse problems

4.0.3 The Chain Rule:

 The rule for obtaining the derivative of a function of a function is called

the chain rule.

 Consider a function () () and suppose that each is in

turn a function

of the variables that is () for We

examine the composite function

 () (())

The chain rule states that if is continuously differentiable in , and

 are continuously differentiable in , then h is continuously

differentiable in and

128

 () () (())

where

 () (() ()) .

The chain rule can be generalized to the case where g is a k-dimensional vector

of functions . In this case will also be a k-dimensional vector of functions.

If denotes the matrix whose column is , and denotes the

 matrix whose column is , then the above formula remains

valid.

Example 4.7 (Chain Rule). Suppose that

 ()

 ()

 ,

where

 ()

 ()

and let () (()) Then

 () (

+

and

 (()) (
 () ()

 ()
 () ()

*

 4
 () (

) ()

 () (
)

5

hence

129

 ()

 (

+4
 () (

) ()

 () (
)

5

A particular application of the chain rule is if

 .
 ()

/

If () (()) then

 () () (()) (()) (
 (())

 (())
*

 () (()) (())

Note that refers to the gradient of a function with respect to the vector of

variables .

 The chain rule can also be used to obtain second derivatives. We will

assume here that g is a scalar function. If g and are twice continuously

differentiable, then is twice continuously differentiable in and

 () () (()) () (()) ()

where a product of the form () is interpreted as

() ∑(())

4-1 Introduction:

 In this part we study techniques for solving nonlinear optimization

problems. We concentrate on problems that can be written in the general form

 minimize ()

 subject to () ,

131

 () ,

 Here is an index set for the equality constraints and is an index set for

the inequality constraints.

 We assume that the objective function and the constraint functions

are twice continuously differentiable.

 Hear we study the conditions satisfied by solutions to the constrained

optimization problem. We shall focus only on local solutions, for the same

reasons as in the unconstrained case. In the case of convex problems, that is,

when the feasible region is convex and is a convex function, any local

solution is also a global solution.

 In the unconstrained case the optimality conditions were derived by using

a Taylor series approximation to examine the behavior of the objective function

 about a local minimizer . In particular, at points ―near‖ the value of

does not decrease.

 A similar approach is used in the constrained case. Taylor series

approximations are used to analyze the behavior of the objective and the

constraints about a local constrained minimizer . In this case, at feasible

points ―near‖ the value of does not decrease.

 The optimality conditions will be derived in stages, first for problems with

linear constraints, and then for problems with nonlinear constraints. The

intuition in both cases is similar, but is easier to comprehend when the

constraints are linear. In the nonlinear case the details are more complicated

and can disguise the basic ideas involved.

 If all the constraints are linear, feasible movements are completely

characterized by feasible directions. (See Section 4.1.) At a local minimizer

there can be no feasible directions of descent for , hence

 () for all feasible directions p at . (4.1)

131

The first-order optimality condition is a direct result of this statement.

 If the problem has nonlinear constraints, it may no longer be possible to

move to nearby points along feasible directions. Instead, movements will be

made along feasible curves. Analyzing movement along curves is more

complicated than along directions, and more complicated situations can arise.

Even so, the basic idea is that the objective value will not decrease at feasible

points near .

 Some new concepts arise in the constrained case, in particular, the

Lagrange multipliers and the Lagrangian function. The Lagrange multipliers

are analogous to the dual variables in linear optimization. The Lagrangian is a

single function that combines the objective and constraint functions; it plays a

central role in the theory and algorithms of constrained optimization.

4.2 Optimality Conditions for Linear Equality Constraints:

 In this section we discuss the optimality conditions for nonlinear problems

where all constraints are linear equalities:

 minimize ()

 subject to ,

where is an matrix. We assume that is twice continuously

differentiable overthe feasible region. We also assume that the rows of are

linearly independent, that is, has full row rank. This is not an unduly

restrictive assumption since in theory, if a problemis consistent, we can discard

any redundant constraints.

 The main idea is to transform this constrained problem into an equivalent

unconstrained problem. The theory and methods for unconstrained optimization

can then beapplied to the new problem.

 To demonstrate the approach consider the problem

132

 minimize ()

 subject to .

At any feasible point, the variable can be expressed in terms of and

using . Substituting this into the formula for (), we obtain

the equivalent unconstrained problem

 minimize

(The number of variables has been reduced from three to two.) It is easy to

verify that a strict local minimizer to the unconstrained problem is

 . The solution to the original problem is

() with an optimal objective value of () .

