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                                         Abstract 

We shall consider in this Research the application of the theory 

of integral transforms to the solution of boundary value 

problems in hydrodynamics. The field of hydrodynamics is so vast 

that we can consider only a few representative problems which 

illustrate the methods of solution involved. Before discussing the 

solution of special problems we shall briefly outline the general 

theory underlying the establishment of the equation of motion of 

a fluid.  

The sub category fluid mechanics is defined as the science that 

deals with the behavior of fluids at rest ( fluid statics ) or in 

motion ( fluid dynamics ) and interaction of fluid .  

We shall consider in chapter one some history of the 

hydrodynamic and We start the equation of continuity and 

equation of motion and the vorticity of equation .  

In chapter two We start Irrotational flow of a perfect fluid and 

the Irrotationaly potential flow and two – dimensional flow and 

the steady flow of perfect fluid through a slit , and it also flow of 

perfect fluid through a circular aperture in a plane rigid screen .  

In chapter three We shall consider the surface wave and the 

surface waves generated by an impulsive pressure and the wave 

– propagation in two dimensionas and that slow motion of a 

viscous fluid and also Diffusion of vorticity .  

In chapter four We consider the motion of a viscous fluid 

contained between two Infinite coaxal cylinders and the motion 

when the outer cylinder rotates at a constant speed , and the 

motion of a viscous fluid under a surface load , and We shall 

briefly consider the Harmonic Analysis of Nonlinear viscous flow , 
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and in the last chapter We stad the stability of theory of 

hydrodynamic .              
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 الخلاصة

في هذا البحث تم استعراض نظرية التحويل التكاملية في حل مشاكل قيمة الحد في 

 .الهيدروديناميكا 

واسع جداً بحيث أن نعتبر فقط  بضعة مشاكل تمثيلية التي  أن حقل الهيدروديناميكا 

 تصور طرق الحل المعقد .

تقع تحت قبل مناقش حل المشاكل الخاصة التي نحن سنلخص النظرية العامة سريعاَ 

 مؤسسة معادلة حركة السوائل .

ان ميكانيكا صنف الغواصة السائلة معرفه كالعلم الذي يتعامل مع سلوك السائل في 

  .الاستراحة )علم توازن قوى السائل ( أو في الحركة )دنياميكا  سائلة ( وتفاعل السائلة

الاستمرارية ي مثل معادلة الهيدروديناميك قدم في الباب الأول بعض من تاريخ

 ومعادلة الحركة ومعادلة السرعة .

في الباب الثاني تمت مناقشة تدفق متقن للسائل وتدفق محتمل  وتدفق  في البعد الثنائي 

وأيضا التدفق الثابت للسائل المثالي خلال الشق وكذلك تدفق السائل المثالي خلال فتحة 

 دائرية في شاشة صارمة مستوية .

استعرض الموجة السطحية والموجات السطحية ولدا بضغط كما أن الباب الثالث 

 مندفع وتوليد الموجة في البعد الثنائي وذلك ببطئ حركة السائل اللزج وأيضا انتشارها 

كما ناقش الباب الرابع حركة السائل اللزج بين اسطوانتين محوريتين لانهائيتين . 

ة وحركة السائل اللزج تحت والحركة عندما تدور الاسطوانة الخارجية في سرعة ثابت

حمل سطحي وايضاً التحليل التوافقي من تدفق لزج  لا خطي  سريعا. وفي النهاية تم 

 ي .الهيدروديناميكدراسة استقرار نظرية 

 



vi 
 

CONTENTS 

  Dedication………………………………………... i 

Acknowledgment………………………………….. ii 

Abstract…………………………………………….  iii 

 Abstract ( Arabic ) ………………………………..v 

Introduction …………………………………….….1 

        Chapter One Hydrodynamic Equation  

1-1   Some history ……………………………..……3 

1-2   Equation of continuity ……………………….16 

1-3   Equation of motion ……………………….….17 

1-4   Vorticity equation ……………………….……20 

       Chapter Two Perfect Fluid 

2-1   Irrotational flow of perfect fluid ……………...24 

2-2   Irrotationality and potential flow ………….....24 

2-3   Two – dimensional flow……………………...33 

2-4   Steady flow of a perfect fluid through a slit …38 

2-5   Flow of perfect eject fluid through a circular aperture  

        in a plane rigid screen……………………..…40 

        Chapter Three Waves 

3-1   Surface waves……………………………….46  

3-2   surface waves generated by an impulsive       



vii 
 

       pressure……………………………...……… 48 

3-3   Wave-propagation in two Dimensions …….56 

3-4   Slow motion of a viscous fluid…………….63 

3-5   Diffusion of vorticity ……………………...63  

      

         Chapter Four Fluid Motion 

4-1   Motion of a viscous fluid contained between  

        Two Infinite coaxal cylinders ……………69 

4-2   Motion when the outer cylinder rotates at 

        a constant speed …………………………72 

4-3   Motion of a viscous Fluid under a surface 

        load ……………………………………..74 

4-4   Harmonic Analysis of Nonlinear viscous  

        Flow ……………………………………77 

4-5   Stability of theory of Hydrodynamic ..…85 

        Conclusion ……………………………...93 

        References ...…………………………….94 



1 
 

Introduction 

Mechanics is the oldest physical science that deals with both 

stationary and moving bodies under the influence of forces. The 

branch of mechanics that deals with bodies at rest is called 

statics, while the branch that deals with bodies in motion is 

called dynamics. [4] 

The subcategory fluid mechanics is defined as the science that 

deals with the behavior of fluids at rest ( fluid statics ) or in 

motion ( fluid dynamics ) and the interaction of fluids with solids 

or other fluids at the boundaries. [4] 

Fluid mechanics is also referred to as fluid dynamics by 

considering fluids at rest as a special case of motion with Zero 

velocity. [4] 

    Fluid mechanics itself is also divided into several categories. 

The study of the motion of fluids that are practically 

incompressible ( such as liquids, especially water, and gases at 

low speeds ) is usually referred to as hydrodynamics. [4] 

    A sub  category of hydrodynamics is hydraulics which deals 

with liquid flows in pipes and open channels. Gas dynamics deals 

with the flow of fluids that undergo significant density changes, 

such as the flow of gases through nozzles at high speeds. The 

category aerodynamics deals with the flow of gases ( especially 

air ) over bodies such as aircraft, rockets, and automobiles at 

high or low speeds. Some other specialized categories such as 

meteorology, oceanography and hydrology deal with naturally 

occurring flows. [4] 
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Chapter One 

Hydrodynamic Equations 

(1-1)Some history 

       The mathematical history of fluid mechanics begins with 

Leonhard Euler who was invited by Frederick the Great to 

Potsdam in 1741. [7] 

According to a popular story ( which we have not been able to 

corroborate ) one of his tasks was to engineer a water fountain. 

As a true theorist, he began by trying to understand the laws of 

motion of fluids. in 1755 he wrote Newton's Lows for a fluid 

which in modern notation reads ( for the case of constant 

density. [7] 

       

  
                                              

                                  

Here u(r,t) and  (r,t) are the fluid velocity and pressure at the 

spatial point ( r ) at time ( t ). 

The ( L H S ) of this " Euler equation " for u(r,t) is just the material 

time derivative of the momentum, and the (R H S ) is the force, 

which is represented as the gradient of the pressure, imposed on 

the fluid. In fact , trying to build a fountain on the basis of this 

equation was bound to fail. [7] 

This equation predicts, for a given gradient of pressure , 

velocities that are much higher than anything observed. One 

missing idea was that of the viscous dissipation that is due to the 

friction of one parcel of fluid against neighboring ones. The 
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appropriate term was added to (1) by Navier in 1827 and by 

Stokes in 1845-2- [7] 

The result is known as the " Navies – Stokes equation " :  
 

       

  
                              

                                      

Here (v) is the kinematic viscosity , which is about 10-2 and o.15 

cm2/sec for water and air at room temperature respectively. 

Without the term v 2u(r,t) the kinetic energy u2/2 is conserved; 

with this term kinetic energy is dissipated and turned into heat. 

The effect of this term is to stabilize and control the nonlinear 

energy conserving Euler equation. [1] 

Straightforward attempts to assess the solutions of this equation 

may still be very non-realistic. For example, we could estimate 

the velocity of water flow in any one of the mighty rivers like the 

Nile or the Volga which drop hundreds of meters in a course of 

about a thousand kilometers. 

The typical angle of inclination is about 10-4 radians, and the 

typical river depth (L) is about 10 meters. Equating the gravity 

force     g (g 
     

     
  ) and the viscous drag (                 

) we find (u) to be of The order of 107 cm / sec instead of the 

observed value of about 102cm/sec. This is of course absurd; 

perhaps to the regret of the white water rafting industry. This 

estimate contradicts even simple energy conservation 

arguments. After all, we cannot gain in kinetic energy more than 

the stored potential energy which is of the order of (pgH) where 

(H) is the drop in elevation of the river bed from its source. For 

the Volga or the Nile (H) is about 5X104 cm, and equating the 
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potential energy drop with the kinetic energy we estimate (u 

 √         cm/sec).  

This is still off the mark by two orders of magnitude. 

The resolution of this discrepancy was suggested by Reynolds  

who stressed the importance of a dimensionless ratio of the 

nonlinear term to the viscous term in (2). With a velocity drop off 

the order of (U) on a scale (L) the non liner term is estimated as 

u2/L. The viscous term is about (      ) . the ratio of the two, 

known as the Reyndds number Re, is (UL/  ). the magnitude of Re 

measures how large is the nonlinearity compared to the effect of 

the viscous dissipation in a particular fluid flow. 

For Re << 1 one can neglect the nonlinearity and the solutions of 

the Navier-Stokes equations can be found in closed-form in many 

instances. In many natural circumstances Re is very large. For 

example, in the rivers discussed above Re     . Reynolds 

understood that for Re >> 1 there is no stable stationary solution 

for the equations of motion. 

The solutions are strongly affected by the nonlinearity, and the 

actual flow pattern is complicated, convoluted and vertical. Such 

flows are called turbulent.  

Modern concepts about high Re number turbulence started to 

evolve with Richardson's insightful contributions which contained 

the famous " Poem" that Paraphrased (J). Swift : " Big whirls have 

little whirls that feed on their velocity, and little whirls have 

lesser whirls and so on to viscosity-in the molecular sense " . In 

this way Richardson conveyed an image of the creation of 

turbulence by large scale by the nonlearities of fluid motion, until 

the energy dissipates at small scales by viscosity, turning into 
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heat. This picture led in time to innumerable " cascade models " 

that tried to capture the statistical physics of turbulence by 

assuming something or other about the cascade process. Indeed, 

no one in their right mind is interested in the full solution of the 

turbulent velocity field at all points in space-time .  

The interest is in the statistical properties of the turbulent 

flow. Moreover the statistics of the velocity field itself is too 

heavily dependent on the particular boundary conditions of the 

flow. Richardson understood that universal properties may be 

found in the statistics of velocity differences. 

      ,   )     (  ) –  (  )  across a separation 

R =    –   . in taking such a difference we subtract the non-

universal large scale motions ( known as the " wind" in 

atmospheric flows ). In experiments ( see for example ( 

5,6,7,8,9,10 ) it is common to consider one dimensional cuts of 

the velocity field,    (R)     (r1,r2). R/R. The interest is in the 

probability distribution function of  ul(R) and its moments. These 

moments are known as the " structure function". 

Sn( R )   (                            

Where < … > stands for a suitably defined ensemble average. For 

Gaussian statistics the whole distribution function is determined 

by the second moment S2(R) , and there is no information to be 

gained from higher order moments. In contrast, hydrodynamic 

experiments indicate that turbulent statistic are extremely non-

Gaussian, and the higher order moments contain important new 

information about the distribution functions.  

Possibly the most ingenious attempt to understand the statistics 

of turbulence is due to kolmogorov who in 1941 proposed the 
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idea of universality ( turning the study of small scale turbulence 

from mechanics to fundamental physics ) based on the notion of 

the " interracial range " . the idea is that for very large values of 

Re there is a wide separation between the " scale of energy input 

" L and the typical " viscous dissipation scale " at which viscous 

friction become important and dumps the energy into heat. 

 In the stationary situation, when the statistical characteristics of 

the turbulent flow are time independent, the rate of energy in 

put at large scales (L) is balanced by the rate of energy 

dissipation at small scales (u), and must be also the same as the 

flux of energy from larger to smaller scales ( denoted  ̅ ) as it is 

measured at any scale (R) in the so-called " inertial " interval      (η 

<< R << L ).  

Kolmogorov proposed that the only relevant parameter in the 

inertial interval is e- , and that (L) and (η) are irrelevant for the 

statistical characteristics of motions on the scale of (R).  

This assumption means that (R) is the only available length for 

the development of dimensional analysis. In addition we have 

the dimensional parameters ( ̅) and the mass density of the 

fluid( ). From these three parameters we can form combinations     

(          ) such that with a proper choice of the exponents 

(      ) we form any dimensionality that we want. This leads to 

detailed prediction about the statistical physics of turbulence. 

For example, to predict Sn (R) we not that the only combination 

of (e-) and (R) that gives the right dimension for Sn is ( ̅  
 

 ⁄ . In 

particular for n = 2 this is the famous kolmogaroy      " law 

which in Fourier representation is also known as the " –      " 

law. The idea that one extracts universal properties by focusing 

on statistical quantities can be applied also to the correlations of 
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gradients of the velocity field. An important example is the rate 

 (r,t) at which energy is dissipated into heat due to viscous 

damping. This rate is roughly  |       |   One is interested in the 

fluctuations of the emerge dissipation ∑(r,t) about their mean e-, 

e-(r,t) =  (r,t)-e- , -  ̅ and how these fluctuations, are correlated in 

space. The answer is given by the often-studied correlation 

function  

         ̅         ̅                     

If the fluctuations at different points were uncorrelated, this 

function would vanish for all R o. Using kolmogorov's 

dimensional reasoning one estimates                 

    , which means that the correlation decays as a power, like 

        

Experimental measurements show that kolmogorov was 

remarkably close to the truth. The major aspect of his 

predictions, i.e. that the statistical quantities depend an the 

length scale (R) as power laws is corroborated by experiments. 

On the other hand the predicted exponents seem not to be 

exactly realized. For example, the experimental correlation KU(R) 

decays according to a power law. 

                                     

With   having a numerical value of o.2 – o.3 which is in large 

discrepancy compared to the expected value of    . The 

structure function also behave as power laws,  

      ̃                           

but the numerical values of Cn deviate progressively from     

when (n) increases . Something fundamental seems to be 

missing.The uninitiated reader might think that the numerical 
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value of this exponent or another is not a fundamental issue. 

However one needs to understand that the kolmogorov theory 

exhausts the dimensions of the statistical quantities under the 

assumption that  ̅  is the only relevant parameter. Therefore a 

deviation in the numerical value of and exponent from the 

prediction of dimensional analysis requires the appearance of 

another dimensional parameter. Of course there exist two 

dimensional parameters , i.e.l and   , which may turn out to be  

relevant. Experiments indicate that for the statistical quantities 

mentioned above the energy-input scale (L) is indeed relevant 

and it appears as a normalization scale for the deviations from 

Kolmogorov's predictions :  

           ́  
 

 ⁄                            

Such forms of scaling, which deviate from the predictions of 

dimensional analysis, are referred to as " anomalous scaling " . 

the realization that the experimental results for the structure 

functions were consistent with (L) rather than ( ) as the 

normalization scale developed over along time and involved a 

large number of experiments ; recently the accuracy of 

determination of the exponents has increased appreciably as a 

result of aclver method of data analysis by Benzi, Ciliberto and 

Coworkers. Similarly a careful demonstration of the appearance 

of (L) in the dissipation correlation was achieved by Sreenivasan 

and Coworkers. A direct analysis of scaling exponents Cn and ( ) 

in a high Reynolds number flow was presented by Praskovskii and 

Oncley, leading to the same conclusions.  

  Theoretical studies of the universal small scale structure of 

turbulence can be classified broadly into two main classes . Firstly 

there is a large collection of phenomenological modes that by 
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attempting to achieve agreement with experiments have given 

important insights into the nature of the cascade or the statistics 

of the turbulent fields . In particular there appeared influential 

ideas , following Mandelbrot , about the fractal geometry of 

highly turbulent fields which allow scaling properties that are 

sufficiently complicated to include non-Kolmogorov scaling . 

Parisi and Frisch showed that by introducing multifractals one 

can accommodate the nonlinear dependence of     on   . 

However these models are not derived from the equations of 

fluid mechanics ; one is always left with uncertainties about the 

validity or relevance of these models . The second class of 

approaches is based on the equations of fluid mechanics . 

Typically one acknowledges the fact that fluid mechanics is a 

(classical) fields theory and resorts to field theoretic methods in 

order to compute statistical quantities . Even though there has 

been a continuous effort for almost 50 years in this direction , 

the analytic derivation of the scaling laws for       and       

from the Navier-Stokes equations and the calculation of the 

numerical value of the scaling exponents μ and    have been 

among the most elusive goals of theoretical research . Why did it 

turn out to be so difficult ?  

To understand the difficulties , we need to elaborate a little on 

the nature of the field theoretic approach . Suppose that we 

want to calculate the average response of a turbulent fluid at 

some point    to forcing at point    . The field theoretic approach 

allows us to consider this response as an infinite sum of all the 

following processes : firstly there is the direct response at point 

   due to the forcing at    . This response is caused by linear 

processes in the fluid , and is instantaneous if we assume that the 

fluid is incompressible ( and therefore the speed of sound is 
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infinite ) . Then there are processes which are inherently 

nonlinear . Nonlinear procesesses are mediated by intermediate 

points , but take time . Forcing at    causes a response at an 

intermediate point    , which then acts as a forcing for the 

response at    . Since this intermediate process can take time , 

we need to integrate over all the possible positions of point    

and all times . This is the second – order term in perturbation 

theory . Then we can force at    , the response at    acting as a 

forcing for    and the response at    forces a response at    . We 

need to integrate over all possible intermediate positions    and 

   and all the intermediate times . This is the third – order term in 

perturbation theory . And so on . The actual response is the 

infinite sum of all these contributions . In applying this field 

theoretical method one encounters three main difficulties :  

(A)The theory has no small parameter . The usual procedure is to 

develop the theory perturbatively around the linear part of the 

equation of motion . In other words , the zeroth order solution of 

Equation (1.1.2) is obtained by discarding the terms which are 

quadratic in the velocity field . The expansion parameter is then 

obtained from the ratio of the quadratic to the linear terms ; this 

ratio is of the order of the Reynolds number    which was 

defined above . Since we are interested in    , naive 

perturbation expansions are badly divergent . In other words the 

contribution of the various processes described above increases 

as         with the number   of intermediate points in space-

time .  