 Any problem with linear equality constraints can be recast as an

equivalent unconstrained problem. Suppose we have a feasible point ̅, that is,

A ̅ . Then any otherfeasible point can be expressed as ̅ , where

is a feasible direction. Any feasible direction must lie in the null space of ,

the set of vectors p satisfying . Denoting this null space by (), the

feasible region can be described by * ̅ ()+

 Let be an null-space matrix for (with). Then the

feasible region is given by * ̅ +.

Consequently, our constrained problem in x is equivalent to the unconstrained

problem

 () (̅)

The function φ is the restriction of f onto the feasible region; we shall refer to it

as the reduced function.

 If Z is a basis matrix for the null space of , then will be a function of

 – variables. Not only has the constrained problem been transformed into

133

an unconstrained problem, but also the number of variables has been reduced as

well.

Example 4.8 (Reduced Function). Consider again the problem

 minimize ()

 subject to .

Select

 Z = (

+

as a null-space matrix for the constraint matrix (). Using the

(arbitrary) feasible point ̅ () , any feasible point can be written as

 ̅ (

+ (

+

for some ()
 . Substituting into , we obtain the reduced function

 ()

 .This is the same reduced function as before,

except that now the variables are called and rather than and .

 The optimality conditions involve the derivatives of the reduced function.

If ̅ , then by the chain rule ,

 () (̅) ()

and

 () (̅) ()

The vector () () is called the reduced gradient of at . If Z is an

orthogonal projection matrix, it is sometimes called the projected gradient.

Similarly the matrix () () is called the reduced Hessian matrix,

or sometimes the projected Hessian matrix. The reduced gradient and Hessian

134

matrix are the gradient and Hessian of the restriction of onto the feasible

region, evaluated at .

 If is a local solution of the constrained problem, then ̅

for some , and is a local minimizer of . Hence () and ()

is positive semidefinite.

Using the formulas for the reduced gradient and Hessian matrix, we obtain the

first- and second-order necessary conditions for a local minimizer. They are

summarized in the following lemma.

Lemma 4.1 (Necessary Conditions, Linear Equality Constraints). If is a

local minimizer

of f over * + and is a null-space matrix for , then

 • () , and

 • () is positive semidefinite;

that is, the reduced gradient is zero and the reduced Hessian matrix is positive

semidefinite.

 A point at which the reduced gradient is zero is a stationary point. Such a

point may be a local minimizer of , or a local maximizer, or neither, in which

case it is a saddle point.

 Second derivative information is used to distinguish local minimizers from

other stationary points.

 The second-order condition is equivalent to the condition

 () for all .

Observing that is a null-space vector, this can be rewritten as

 () for all ()

135

that is, the Hessian matrix at must be positive semidefinite on the null space

of .

 This condition does not require that the Hessian matrix itself be positive

semidefinite. It is a less stringent requirement. If the Hessian matrix at is

positive semidefinite, however, then of course the second-order condition will

be satisfied.

 The second-order sufficiency conditions are also analogous to the

unconstrained case.

We will assume that is a basis matrix for the null space of , so that the

columns of are linearly independent. The corresponding second-order

sufficiency conditions are given in the lemma below.

Lemma 4.2 (Sufficient Conditions, Linear Equality Constraints). If satisfies

 • ,

 • () , and

 • () is positive definite,

where is a basis matrix for the null space of , then is a strict local

minimizer of over * +

 The following example illustrates the optimality conditions.

Example 4.9 (Necessary Conditions for Optimality). We examine again the

problem

 minimize ()

 subject to

Since () ()
 then at the feasible point

 ()

the gradient of f is (3,−3, 6)T. Selecting

136

 (

+

as the null-space matrix of (), it is easily verified that

 () ()
 .

Thus, the reduced gradient vanishes at , and the first-order necessary

condition for a local

minimum is satisfied at this point. Checking the reduced Hessian matrix, we

find that

 () .

/(

+(

+ .

/

The reduced Hessian matrix is positive definite at . Hence the second-order

sufficiency conditions are satisfied, and is a strict local minimizer of f .

Notice that () itself is not positive definite.

 Let us choose some other feasible point, say () . The reduced

gradient at this point is

 () .

/ .