(B) The theory exhibits two types of nonlinear interactions . Both 

are hidden in the nonlinear term  .   in Equation ( 1.1.2 ) . The 

larger of the two is known to any person who has watched how a 

small floating object is entrained in the eddies of a river and 
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swept along a complicated path with the turbulent flow . In a 

similar way any fluctuation of small scale is swept along by all the 

larger eddies . Physically this sweeping couples any given scale of 

motion to all the larger scales . Unfortunately the largest scales 

contain most of the energy of the flow ; these large scale motions 

are that is experienced as gusts of wind in the atmosphere or the 

swell in the ocean . In the perturbation theory for       One has 

the consequences of the sweeping effect from all the scales 

larger than  , with the main contribution coming from the largest 

, most intensive gusts on the scale of   . As a result these 

contributions diverge when    . In the theoretical jargon this is 

known as " infrared divergences " . Such divergences are 

common in other field theories , with the best known example 

being quantum electrodynamics . In that theory the divergences 

are of similar strength in higher order terms in the series , and 

they can be removed by introducing finite constants to the 

theory , like the charge and the mass of the electron . In the 

hydrodynamic theory the divergences become stronger with 

order of the contribution , and to eliminate them in this manner 

one needs an infinite number of constants . In the jargon such a 

theory is called " not renormalizable ". However , sweeping is just 

a kinematic effect that does not lead to energy redistribution 

between scales , and one may hope that if the effect of sweeping 

is taken care of in a consistent fashion a renormalizable theory 

might emerge . This redistribution of energy results from the 

second type of interaction , that stems from the shear and 

torsion effects that are sizable only if they couple fluid motions of 

comparable scales . The second type of nonlinearity is smaller in 

size but crucial in consequence , and it may certainly lead to a 

scale–invariant theory .  
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(C) Nonlocality of interaction in   space . One recognizesthat the 

gradient of the pressure is dimensionally the same as (      , 

and the fluctuations in the pressure are quadratic in the 

fluctuations of the velocity . However , the pressure at any given 

point is determined by the velocity field everywhere . 

Theoretically one sees this effect by taking the divergence of 

Equation (1.1.2) . This leads to the equation        [      ] . 

The inversion of the Laplacian operator involves an integral over 

all space . Physically this stems from the fact that in the 

incompressible limit of the Navier–Stokes equations sound speed 

is infinite and velocity fluctuations at all distant point are 

instantaneously coupled .  

Indeed , these difficulties seemed to complicate the application 

of field theoretic methods to such a degree that a wide – spread 

feeling appeared to the effect that it is impossible to gain 

valuable insight into the universal properties of turbulence along 

these lines , even though they proved so fruitful in other field 

theories . The present authors (as well as other researchers 

starting with Kraichnan and recently , Migdal , Polyakov , Eyink 

etc .) think differently , and in the rest of this paper we will 

explain why . 

The first task of a successful theory of turbulence is to overcome 

the existence of the interwoven nonlinear effects that were 

explained in difficulty (B) . This is not achieved by directly 

applying a formal field – theoretical tool to the Navier – Stokes 

equations . It does not matter whether one uses standard field 

theoretic perturbation theory , path integral formulation , 

renormalization group , expansion , large N-limit or one s formal 

method of choice . One needs to take care of the particular 
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nature of hydrodynamic turbulence as embodied in difficulty (B) 

first , and then proceed using formal tools .  

The removal of the effects of sweeping is based on Richardson  s 

remark that universality in turbulence is expected for the 

statistics of velocity differences across a length scale R rather 

than for the statistics of the velocity field itself . The velocity 

fields are dominated by the large scale motions that are not 

universal since they are produced directly by the agent that 

forces the flow . This forcing agent differs in different flow 

realizations ( atmosphere , wind tunnels , channel flow etc .) . 

Richardson s insight was developed by Kraichnan who attempted 

to cast the field theoretic approach in terms of Lagrangian paths , 

meaning a description of the fluid flow which follows the path of 

every individual fluid particle . Such a description automatically 

removes the large scale contributions . Kraichnan s approach was 

fundamentally correct , and gave rise to important and influential 

insights in the description of turbulence , but did not provide 

transparent rules on how to consider all the orders of 

perturbation theory . The theory did not provide transparent 

rules on how to consider an arbitrarily high term in the 

perturbation theory . Only low order truncations were 

considered .   

A way to overcome difficulty (B) was suggested by Belinicher and 

L vov who introduced  a novel transformation that allowed on 

one hand the elimination of the sweeping that leads to infrared 

divergences , and on the other hand allowed the development of 

simple rules for writing down any arbitrary order in the 

perturbation theory for the statistical quantities . The essential 

idea in this transformation is use of a coordinate frame in which 

velocities are measured relative to the velocity of one fluid 
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particle . The use of this transformation allowed the examination 

of the structure functions of velocity differences       to all 

orders in perturbation theory . Of course , difficulty (A) remains ; 

the perturbation series still diverges rapidly for large values of    

, but now standard flied theoretic methods can be used to 

reformulate the perturbation expansion such that the viscosity is 

changed by an effective " eddie viscosity " . The theoretical tool 

that achieves this exchange is known in quantum field theory as 

the Dyson line resummation . The result of this procedure is that 

the effective expansion parameter of the order of unity . Of 

course , such a perturbation series may still diverge as a whole . 

Nonetheless it is crucial to examine first the order–by–order 

properties of series of this type .  

  Such an examination leads to a major surprise : every term in 

this perturbation theory remains finite when the energy–input 

scale   goes to   and the viscous – dissipation scale   goes to 0 . 

The meaning of this is that the perturbative theory for    does 

not indicate the existence of any typical length-scale . Such a 

length is needed in order to represent deviations in the scaling 

exponents from the predictions of Kolmogorov s dimensional 

analysis in which both scales Land n are assumed irrelevant . In 

other areas of theoretical physics in which anomalous scaling has 

been found it is common that the perturbative series already 

indicates this phenomenon . In many cases this is seen in the 

appearance of logarithmic divergences that must be tamed by 

truncating the integrals at some renormalization length . 

Hydrodynamic turbulence seems at this point different . The 

nonlinear Belinicher-L vov transformation changes the underlying 

linear theory such that the resulting perturbative scheme for the 

structure functions is finite order by order . The physical meaning 
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of this result is that as much as can be seen from this 

perturbative series the main effects on the statistical quantities 

for velocity differences across a scale   come from activities on 

scales comparable to   . This is the perturbative justification of 

the Richardson-Kolmogorov cascade picture in which widely 

separated scales do not interact .    

 

(1-2)  Equation of Continuity  

In the first instance we consider the mathematical ezepression of 

the principle of continuity. If we consider any closed surface in 

the fluid fixed in space, then in the absence of sources or sinks in 

the interior of the surface, the rate of increase of mass within the 

surface is equal to the rate at which mass flows into the volume 

enclosed by the surface. If ( ) density of the fluid then the mass 

enclosed by the surface is ∫  
 

pdt, where (v) is the volume 

enclosed by the surface (S).  

Now if (v) denotes the velocity of a particle of the fluid, its 

component in the direction (n) will be (V.n) so that the rate at 

which mass flows out of the volume (V) is ∫  
 

(V.n) pds, which , by 

Gauss' theorem , may be written as the volume integral ∫  
 

div 

(pv) d  

The amount of fluid which flows per unit time into the volume 

will be this integral multiplied by – 1 , so that we have the 

equation.  

 

  
∫   

 

  ∫   

 

                    

The volume (V) is arbitrary so that continuity condition is simply. 
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Now, if ( ) is any physical quantity associated with the fluid  (
  

  
) 

is the rate of change of ( ) measured at the fixed point r = (      

) and may be called the local rate of change of ( ). 

In calculating the total rate of change of ( ) we must, however, 

include the rate of change arising from the fact that ( ) is being 

convicted by the fluid. A particle which is at the point ( r ) at time 

( ) is at the point (r+v  ) at time (  +  ) so that the total change 

in ( ) is :  

  ( r+v   ,  +  )  -    ( r,  ) . If we denote this change by : 
  

  
   

We then find, from Taylor's theorem for a function of two 

Variables, that :  

  

  
 

  

  
                         

The equation of continuity  may be written in the form :  

  

  
                                   

 

That is :  

 

 
 

  

  
                      

 

(1-3)  Equation of motion  

Consider a small element of volume (δ ) of the fluid and suppose 

there is an external force (F) per unit mass acting on the fluid, 
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then if (δ ) is taken as a particle its equation of motion can be 

written down, using Newton's second law of motion :  

Force = Mass X Acceleration.  