/ ;

hence this point is not a local minimizer. To move to a better point we should

use a descent direction. Any vector ()
 such that (())

 will be a descent direction for the reduced function at this point. The

corresponding direction will be a feasible descent direction for .

 Let us take another look at the first-order necessary condition. Let be a

local minimum, and let be any null-space matrix for . Breaking

 () into its null-space and range-space components gives

 ()

137

where is in and is in . Premultiplying by and recalling that the

reduced gradient vanishes at , we find that . This can occur only if

 , that is, if the null-space component of the gradient is zero. Therefore,

if is a local minimizer,

 ()
 (4.2)

for some m-vector . Thus, at a local minimum the gradient of the objective is

a linear combination of the gradients of the constraints. The vector gives the

coefficients of this linear combination. It is known as the vector of Lagrange

multipliers. Its component is the Lagrange multiplier for the constraint.

 The optimality conditions are demonstrated in Figure (4.5). This problem

involves a single linear constraint . At the minimizer the gradient

is parallel to the vector a. Therefore there exists some number such that

 () On the other hand, at the point ̅ the gradient is not parallel to

the vector a; thus there is no λ that satisfies

 (̅) , and the point is not optimal.

Figure 4.5. Existence of Lagrange multipliers.

Example 4.10 (Necessary Conditions for Optimality—Lagrange Multipliers).

Consider

138

again the problem in Example 4.8. The first-order necessary condition is

 (

+ (

+

This implies that and . Since the

solution must be feasible, we substitute these values into the constraint

 − +2 = 2 to obtain = 3 asthe only solution. This indicates that =

() is the unique stationary point.

Since we have seen that the second-order sufficiency conditions are satisfied at

 , this isthe unique local solution.

 In Example 4.10 we used condition (4.2) to obtain a local solution. In most

cases,however, these equations will not have a closed-form solution. This is

demonstrated in Example 4.11.

Example 4.11 (Intractability of the Optimality Conditions). Consider the

problem

Minimize ()

subject to .

The first-order necessary condition implies that, at a local minimum,

:

; (

+

 for some number . These three equations together with the constraint

 + + give four equations in the four unknowns , , , and .

These equations are not easy to solve, however. If we try to solve them

numerically, there is no guarantee that the solution will be a local minimizer; it

may be a saddle point or even a local maximizer.

139

 We have shown that if the reduced gradient is zero, then there exists a

vector of Lagrange multipliers that satisfies the optimality condition (4.2).

 The reverse is also true; that is, (4.2) implies that the reduced gradient

vanishes. Thus, the two versions of the first-order optimality condition are

equivalent. From a practical point of view there is a difference, however. If the

reduced gradient at a given point is nonzero, it can be used to find a descent

direction for the reduced function, and in turn for . In contrast, the fact that

Lagrange multipliers do not exist at a point does not assist in finding a better

estimate of a solution.

 Then why do we care about Lagrange multipliers? The Lagrange

multipliers provide important information in sensitivity analysis. Furthermore,

for problems with inequality constraints, estimates of the multipliers can

indicate how to improve an estimate of the solution. Consequently, the two

equivalent optimality conditions are used together in optimization software. A

common procedure is to find a point for which the reduced gradient is zero;

at condition (4.2) is consistent and the corresponding Lagrange multipliers

can be computed.

 Our derivation assumes that the matrix has full row rank, that is, its rows

are linearly independent. This assumption is called a regularity assumption.

The results in this section can be extended to the case where the rows of are

linearly dependent, but then the vector of Lagrange multipliers will not

generally be unique. For problems with nonlinear constraints, some

assumption, such as a regularity assumption on the gradients of the constraints

at the local minimum, is needed to state the optimality condition

4-3The Lagrange Multipliers and the Lagrange Function:

 The Lagrange multipliers express the gradient at the optimum as a linear

combination of the rows of the constraint matrix . These multipliers have a

141

significance which goes beyond this purely mathematical interpretation. In this

section we shall see that they indicate the sensitivity of the optimal objective

value to changes in the data. We also present the Lagrangian function and show

how it can be used to express the optimality conditions in a concise way.

 In most applications, only approximate data are available. Measurement

errors, fluctuations in data, and unavailability of information are some of the

factors that contribute to imprecision in the optimization model. In the absence

of precise data, there may be no choice but to solve the problem using the best

available estimates. Once a solution is obtained, the next step is to assess the

quality of the resulting solution. A key question is, how sensitive is the solution

to variations in the data?