The force on (δ )will arise from the external force (PF δ ) plus 

the force of viscosity M (  ) minus the resultant of the Pressure 

intensity integrated over the surface of the element. Summed for 

a large number of such elements comprising a volume ( ) 

contained within a surface S, the resultant external force will be 

(∫    
 

) and the resultant force of viscosity (∫   
 

) . 

The effects of the normal pressure over the surfaces of elements 

in contact with one another will cancel out and the total 

contribution of the fluid pressure to the resultant force will be – 

(∫   
 

) . Hence :  

∫    

 

 ∫    ∫   

 

   ∫  
 

  

  
    

 

           

Using an extension of Gauss' theorem we have  

∫   

 

 ∫         

 

           

And therefore :  

∫{ 
  

  
              }

 

               

This will be true for any arbitrary volume ( ) of the fluid and 

therefore the integrand must vanish. Substituting for (M) , one 

form of the equation of motion for constant viscosity can be 

written :  
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If the fluid is incompressible then it follows that              

and the equation of motion can be written : 

F- 
 

  
 Grad P 

 
  

  
    

 

 
                          

 If the external force (F) is conservative it can be expressed as the 

gradient of ascalor function ( ) ,  

F = -grad                      

Then we have :  

            
 

 
                            

And  

 

 
        

  

 
 
  

  
   

 

  
∫

 

 
 
  

  
   

    
 

  
  ∫

  

 
       ∫

  

 
              

Since (P) is in general a function of (P) ; here (  ) is a unit vector 

in the direction of grad (P) at the point under consideration and 

(
 

  
) denotes differentiation in that direction. [ 2 ] 

Hence the equation of motion of an in viscid fluid, putting  ( ) = o 

can be written :  

  

  
                (

  

 
 ∫

  

 
      )                
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can also be written in a similar form. [ 2 ] 

The equation of motion of an in viscid fluid can be derived 

directly in a similar way to omitting the force of viscosity from 

the argument. These are vector equation, the three Cartesian 

equations comprising are :  

  

  
   

  

  
    

  

  
     

  

  
  Fx   

 

 
 
  

  
                     

  

  
   

  

  
    

  

  
     

  

  
  Fy   

 

 
 
  

  
                     

  

  
   

  

  
    

  

  
     

  

  
  FZ 

  
 

 
 
  

  
                                  

Where   F =  iFX + j Fy + k FZ                        

The solving of problems is essentially to find a solution of both 

the appropriate equation of motion and the continuity equation 

which satisfies the given boundary conditions. [ 2] 

 

(1–4) Vorticity Equation  

The equation of motion for an incompressible fluid can be 

written in terms of the vorticity by substituting  

  

  
             (

 

 
 

  

 
    )                       

And taking the curl of both sides remembering that curl grad   o  

      
  

  
                                        

Curl is commutable with (
 

  
) and  (  ) .  
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Since div ( ) = div curl q = 0                     

If the motion is slow ( as might be the case just after it had been 

started from rest ) the first term on the right is negligible and  

  

  
                              

This equation is of the same form as the equation for the 

conduction of heat and by analogy vorticity cannot originate in 

the interior of the liquid but may be generated by spreading in 

wards from its boundaries. In fact it is noticed in actual fluids that 

vorticity exists to a marked extent only in those parts of the fluid 

which have passed near the bound arise. [2] 

For an in viscid compressible fluid, an exactly similar we obtain 

Helmholtz, equations :  

 

  
(
 

 
)  

 

 
                          

 

Examples :  

1. If the fluid is not in motion – the hydrostatic case :  

  

  
          

Hence  

       ∫
  

 
    

Therefore the system of forces must be conservative and holds 

hence. 
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dp = - pd   

Therefore the surface      =  constant must be the same as the 

surfaces P =constant, i.e., the surfaces of equal pressure and 

Potential coincide. 

2. For in viscid liquid rotating about a vertical axis with constant 

angular velocity ( ) under gravity as if solid, if ( ̂) is a unit 

vector up wards and   ̂  is a unit vector out wards from the 

axis, then :  

      ̂    
  

  
     ́    

If (P) is taken as constant, becomes grad (P/ ) = -          ́    

Hence :  

p/  = -gZ +       + constant 

If (P) is the pressure at the origin we have  

( p – P ) /  = -gZ + 
 

 
       

The curves of equal pressure, (P) = constant are Paraboloids of 

revolution ; in particular the surface of the liquid will take this 

shape.  

This is easily demonstrated if a cup of tea is stirred and then left 

to spin – (g) has components (- w y , w x , o) and ( ) components 

(o,o,2w) so that the motion is rotational and no velocity potential 

exists. [ 2 ] 
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Chapter Two 

  perfect Fluid 

 (2-1) Irrotational Flow of a perfect Fluid 

    We shall begin our discussion of typical boundary value 

problems in hydrodynamics by considering the irrotational flow 

of a perfect fluid under certain circumstances.  

     In the case in which the motion of the fluid is irrotational the 

equation of motion assume aparticulary simple form . The 

motion of a fluid is said to be irrotational if the vorticity ω is Zero 

at every point of the fluid . In other words , curl v = 0 every where 

so that we may express the velocity vector v in terms of a scalar 

quantity ∅ by means of the equation  

                     ∅                     (2.1.1)  

A perfect fluid is one which is non viscous and which has constant 

density   . For such a fluid the equation of continuity (1) becomes 

simply 

           div v = 0 ………………………………………………………(2.1.2)  

or , by virtue of equation (2.1.1)  

              ∅      ……………………………………………….. (2.1.3 )  

Showing that the velocity potential ∅ is a harmonic function . (1) 

 

(2-2)  Irrotationalality and potential flow 

   First, why should we care about irrotational flw at all? As ocean 

and atmosphere folks, the answer is probably that we shouldn’t; 

vorticity is hugely important in stratified fluids on a rotating 
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sphere. However, it is used extensively in most other fields, 

typically for looking at flow around objects (wings, for example). 

As such, it is important that you know what it is and how to take 

advantage of it (and it is probably directly useful for you ocean 

engineer types . 

Consider    =    u = 0 for irrotational flow. Recall from 
problem set 3 that 

                           …………………(2.2.1)                    
More generally, the divergence of the curl of any vector 

function is zero where the mixed partials are equal.  Well, it is 

also easy to show that  the curl of the gradient of a scalar 
function is zero,that is 

   × ( φ) = 0    ……………………………………………(2.2.2)                     
 Again, this assumes the equality of the mixed partials. Try it!  

So, if we know ∇ × u = 0, and we know ∇ × (∇φ) = 0, then 
   ∅     

   
 ∅

  
       

 ∅

  
       

 ∅

  
                                                     

 ∂Where φ is the velocity potential. This holds for any irrotational 

flow (in fact, the existence of φ is the sole criterion of 

irrotationality) and tells us that the three velocity components 

can be derived from a single variable, φ(x, y, z, t). Irrotational 

flow is called potential flow. Thus, when we have an irrotational 

Incompressible fluid ,  

                                

 Therefore, the velocity potential obeys Laplace’s equation. 

Laplace’s equation is a classic problem in intro PDE  classes.  You 

might recall solving Laplace’s equation on various geometries 

using separation of variables. 
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This  u  = ∇φ stuff looks a little  like the relationship between 
velocity and streamfunction. remember the streamfunction?  
Remember the streamfunction from kinematics?  If we have an 
incompressible flow, then 
 

               · u = 0     …………………………………………..(2.2.4)                                                                 

We know we can satisfy this relationship be defining 

                 u =  × a                                                                                          
 

since ∇ · (∇ × a)  = 0.  (Recall  from before how the 
divergence of the curl of a vector function is zero).  Because a 
is a vector, there is generally little to be gained taking this 
approach (u is a vector as well). But,  if we have a 2D flow, 
then both the x-component and y-component of a are 0. 

 

               =  0 i + 0 j + ψ k ……………………………….. (2.2.6)  
 
 

               
  

  
  

  

  
   ………………………………….(2.2.7)   

  

  ….(2.2.8)                         
   

    
  

   

    
   

                                                 

So 

   
  

  
                    

  

  
             

Where ψ ≡ streamfunction. ψ is constant along a streamline. A 
check of this starts with 

 

    
  

  
    

  

  
    

 

                                                      
 
We know that on a streamline 

− 
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which can only be satisfied if dψ = 0 ⇒ ψ = constant.Thus in 

2D a stream function can be defined when  · u = 0.  If the flow is 

irrotational, that is,  × u = 0, and if  · u = 0, this    φ = 1.  (Jim –  

This is what  it looked  like  you  were trying t say  in your  notes; 

is this  how you  want it?) 