 Here we address this question for the particular case where small

variations are made in the right-hand side of the constraints and investigate

their effect on the optimal objective value. Our presentation will be informal.

Amore formal proof is somewhat more complex.

 We start with the problem

 minimize ()

 subject to

We assume that is twice continuously differentiable, and that is an

matrix of full row rank. We also assume that a local minimizer has been

found, with correspondingoptimal objective value () Suppose now that the

right-hand side is perturbed to where is a vector of ―small‖

perturbations. We shall investigate how the optimal objective value changes as

a result of these perturbations. If the perturbations are sufficiently small, it is

reasonable to assume that the new problem has an optimum that is close to .

In fact this can be shown to be true, provided that the second-order sufficiency

141

conditions are satisfied at . For ̅ close to with ̅ , we can use a

Taylor series approximation to obtain

 (̅) () (̅)
 ()

 () (̅ –)

 ()

 () ∑

In particular, this is valid if ̅ is the minimizer of the perturbed problem. If the

right-hand side of the constraint changes by , then the optimal objective

value changes by approximately . Hence represents the change in the

optimal objective per unit change in the right-hand side. For this reason,

the Lagrange multipliers are also called shadow prices or dual variables.

Example 4.12 (Solution of a Perturbed Problem). Consider again the problem

minimize ()

subject to

In Example 4.10 we determined that ()
 , with ()

 and .

Consider now the perturbed problem

 minimize ()

 subject to

and denote its minimum value by (). The interpretation of the Lagrange

multipliers as shadow prices indicates that a first-order estimate of this

minimum value is

 () .

For example , the approximate optimal objective value is zero.

142

The precise solution to the perturbed problem is

 ,

and , with an objective value of

 ()

If , the true value of the optimal objective is .

 Let us now take another look at the optimality conditions (5.2). Since any

solution must be feasible, a local optimum is the solution to the system of

 equations in the unknowns and :

 ()

 .

This is another representation of the first-order optimality conditions.

 These conditions were used by Lagrange, although his work was done in a

moregeneral setting ([35]) . Following Lagrange’s approach we can construct

a

function of and :

 () ()–∑ (
) ()

 ()

where
 denotes the row of . This function is called the Lagrangian

function. The gradient of the Lagrangian with respect to is ()

 () , and the gradient with respect to is () .

Hence, the first-order optimality conditions can simply be stated as

 ()

Thus a local minimizer is a stationary point of the Lagrangian function.

4.4 Computing the Lagrange Multipliers:

143

 Consider the linear equality-constrained problem

 minimize ()

 subject to .

Assume that the regularity condition holds, that is, that the rows of are

linearly independent. Consider the optimality condition

 ()

 This is a system of equations in unknowns, and so it cannot

normally be expected to have a solution. At most feasible points , this

overdetermined system will be inconsistent, but if is a local solution of the

optimization problem, then the system will have a solution. How can such a

solution be computed?

 A useful tool is a matrix known as the right inverse. We define an

 matrix to be a right inverse for the matrix , if

 . It is easy to see that a matrix has a right inverse only if it has full row

rank. In this case, and if , then the right inverse is unique, and

 . If , the right inverse is generally not unique. For example, the

matrices

(

)

 and :

;

are both right inverses for the matrix

 .

/

144

 To see how right inverses are of use in solving the system

 (), suppose that a solution to this system exists. If both sides of this

equation are multiplied by
 , then we obtain

 ()

 (Here
 refers to ()

 and not () .) If the system () is

consistent, its solution
 () is unique, even though the right

inverse may not be unique. To verify this, note that () implies

that () and so the unique solution is

 (
) ()

(If has full row rank, the matrix is positive definite, and hence its

inverse exists.) The linear system () is consistent if and only if

 () is a linear combination of the rows of . Hence a vector λ∗ computed

via
 () will be a solution to the system if and only if

(
) ()

 In practice we will almost never find a point that satisfies the

optimality conditions precisely. Rather, we will (if successful) find some point

 that satisfies the optimality conditions to within some specified tolerance.

The point will be an estimate of the optimal solution. Correspondingly, the

vector
 () will be only an estimate of the vector of Lagrange

multipliers at the solution. It is sometimes termed a first-order estimate,

because, for sufficiently small , if ‖ ‖ (), ‖ ‖

 () also .