 
L  l ce’s equations 
 

If there is a flow that is 2D, incompressible, and irrotational, 
then 

 

  
  

  
 

 ∅

  
        

  

  
  

 ∅

  
           

Note that ψ and φ are orthogonal. Thus,  
 
                              ……………….…..(2.2.13) 
Again, these are the Laplace’s equations.  Laplace’s equation 
represents, or should represent a familiar problem for you. The 
Dirichlet problem for the Laplace equation goes like 

  φ = a,      φ = φo ………….(2.2.14)  

on boundary (2.2.14) The Neumann problem goes like 
 
  φ = a,      φ2 = φo  normal to boundary on boundary              

They are well studied problems, with applications beyond fluids, 

and have well-behaved, stable, unique solutions. Again, in ocean 

and atmospheres we have little call for potential flow, but it is 

important you lot know it exists. 
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 Aside on  velocity potential 
 

Why is it defined u = ∇φ? This means that u moves up 

gradient! Why is it not defined u = −∇φ? Mathematically, this 
would be perfectly fine. To explain the sign convention, we 
need to bring in the stream function as well. We define it as 
 

   
  

  
          

  

  
              

 
 
 
This is another arbitrary sign choice. We could have said 
 

  

    
 ψ

  
       

 ψ

  
                  
 

 
In fact, GFD folks tend to use this definition – more on this later.  
It turns out that these two sign choices are related. Recall Greg 
telling you about the Cauchy-Riemann conditions? 

 ∅

  
  

  

  
    

 ∅

  
   

  

  
              

 

These equations allow us to write w = φ + iψ            (the 

complex potential) which gives                                

  

  
       (the complex velocity)                                          

 
and permits one to use all the tools of complex functions to solve 

2D fluids problems. If we are to define (in accordance to Kundu) 

 

   
 ∅

  
   

 ∅

  
    ∅                

 

   
  

  
   

  

  
                      

  
then the Cauch-Riemann conditions are satisfied as we have 
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With the potential flow defined u = −  and u =  
  

  
   

  

  
  , 

the high and low ψ and p contours are in matching locations. 

Rather, if we define (in accordance with Lamb) 

 

   
  

  
   

  

  
                 

and 

   
  

  
   

  

  
            

 
then the Cauch-Riemann conditions are still satisfied 
 
  

 
 ∅

  
   

 ψ

  
   

 ∅

  
  

 ψ

  
            

 

  
 ∅

  
  

 ψ

  
       

 ∅

  
   

 ψ

  
             

 
 

Thus, in a sense, both definitions are “right” in that  they both 
work. In fact, a mixed signs version could also be defined, but 
this is inconvenient from the Cauchy-Riemann perspective. So 
which is “better”?  Probably 
 

          
  

  
   

  

  
             

Why? 

a)  Velocity flows down gradient. 
b)  Intuitive relatioship between ψ and p in geostrophic flow . 

This  explains the conventions in GFD  books (although most 
never discuss u  = − φ).   (Jim –  This does  not   make sense  
 to me.    To you  mean   to  say  that  most never discuss u 
=  φ?).  Why does Kundu go the other way?  Probably 
because Bachelor does it that  way. Why does Bachelor do it 
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that  way? He derives u =  φ and states “there is no question 
here of an interpretation of φ as a potential energy function”. 
Presumably this is because he  invoked only maths to obtain u = 
 φ, and there is no potential energy invoked. (Jim – 
Hmmm... I do not think that “maths” is a word). 
Bernoulli form of the Euler equations 
Back to the Bernoulli form of the Euler equations  
 

  

  
                           

 
If we assume irrotational flow, then u × ω = 0, but we also 
have the opportunity to write  ∂ u in the form of a gradient 
using the velocity potential. For irrotational flow, u =  φ, and 
we have 
 

 
 ∅

  
                      

 
Classic example of irrotational, laminar flow analyzed using the 
Bernoulli function. As is seen, there is a pipe with a section with 
a small diameter  relative to either side of it .   Following a 
streamline through the center of the pipe, 
 

         
 

 
  
        

 

 
  
         

 

 
  
     . …….(2.2.27) 

 

  By inspection, u1  = u3  < u2 .  For the Bernoulli function to be 

constant at each point, p1  = p3  > p2 . 

The flow around a wing can approximately be modeled as steady 

and irrotational. This implies that the Bernoulli function is 

constant everywhere. Thus, for the three points that  are 

indicated on that  
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assuming that  the ρg∆z terms are small.  Since the air over 

the top of the wing has a longer distance to travel,  u1   = u3   

<  u2   and hence p1   = p3   >  p2 .   Since p3   >  p2 , the lower 

pressure above the wing acts to “suck” of “hold” the wing up. 

(Jim – Is this  really how  it should  be modeled? The 

impression that I got  from  the  spirited discussion that  

ensued   from this  example last  year  was  that this  was a 

really poor  description of the  system.) 

Integrate out the space derivatives, and you get 

 
 ∅ 

  
  

 

 
        ∫

  

 
                 

 
 
This is Bernoulli’s equation for irrotational flow, where f is 
spatially uniform at each t. This form of Bernoulli’s equation is 
used to solve the gravity wave problem; pretty much the only 
problem in GFD that is irrotational. 
Let’s stay with irrotational Bernoulli, and look at an example in 
steady state  (laminar, not turbulent).  Further, let’s assume ρ = 
constant, so 
 

 

 
        

 

 
                    

 
 
Note:  Bernoulli is really an expression of conservation of energy 
where the first term is kinetic, the second potential, and the 
third the energy change due to temperature or volume changes.  
It  is best  to  think of Bernoulli as a kinematic expression here.   
(Kinematic,  not  dynamic; explains, but does not predict).  If we 
know something about the velocity distribution, then we know 
something about the pressure distribution. Once we know the 
pressure distribution, we can say something about the forces on, 
for example, the wing.  Similarly, if we know the pressure 



32 
 

distribution, Bernoulli lets us say something about the velocity 
distribution. 
   Another example of the application of Bernoulli is the Pitot  
tube as seen in figure 10.5.  Here again the flow is steady and 
irrotational, and ρ is constant.  Hence, from comparing points 1 
and 
Diagram of Pitot  tube configuration. 2 on the diagram, we have 
that 

 
 

 
  
        

 

 
  
                  

 
At point 2, u2  = 0, so 
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   √
          

 
                 

 
 
Note that this is exactly how airplanes determine their air 
speed. In this example, we can use the hydrostatic relation to 
get p1  and p2 , in terms of ∆z. 

 
                                         

 

    √             √                   

 
Note that we can only do this when all streamlines at 1 are 
parallel between 1 and the upper wall. 
There are a bunch of different pressures here: 
 

                      
 

 
             stagnation pressure 

                  
 

 
    ≡   dynamic pressure                                              

                        p    ≡   static pressure 
  
  

(2-3) Two – dimensional flow    
  

    In the first instance we shall consider the irrotational two 

dimensional flow of a perfect fluid filling the half space (y  ) . 

It follows from this equation :  

         ∅                 

and =   ∅                      

That in terms of a velocity potential ( ) , we have :  

    
 ∅

  
             

 ∅
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Where the scalar velocity potential (∅) satisfies the two – 

dimensional form of Laplace's equation  

 

  ∅   
  ∅

   
   

  ∅

   
                       

 

We shall suppose that fluid is introduced to the half space 

through the strip (      ) of the plane (y = 0) . first we shall 

assume that the fluid is introduced normally with prescribed 

velocity so that, along (y = o) we have the boundary condition. 

 ∅

  
 {

                         
                             

}               

  

Where f ( ) is a prescribed function of position . we further 

make the assumption that at a great distance from the plane   

(y = o) the fluid is at rest, that is 

                                         

The Laplace equation for velocity potential function (∅) is valid 

in both two and three dimensions and in any coordinate system 

but only in irrotational regions of flow. 

The laplacian operator (  ) is a scalar operator defined as (   ) 

, and is called Laplace equation. [ 4 ] 

 If , now we introduce the Fourier transforms. 
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∅       
 

√   
 ∫      

 

  

∅          

 

     
 

√   
 ∫      

 

  

         

 

We find that equation (2.3.4) and (2.3.5) are equivalent to the 

ordinary differential equation :  

  ∅

    -   ∅    

Taken with the boundary condition (
 ∅     

  
 ) = -F( ).  

The solution of this problem subject to the condition (2.3.6) is 

obviously :  

∅   
    
   

        

Whence, by the inversion theorem (10)  

 

∅  
 

√   
 ∫  

    
   

           
 

  

                      

In Particular : if  

     {
                              
                              

}   

 

We have :  
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√   
  
       

 
  

So that :  

∅  
 

  
 ∫  

       

 
   
    

   
                

 

  

  

and the component the fluid velocity in the (y) direction is 

given by :  

     
 ∅

  
 

 

  
 ∫  

       

 
  e                

 

  
 

Making use of the result  

 

 ∫  
       

 
  e          

 

 
       

 
   

 

  

 

We find that  

 

  
 

  
            

 

Where tan     = y / (  – a ) and  

 

Tan     = y / (  + a ) 
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( Fig 1 ) 

 

Geometrical interpretation of  

r1 , r2 ,     and    . ( C ) is the point  

(a,0) and B (-a,0). [ 1 ] 

In a similar fashion we find for the component of the fluid 

velocity in the ( ) direction  

     
 ∅

  
  

  

  
 ∫  

       

   
  e             

 

  
 L   

  

  
   

 

  
 

Where  

  
                      

             

If we introduce a complex Potential  

W = ∅ +   ,  we have :  

  

  
 

 ∅

  
    

 ∅

  
 = -u + i                   
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So that , inserting the above values for the components of 

velocity, we obtain the expression  

 ω

  
  

 

  
 [L  

  
  

             ]  
 

  
     

   

   
 

Integrating this expression with respect to (Z),we obtain for the 

complex potential :  

   
 

  
 [                  –               ]    ( 2.3.9 ).  