 In the rest of this section, we discuss methods for computing a right-

inverse matrix.

To avoid unnecessary work, the computation of a right-inverse matrix for a

matrix should be performed in conjunction with the computation of the null-

145

space matrix for . We will show that each of the methods for computing a

null-space matrix for .(see Section 4.0.3) provides a right-inverse matrix at

little or no additional cost. The discussion assumes that is an matrix

of full row rank.

• The variable reduction method.(see Section 4.0.3.1) In this method the

variables are partitioned into basic and nonbasic variables. The

matrix is partitioned into basic and nonbasic columns correspondingly.

Assuming that the first columns are basic, we have () where is

an nonsingular matrix, and the () matrix

 .

/

is a basis matrix for the null space of . The matrix

 .

/

is a right-inverse matrix for that is available with no additional computation.

• Orthogonal projection matrix . Let the matrix

 ()

be the orthogonal projection matrix(see Section 4.0.3.2) into the null space of

 . A right inverse for associated with the orthogonal projection is the matrix

 ()

This matrix, which we will denote by , is a special right inverse. It satisfies

the following four conditions:

 ()

 ()

146

 It can be shown that, for any matrix , there is a unique

matrix that satisfies these conditions. is called the Penrose–Moore

generalized inverse of .

 If has full row rank, then () , and if has full column

rank, then () . Formulas for can also be developed when

does not have full row or column rank; [41].

Given a point , the vector of Lagrange multiplier estimates () ()

obtained from the Penrose–Moore generalized inverse has the appealing

property that it solves the problem

 ‖ ()‖

 For this reason it is termed the least-squares Lagrange multiplier estimate at

 Because the condition number of is the square of the condition number

of , the computation of () is potentially unstable. The QR factorization

provides a stable approach to computing this matrix that is practical for smaller

problems

• A nonorthogonal projection (see Section 4.0.3.3) Let be a positive-definite

 matrix. Then the projection matrix

 ()

is a null-space matrix for . A right inverse for associated with this

projection is

 () .

• The QR factorization . (see Section 5.0.3.4)The QR factorization represents

 as a product of an orthogonal matrix and an upper triangular matrix .

Denoting the first columns of by and the last columns by ,

we have

147

 () .

/

where is an triangular matrix. The () matrix

is an orthogonal basis for the null space of . The matrix

is a right inverse for available from the QR factorization at little additional

cost. In fact, this matrix need not be formed explicitly: a computation of the

form
 ()

 may be done by first computing
 () and then solving the

triangular system . It is easy to show that
 () , and

hence this right inverse is in fact the Penrose–Moore generalized inverse of .

 Just as with the ―regular‖ matrix inverse, a right inverse is a useful

notational tool, but it should rarely be formed explicitly. Instead, computations

with respect to the right inverse should use the specific matrix factorizations

that were employed to obtain the null-space matrix.

Example 4.13 (Right Inverses). We will construct several right inverses for

 .

/

If variable reduction is used, with columns 2 and 3 of being selected as the

basic columns, then

 .

/ .

/

From these we determine that

148

 :

; and :

;

 (For all the right inverses that we compute in this example, it is straightforward

to verify that and .)

 If the orthogonal projection matrix is used, then

 ()

(

)

The corresponding right inverse is

 ()

(

)

.

 A nonorthogonal projection can also be used. If

149

 :

;

then

 ()

(

)

The corresponding right inverse is

 ()

(

)

If a QR factorization of is used, then

(

√

√

√

√

)

 and (

 √

 √

,

 consists of the last two columns of :

151

(

)

The right inverse is obtained from the formula

where consists of the first two columns of ,

(

√

√

√

√)

and consists of the first two rows of ,

 (
 √

 √
*

Hence

(

)

151

If

 () () ,

then for all of the above right inverses,

 () .

/

No matter which right inverse is used, the same values of the Lagrange

multipliers are obtained.

Program 17 Lagrange _ Multiplier _ Method:

 clear

A=[1 -1 0 0;0 0 1 1]

Deltaf=[7 -7 -2 -2]'

%A=input('Please, Enter A matrix ')

%Deltaf=input('Please, Enter ?f (x) matrix ')

 [Q,R]=qr(A')

[m,n]=size(R)

Q1=Q(1:m,1:n)

R1=R(1:n,1:n)

y1=Q1'*Deltaf

c=length(y1)

lambda(c)=y1(c)/R1(c,c)

for i=c-1:-1:1

 s=0;

 for k=i+1:c

 s=s+R1(i,k)*lambda(k);

152

 end

 lambda(i)=(y1(i)-s)/R1(i,i);

end

lambda=lambda'

Program 18 Lagrange _ Multiplier _ Method1:

% clear

% clc

] A=[4 1 1 1;1 4 1 1;1 1 4 1;1 1 1 4

] Deltaf=[1 1 1 1

A=input('Please, Enter A matrix ') %

Deltaf=input('Please, Enter ?f (x) matrix ') %

Deltaf=Deltaf'

 [Q,R]=qr(A ')

(m,n]=size(R [

Q1=Q(1:m,1:n)

R1=R(1:n,1:n)

y1=Q1'*Deltaf

c=length(y1)

lambda(c)=y1(c)/R1(c,c)

for i=c-1:-1:1

 ; s=0

 for k=i+1:c

 s=s+R1(i,k)*lambda(k);

153

 end

); lambda(i)=(y1(i)-s)/R1(i,i

end

lambda=lambda'

Program19 traditional _ methods :

clc

] A=[4 1 1 1;1 4 1 1;1 1 4 1;1 1 1 4

 Deltaf=[1 1 1 1]

lambda=inv(A)* Deltaf'

lambda=lambda'

5-5 Comparison and conclusion:

 We use the QR-methods to solve the previous problem , and as we know it

was an under determinant problem which lead us to the following observations:

 In under determinant problems in optimization (the problem in linear

mathematics which the number of linear equation is less than the number

of unknown is called the under determinate problem and has infinite

solutions) the QR-methods can solve easily as the example shows. The

traditional methods fails to get a solutions.

 In well determinant problems in optimization (the problem in linear

mathematics which the number of linear equation is equal the number of

unknown is called the well determinate problem and has just unique

solution) the QR-methods can solve easily as the following example

shows.

o Run the m-files Lagrange_Multiplier_Method1.m and

traditional_methods.m

154

o Use the MATLAB Command TIC-TOC to get the time of

execution for each m-files

o We get the following result

 QR-method = Elapsed time is 0.001140 seconds.

 The traditional Method = Elapsed time is 0.000470 seconds.

Although , the time of traditional methods is a little bit faster than the QR

Method we have to keep in mind it depend on the Matrix A itself. We

can conduct another experiment and get result that shows the QR-

method is faster. Another advantage of QR-method is that what if A is

Singular or semi singular that will lead to fail of the traditional methods .

 In over determinant problems in optimization (the problem in linear

mathematics which the number of linear equation is greater than the

number of unknown is called the over determinate problem and has no

solutions) the QR-methods can solve it. The over determinant problem

are un likely to happen in optimization ,but it happen when the model is

built by normal people (not professionals). So, we can say that the QR-

method can help the normal user to try to improve their work by using

optimizations techniques and not afraid of complicates of the solution of

the model.

 The computations methods is much more faster than traditional methods

and make the computer is much useful tool by applying the numerical

techniques .

155

References :

1. J.G.F. Francis, The QR transformation, Parts I and II, Computer J. 4

1961 265{272, 332{345.

2. H. Rutishauser, Der Quotienten-Di_erenzen-Algorithmus, Mitt. Inst.

Angew. Math. ETH, Vol. 7, Birkhauser, Basel, 1957.

3. H. Rutishauser, Solution of eigenvalue problems with the LR-

transformation, Nat. Bur. Standards Appl. Math. Series 49 (1958) 47-81.

4. V.N. Kublanovskaya, On some algorithms for the solution of the

complete eigenvalue problem, USSR Comput. Math. Math. Phys. 3

(1961) 637-657.

5. B.T. Smith et al., Matrix Eigensystem Routines - EISPACK Guide,

Springer, Berlin, 2nd Edition, 1976.

6. J.J. Dongarra, J.R. Bunch, C.B. Moler, G.W. Stewart, LINPACK Users'

Guide, SIAM, Philadelphia, 1979.

7. E. Anderson et al., LAPACK Users' Guide, SIAM, Philadelphia, 2nd

Edition, 1995. http://www.netlib.org/lapack/lug/lapack lug.html.

8. R. van de Geijn, D.G. Hudson, An efficient parallel implementation of

the nonsymmetric QR algorithm, in:Proceedings of the Fourth

Conference on Hypercube Concurrent Computers and Applications,

1989.