 

(2-4)   Steady flow of a perfect fluid through a slit  

   We shall next consider the problem of determining the two-

dimensional steady flow of a perfect fluid through a slit in plane 

rigid boundary. With the center of the slit as origin, and with 

they axis perpendicular to the plane of the thin screen, we have 

to solve the differential equation to the equation :  

  
 ∅   

  ∅

   
   

  ∅

   
        

Subject to the boundary conditions. 

∅                     
 ∅

  
 = 0 

           e         

If along  y = o  we have :  

   ,  
     

 
 
                               

                                                  
-   

Then by the analysis of two-dimensional flow we find that the 

velocity potential is given by equation :  
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∅  
 

√   
 ∫  

    
   

            
 

  

    

with :  

     
 

√   
 ∫

     

       
 
 

 

  

     √
 

 
 ∫

c s    

       
 
 

 

 

   √
 

 
         

 

Hence we have for the velocity potential  

 

∅  
 

 
 ∫  

      

   
            

 

  

   

So that from equations :  

 

    
 ∅

  
            

 ∅

  
      

We have for the components of the velocity vector :  

    
 ∅

  
 ∫              c s      

 

  
     (2.4.1) 

 

    
 ∅

  
 ∫             s        

 

 
       (2.4.2) 

Also , when y = o  

 ∅

  
  ∫ s             

 

 

     

If       
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verifying that (∅) is a constant on the segment y = o , (     ). 

[ 1 ] 

Substituting from equations ( 2.4.1 ) and ( 2.4.2 ) into equation 

( 2.4.8) , we find that the complex potential of the flow is given 

by the solution of the equation :  

 ω

  
  ∫             

 

 

           
 
 

  

Integrating this equation , we obtain the standard solution [1]  

Z = a cosh (ω)  

 ( 2.5 ) flow of a jet of perfect fluid through a circular aperture 

in a plane rigid screen. 

   The solution to the problem of determining the steady flow of 

a perfect fluid through a circular aperture in a plane rigid wall is 

given on Lamb's treatise. We shall now show how this three – 

dimensional analogue of the problem considered in (2. 3) may 

be generalized by the use of the theory of dual integral 

equations developed in equation : [1] 

  

  
      ω     (    

 
     

 
  )      c  lω     

   With the center of the aperture as aperture as origin and with 

the (Z) axis perpendicular to the plane of the thin rigid screen 

we may describe any point in the fluid by means of cylindrical 

polar coordinates (r) and (Z). 

The solution of the steady flow problem reguives the 

determination of a velocity potential function ∅(r,Z) satisfying 

Laplace's equation :   ∅    

In these coordinates ,  
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  ∅

   
  

 

 
 
 ∅

  
  

  ∅

                 

Together with the boundary conditions  

∅                                   

 ∅

  
 = 0                                    

Over the plane Z = o . The function g( r ) occurring in equation    

( 2.5.2 ) is prescribed. [ 1 ] 

In the special case considered by Lamb it is a constant. 

Multiplying both sides of equation (2.5.1) by         and 

integrating with respect to (r) from (O) to  , we find that this 

equation is equivalent to the second – order ordinary 

differential equation. 

  ∅

        ∅                  

for the determination of the Hankel transform. 

∅      ∫  
 

 

∅                          

of the velocity potential . If we are interested in flow into the 

half space Z  0, then , since the velocity potential must tend to 

Zero as Z    , we must take a solution of equation (2.5.4) of 

the form [1] 

                  ∅                                 

Where A ( ) is to be determined by the conditions ( 2.5.2 ) and    

( 2.5.3 ).  
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Differentiating equation (2.5.6) with respect to (Z) , we have. 

∫  
 ∅

  

 

 

                           

and inverting these equations by means of the Hankel inversion 

theorem we obtain the expressions :       

∅  ∫              
 

 

            

 ∅

  
  ∫              

 

 

            

If we substitute from these equations into equations (2.5.2) 

and (2.5.3) and write                                

          , we obtain the dual integral equations. 

∫                                               
 

 

   

∫                                                  
 

 

   

for the determination of the function F(u) from which we 

derive the value of A( ) by the equation  

      
     

  
 

The dual integral equations (2-4-7)  

     
 

  
c s  ∫   

       

      
 
 

 
 

 
 ∫  

 

 

   

      
 
 

              
 

 

   

∫          s                                              
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In the particular case in which the function G( ) is a constant, C, 

say, we find that  

      
  

 
(
    

 
)               

Thus g(r) is constant  ( ) where C = a2   and  

      
  

 
   

        

  
     so that finally  

∅   
  

 
  ∫

        

 

 

 
           (  r)d          (2.5.10) 

which is the solution derived other wise by Lamb. [ 1 ] 

We can perform a similar analysis in the case in which ( ∅   ) 

is prescribed all along the plane Z   o . If  ∅    = -F(r)  ( which 

is assumed to be Zero when (r) exceeds a ) , and if we denote 

its Hankel transform of Zero order by :  

 ̅( )   ∫                      
 

 
 

than it is readily shown that  

∅    
 ( )
 

 

And so that  

∅     ∫  ( )          (  )   
 

 
 

If the aperture is very small, we may take  

      
 

   
        

 Of which the Hankel transform is  

    ̅ ( ) = S/2  , giving  
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∅         
 

  
 ∫                 

 

 

   
 

         
 
 

 

Similary , if we take F(r) =         
 

  , we arrive at the    

solution.    ( 2.5.10 ) .[ 1 ] 
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Chapter Three 

Waves 

(3-1) Surface Waves 

We have now to investigate, as far as possible the laws of wave 

motion in liquids when the vertical acceleration is no longer 

neglected. [6] 

The most important case not covered by the preceding theory 

is that of waves on relatively deep water, where, as will be 

seen, the agitation rapidly diminishes in amplitude as we pass 

downwards from the surface ; but it will be understood that 

there is continuous transition to the state of things investigated 

in the preceding chapter, where the horizontal motion of the 

fluid was sensibly the same from top to bottom. [6] 

We begin with the oscillations of a horizontal sheet of water, 

and we will confine ourselves in the first instance to cases 

where the motion is in two-dimensions, of which one ( ) is 

horizontal, and the other (y) vertical. The elevations and 

depressions of the free surface will then present the 

appearance of a series of parallel straight ridges and furrows, 

perpendicular to the plane (  ). 

The motion, being assumed to have been generated originally 

from rest by the action of ordinary forces, will necessarily be 

irriotational and the velocity Potential (∅) will satisfy the 

equation :  

  ∅

   
 

  ∅
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With the condition  

 ∅

  
                                     

at affixed boundary. [6] 

To find the condition which must be satisfied at the free 

surface (P = const.) , let the origin (O) be taken at the 

undisturbed level, and let oy be drawn vertically upwards. 

The motion being assumed to be infinitely small, we find, 

putting  ( ) = gy in the formula (u) and neglecting the square of 

the velocity (q), 

 

 
  

 ∅

  
                        

Hence if  ( )  denote the elevation of the surface at time t 

above the point (   )  , we shall have, since the pressure there 

is uniform, 

  
 

 
 *
 ∅

  
+
   

                 

 

Provided the function F(t), and the additive constant, be 

supposed merged in the value of ( ∅   ) . 

Subject to an error of the order already neglected, this may be 

written. 

  
 

 
 *
 ∅

  
+
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Since the normal to the free surface makes an infinitely small 

angle (     )  with the vertical, the condition that the normal 

component of the fluid velocity at the free surface must be 

equal to the normal velocity of the surface itself gives, with 

sufficient approximation,  

  

  
   [

 ∅

  
]
   

                

This is in fact what the general surface condition becomes, if 

we put  F( ,y,zt)   y –  , and neglect small quantities of the 

second order. [6] 

Eliminating ( ) between (3.1.5) and (3.1.6) we obtain the 

condition   

  ∅

   
  

 ∅

  
                      

to be satisfied when y   o . This is equivalent to DP/Dt = o. [6] 

In the case of simple- harmonic motion the time-factor being 

(        ) , this condition becomes   

  ∅   
 ∅

  
                     

 

(3-2) Surface waves generated by an impulsive pressure 

In the first boundary value problem of this type which we shall 

consider we suppose that the fluid is of infinite depth, y≤ o , 

and that waves are generated by the action of an impulsive 

pressure on the surface y = o of the fluid.To determine the 
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wave system so produced we have, therefore, to solve 

equations  

  ∅

   
 

  ∅

   
                    

  ∅

   
  

 ∅

  
    

subject to the boundary condition (∅  
     

 
  )   

together with the initial condition that (   )  

when t = o. 