9. G. Henry, D. Watkins, J. Dongarra, A parallel implementation of the

nonsymmetric QR algorithm for distributedmemory architectures,

Technical Report LAPACK Working Note 121, University of Tennessee,

1997.

10. L.S. Blackford et al., ScaLAPACK Users' Guide, SIAM, Philadelphia,

1997. http://www.netlib.org/scalapack/slug/scalapack slug.html.

11. J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,

Oxford University, 1965.

http://www.netlib.org/lapack/lug/lapack%20lug.html
http://www.netlib.org/scalapack/slug/scalapack%20slug.html

156

12. B.N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall,

Englewood Cliffs, New Jersey, 1980. Reprinted by SIAM, 1997.

13. J. Della-Dora, Numerical linear algorithms and group theory, Linear

Algebra Appl. 10 (1975) 267-283.

14. D.S. Watkins, L. Elsner, Convergence of algorithms of decomposition

type for the eigenvalue problem, Linear Algebra Appl. 143 (1991) 19-47.

15. Stewar G. (1973) Introduction to Matrix Computations. Academic Press,

New York.

16. Axelsson O. (1994) Iterative Solution Methods . Cambridge University ,

New York.

17. Hackbush W. (1994) Iterative Solution of Large Sparse Systems of

Equations. Springer-Verlag, New York.

18. Demmel J. (1997) Applied Numerical Linear Algebra. SIAM,

Philadelphia.

19. Axelsson O. (1994) Iterative Solution Methods. Cambridge University

Press, New York.

20. Stewart G. and Sun J. (1990) Matrix Perturbation Theory. Academic

Press, New York.

21. Godeman R. (1966) Algebra. Kershaw, London.

22. Golub G. and Loan C.V. (1989) Matrix computations. The John

Hopkins Univ. Press, Baltimore and London.

23. Isaacson E. and Keller H. (1966) Analysis of Numerical Methods.

Wiley, New York.

24. Wilkinson J. (1968) A priori Error Analysis of Algebraic Processes. In

Intern. Congress Math., volume 19, pages 629-639. Izdat. Mir, Moscow.

25. Jennings A. and Mckeown J. (1992) Matrix Computation. Wiley ,

chichester.

26. Parlett B. and Reid J.(1970) on the solution of the System of the Linear

Equation Whose Matrix is Symmetric but not Definite BIT10:386-397

157

27. Aasen J(1971) on the Reduction of a Symmetric Matrix to Tridiagonal

Form BIT 11:233-242.

28. Golub G. and Liu J. (1981) Computer Solution of Larg Sparse Positive

Definite Systems. Prentice-Hall, Englewood Cliffs, New York.

29. Jennings A. and Mckeown J (1992) Matrix Computation Wiley

Chichester.

30. Faddeev D. K. and Faddeeva V. N. (1963) Computational Methods of

Linear Algebra. Freeman, San Francisco and London.

31. Barnett S. (1989) Leverrier's Algorithm : A New Proof and Extensions.

Numer. Math. 7:338-352.

32. Lawson C. and Hanson R. (1974) Solving Least Squares Problems.

Prentice-Hall, Englewood Cliffs, New York.

33. Bjorck A. (1988) Least Square Methods: Handbook of Numerical

Analysis Vol. 1 Solution of Equations in . Elsevier North Holland.

34. Datta B.(1995) Numerical Linear Algebra and Application BrooksL\

cole publishing , pacific Grore , CA.

35. Igor G. and G. Nash and A. Sofer (2008) Linear and Non Linear

Optimization . George Mason University Fairfax , Virginia.

36. Gastinel N.(1983) Linear Numerical Analysis. Kershaw Pub – Lishing

London.

37. Inman D (1993) Engineering Vibration Prenticevue Hall , Engle wood

cliffs , NT.

38. Bossavit A. (1993) Electromgnetisme, emvue de la modelistation.

Springer – Verlag , paris.

39. Batterson S. (1990) Convergence of Shifet QR Algorithm on 3 by 3

Normal Matrices. Numer. Math -58:341-352.

158

40. Day D. (1996) HOW the QR algorithm Fails to converge and How to

Fix It . Technical Report 96-0913J, Sandia National Laboratory ,

Albuquerque .

41. G.H.Golub and C.Van Matrix Computations (third edition), The Johns

Hopkins University press, Baltimor , 1996.