If we introduce the Fourier transform  

         
 

√   
 ∫ ∅       

 

  

        

then the equation = (
  ∅

     
  ∅

      )  is equivalent to 

(
   

     
   ) = 0 

of which the solution which tends to zero as              is  

         ( ,t) = A ( ,t)                       

Multiplying both sides of equation  (
  ∅

   
  

 ∅

  
  ) by 

     
  

       and integrating over the entire range of variation 

of    we find that  

   

   
                

whence it follows that  
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where (    )  and B( ) are constants of integration. 

Along y = o we have 

  

  
        

 
 [     

       
  
 
   

         
        

  
 
   ] 

so that if ( ) is zero initially we must take       ) = B( ) . Using 

this condition with that on (∅) , which may be written in the 

form    ( ,o,o) =  ̅0 ( )/p,  we find that  

  
     

 
c s      

 
        

which by the application of the inversion leads to the result 

∅         
 

 
√

 

  
∫  

 

  

  ̅    c s      
 
              

= 
 

  
∫    
 

 
 ∫  

 

  
     c s *  | | 

 

  + c s[     ]         

             

In particular, if  ̅0( )in an even function of ( ) the first of these 

two equations may be put into the form.[1] 

 

∅         
 

 √   
*∫  

 

 

    ̅    c s (    
 
  

 
  )+    

 *∫  
 

 
    ̅    c s      

 
  

 
     +            

The evaluation of definite integrals of this type is in general, 

troublesome and can often be achieved only by the use of 

numerical or approximate methods. We shall return to this 
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problem in the next section. For the moment we shall confine 

our attention to the evaluation of these integrals in a special 

case-that in which the waves are generated by the application 

of an impulsive pressure to a single point, the origin, say. 

In this case we may take   P0 ( )  =    ( ) , where P is a 

constant , so that    ̅0 ( )  =      
 

   P . when y = o , it follows 

from equation (3-2-4 ) that  

∅         
 

   
 ∫ [c s (    

 
  

 
  )  

 

 

c s (  

  
 
  

 
  )]                    

Substituting (  ) for     in these integrals, we find that. 

∅          
 

    
  
  

   
              

where (J) denotes the integral  

J = ∫  
 

 
[s  (

   
 

      ) s  (
   
 

     )]             

Making the substitutions 

   
 

 
 

 
 
 

 (     
  

  
 )     (

   

  
)

 
 

 

we find that  

    
  

 
 

 
 
 

 ∫  
 

 

s                        

From which it follows immediately that 
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   (

 

 
)

 
 
  ∫  

 

 

c s                      

Substituting from equation (3.2.9) into equation (3.2.6) , we 

obtain for the velocity potential  

∅         
 

   
 
 
 
  

 
 
 

  ∫  
 

 
c s                        

With the usual notation for Fresnel's integrals, 

      ∫  
 

 

c s  
 

 
            

       ∫  
 

 

s    
 

 
                             

we may write the solution (3-2-9) in the form  

∅         
  

    *c s 
 
 
             s  (

 
 
      )    +           

where  

     
   

    
                     

The value of the velocity potential along y = o can therefore be 

determined readily from the calculated values of the Fresnel 

integrals C(u) and S(u) . The variation of these functions with (u) 

is shown in Fig. 1 and Fig 2 in page (54) . A simple geometrical 

interpretation of this result is, however, possible. 

Equation (3.2.12) shows that we may consider the velocity 

potential (∅) to be the real part of the expression 

  

   
    

 
      

[            ] 
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If we now plot the curve whose freedom equations are  

  = C(u) , y = S(u) 

we get the well – known cornu spiral (Fig 3) so that, if (P) is the 

point on the spiral corresponding to the value u, we may write  

                    

where (r) denotes the distance (OP) of P from the origin and     

( ) is the angle (   O P ) , as shown in Fig 3 in page (55) With 

this notation  (∅) is the real part of the expression [1] 
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(Fig3) 

 

from which it follows at once that  

∅  
   

   
c s 

 

 
                 

Now, since C ( ) =s( )= 
 

 
 , we see that for large values of (u) 

the point (P) approaches the limit point   ́  
 

 
 , 

 

 
   of the spiral 

and ( r =   ́ =  
 

√ 
 ,   = 

 

 
  ) so that for large values of  gt2/  we 

have the asymptotic expression 

∅         
 

   
 (

   

   )

 

 
c s (

   

  
 

 

 
 )             

for the velocity potential on  y = o. 

Using the relations (3-1-5) and (3-2-13) we obtain                         

         
 

 

  
 ∅

  
 

so that from the solution (3-2-12) we obtain the equation 
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 (    
 
 )

   
 *    [c s  

 

 
          s    

 

 
    ]+ 

   *    [s  (
 

 
   )       c s  

 

 
    ]+              

for the elevation of the free surface.for large values of (u) we 

may take C(u)  = S(u) = 
 

 
 and neglect terms of order (u) and (1) 

in comparison with those of order  .  Equation (3.2.15) then 

reduces to  

  
  

 
   

  
 
   

 
 

c s  
   

  
 

 

 
              

for large values of gt2/  .[1] 

 

(3-3) wave –Propagation in Two Dimensions 

   We may next consider some cases of wave. Propagation in 

two horizontal dimensions x,y . 

The axis of Z being drawn vertically upwards, we have, on the 

hypothesis of infinitely small motion. 

 

 
  

 ∅

  
                      

Where (∅) satisfies  

                   (  ∅                        

The arbitrary function F(t) may be supposed merged in the 

value of ( ∅   ) . [ ] 
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If the origin be taken in the undisturbed surface, and if ( ) 

denoet the elevation at time (t) above this level, the pressure – 

condition to be satisfied at the surface is  

  
 

 
 [
 ∅

  
]
   

             

and the kinematical surface – condition is  

  

  
    [

 ∅

  
]
   

             

Hence, for Z = o , we must have  

  ∅

   
    

 ∅

  
              

or, in the case of simple-harmonic motion ,  

  ∅     
 ∅

  
           

If the time – factor be   (        ) . [ ] 

The fluid being supposed to extend to infinity horizontally and 

down-wards, we may briefly examine, in the first place, the 

effect of a local initial disturbance of the surface , in the case of 

symmetry about the origin. [ ] 

The typical solution for the case of initial rest is easily seen, on 

reference to be  

∅    
      

  
 e           

  c s             

Provided    
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To generalize this, subject to the condition of symmetry, we 

have recourse to the theorem 

      ∫  
 

 
             ∫  

 

 
              

             

Thus corresponding to the initial conditions, 

        ∅               

We have 

∅      ∫  
 

 
 
      

  
  e              ∫  

 

 
                

and 

   ∫  
 

 

c s                ∫  
 

 

           

                                         

If the initial elevation be concentrated in the immediate 

neighborhood of the origin, then, assuming.  [6] 

∫  
 

 

                         

We have  

∅   
 

  
 ∫  

 

 
 
      

  
  e                         

Expanding, and making use of (8) , we get  

∅   
  

  
 ∫ ,  

   

  
    

       

  
   

 

 

  -  e                          

If we put  
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Z = -r cos   ,    =  r sin   ,              

we have  

∫  e              
 

 
  

 

 

            

and thence  

∫  e                ( 
 

  
 )

  

 
   

 

 

   
     

     
          

Where   c s           

∅   
  

  
 ,
     

   
  

   

  
  
       

   
                

  
       

  
 
       

   
  -               

Form this the value of ( ) is to be obtained by (3.3.3). It appears 

from that.   

P2n+1 (0) = 0 , P2n (0) = (-1)n  
          

       
            

whence :  

  
 

    
 

{
 
 

 
   

  
 
   

 
    

     

  
 (

   

 
 )

 

  

        

   
 (

   

 
 )

 

  
}
 
 

 
 

             

It follows that any particular phase of the motion is associated 

with a particular value of (     ) , and thence that the various 

phases travel radially outwards from the origin, each with a 

constant acceleration. [ ] 
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No exact equivalent for (3.3.20) , analogous to the formula 

which was obtained in the two-dimensional from of the 

problem, and accordingly suitable for discussion in the case 

where(     )is large, has been discovered. An approximate 

value may however be obtained by kelvin's method. Since J0 (Z) 

is a fluctuating function which tends as (Z) increases to have 

the same period (2π) as sin (Z), the elements of the integral in 

(3-3-13) will for the most part cancel one another with the 

exception of those for which  

t d   / dk =    , or k   =                    

nearly. Now when (k  )    is large we have  

          
 

   
 
 
 s       

 

 
               

Approximately and we may therefore replace (3.3.13) by  

∅   
 

 
 

 
 
  

 
  

 
 

 ∫  e    c s (      
 

 

 
 

 
    )                              

When putting now Z = o , we find as the surface value of (∅) 

∅    
 
 
 

   
 
  √            

s                        

where (k) and ( ) are to be expressed in terms of ( ) and (t) by 

means of (3.3.8) and (3.3.21). Not has here been taken of the fact 

that   (        )   is negative. Since 
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         /                

we have  

∅    
  

 
 
     

s  
   

  
              

The surface elevation is then given by (3.3.3). Keeping, for 

consistency, only the most important term, we find 

    
   

 
 
     

c s
   

  
            

Which agrees with the result obtained, in other ways, by Cauchy 

and Poisson.[6] 

It is not necessary to dwell on the interpretation, which will be 

readily understood from what has been said with respect to the 

two- dimensional case. The consequences were worked out in some 

detail by Poisson on the hypothesis of an initial paraboloidal 

depression. 

When the initial data are of impulse, the typical solution is   

 ∅  c s      e           

   
 

  
 s              

 

Which being generalized, gives , for the initial conditions   

 ∅                            

the solution   

∅  
 

 
 ∫  c s   e                

 

 

∫  
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and 

    
 

  
 ∫    s                  ∫  

 

 

               
 

 

                

In particular, for a concentrated impulse at the origin, such that  

∫  
 

 

                              

we find   

∅  
 

   
 ∫  c s   e                          

 

 

 

Since this may be written  

∅  
 

   
  
 

  
∫  

     

 
  e                         

 

 

 

We find, performing (
 

  
  

 

  
 ) on the results contained in         

(3.3.18) and ( 3.3.20), 

∅   
 

   
 {
     

   
  

   

  
  
       

   
  

     

  

 

 
       

   
    } 

  
 

     
 {  

     

  
   

   

 
     

        

  
 (

   

 
 )

 

 }  

 ……………………………………..(3.3.34) 

Again, when (
 

 
       ) is large, we have, in place of (3.3.27)  

   
   

 
 
     

 s  
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(3-4) Slow motion of a viscous Fluid 

   We shall now turn to the discussion of problems in which the 

viscous nature of the fluid plays an important role. The 

complete equations of motion of an incompressible viscous 

fluid [ equations (
  

  
               

 

 
    

 

 
) ] are too 

difficult to solve exactly in any particular problem because they 

are nonlinear. 

   In the case of very slow motions the equations reduce, in first 

approximation, to linear equations since the terms v x w and V2 

will be of the second order. In the sub sequent pages we shall 

discuss certain boundary value problems which may be treated 

under this approximation and then consider how far the 

methods of Fourier analysis may be applied to the non linear 

case. 

 

(3-5) Diffusion of vorticity  

    In the two – dimensional case in which either the motion is 

very slow or ( ) is a function of ( ) we may write equation :  

  

  
    

  

  
      

  

  
    

                

In the form 

  

  
    

                     

Which is the equation for the two-dimensional flow of heat. 

If the fluid fills the whole space and if, when t = o. 
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Then we may solve equation (3.5.2) by multiplying both sides 

by (
 

  
) e           and in tegrating throughout the whole any 

plane. In this way we obtain the equation :  

  

  
         

    
    (          )           

for the rate of change of the Fourier transform. 

 

  (          )   
 

   
 ∫  

 

  

∫  
 

  

            e                 

 

of the vorticity           . The solution of equation (3.5.3) 

satisfying the initial condition (3.5.2) is  

Z = Z0 e  (  
    

 )   

Where Zo is the Fourier transform of the function          . 

Hence, making use of the inversion theorem for double Fourier 

transforms [     in equation (3.5.2) , we have  

 

            
 

   
 ∫  

 

  

∫  
 

  

               e
  (  

    
 )  

                     

 In the special case in which we may write  

                   

this solution reduces to the form  
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 ∫   

 

  

        e
    

           ∫   
 

  

        e
                 

in which F and G ar the usual ( one-dimensional ) transforms of 

the function ƒ( ) and  ( ) . For example, if initially there is 

avortex sheet in the plane   =o , we may write           so 

that , taking      =        and g(y) = 1 , we readily calculate 

that F(w1) =      
 

    and G(w2) =     
 

     (w2) 

giving  

   
 

   
 ∫   

 

  

 e    
               

 

 √   
     

     

From the relation  
  

  
                   

         
  

√ 
  ∫   

       
 
  

 

    
    

If, on the other hand, there wase initially avortex filament of 

strength (k) along the [1] 

                 
 

 
                     

                   

  
 

     ∫  
 

  
e    

             ∫  
 

  
e    

             

The integrations are elementary and give  
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In the case of axial symmetry about the (Z) axis, equation           

( 3.5.1) may be written as :  

  

  
   

   

   
  

 

 
  
  

  
  

Multiplying both sides of this equation by rJ0(wr) and 

integrating with respect to (r) from (o) to ( ) , we find that the 

trans form :  

 ̅        ∫                   
 

 

 

Satisfies the first – order equation  

  ̅

  
     ̅   

Subject to the initial condition  

   = f(r)  , this equation has the solution  

     ̅          

So that, by the application of the Hankel inversion we find  

    ∫                     ̅    
 

 

 

For the case of aline filament we have  

                         ̅             

  
 

  
 ∫                         

 

 

 

Making use of equation :  
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   (
  

  
  
  

  
 
 

  
 )   

      
   

Appendix A , with V = o , we get the same result as we did by 

employing the theory of two-dimensional Fourier transform.[1] 
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Chapter Four 
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Chapter Four 

Fluid Motion 

 (4-1) Motion of a Viscous Fluid Contained between Two 

Infinite Coaxal Cylinders 

   As an example of the use of finite Hankel transforms in the 

discussion of boundary value problems in the theory of the 

motion of viscous fluids we consider the motion of such a fluid 

contained between two infinite coaxal cylinders. We regard the 

cylinders as being of infinite length and, as is usually done in 

problems of this type, assume that the velocities involved are 

sufficiently small for their squares to be neglected. [1] 

    If we take the (Z) axis along the common axis of the cylinders 

and the ( ) and (y) axes normal to it, then , denoting the 

components of the velocity in the ( ) and (y) directions by (u) 

and (  ) , respectively, and neglecting terms involving the 

squares of the components of velocity, we may write the basic 

equation:  

  

  
            (   

 

 
    

 

 
 )          

In the form  

  

  
    (

  
 

   
  

  
 

   
)    

  

  
 

 

  

  
    (

  
 

   
  

  
 

   
)    
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Where (p) is the pressure at the point (   ) in the fluid and ( ) 

and ( ) denote respectively,  the coefficient of viscosity and 

density of the fluid, for rotational motion we may write  

U = -V sin  ,  v = v cos   

so that , making use of the relations  

 

  
       

 

  
  

     

 
 
 

  
 

 

 

  
       

 

  
  

     

 
 
 

  
 

 

We may put the equations of motion in the form  

 

  

  
  

 

 
 
  

  
            *  (

   

   
  

 

 
 
  

  
  

 

  
)   

  

  
+ 

 

  

  
  

 

 
 
  

  
           *  (

   

   
  

 

 
 
  

  
  

 

  
)   

  

  
+ 

Further , if the motion is symmetrical about the (Z) axis, 

  

  
                   

from which it follows immediately that the above equations are 

equivalent to the pair  
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and  

   

   
  

 

 
 
  

  
  

 

  
  

 

 

  

  
                      

 

where (v) denotes the kinematic viscosity (   ). the 

inequalities in equation (4.1.3) merely express the fact that we 

are interested only in the region bounded by cylinders of radiis 

(a) and (b) and in positive values of the time. It is an immediate 

consequence of equations (4.1.1) and (4.1.2) that , with the 

assumptions we have made , the pressure (p) is a constant 

throughout the fluid. This is hardly surprising when we 

remember that the squares of the velocities have been 

neglected. The fundamental equation         may be derived 

directly as follows . Consider an annular element of fluid of 

radius (r) and thickness ( r), and let ( ) be the angular velocity 

of the fluid. Then the frictional force per unit area on a 

cylindrical shell of radius (r), is 2            per unit length, 

and the equation of motion of the annular element is  

        
  

  
  

 

  
 (       

  

  
 )   

 

   
   

   
  

 

 
 
  

  
  

 

 
 
  

  
 

 

On putting(     ) we immediately obtain equation         . 

[1] 
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(4.2) Motion when the outer cylinder rotates at  a constant 

speed 

   Suppose viscous fluid is contained between two infinite 

coaxal cylinders of radii (a) and (b) and that the fluid is set in 

motion by the outer cylinder ( r  = b ) starting to rotate with 

uniform angular velocity ( ) at the instant ( t = 0 ) , the inner 

cylinder being kept at rest. Then ( v =  b ) when ( r = b ) , and ( 

v  =  0 ) when ( r  = a ). Multiplying the left hand side of 

equation  

   

   
  

 

 
 
  

  
  

 

  
 

 

 

  

  
                      . 

by the function :  

  [                   –                  ] 

Where (  ) a positive root of the equation  

                  –                  0            

then , using , equation  

   (
   

   
  

 

 
 
  

  
  

  

  
)

 
       

       
              

                 

We find that  

∫
 

 
  [                   –                 ] (

   

   
  

 

 
 – 

 

  
)  

     
  ̅           

       

       
             

Where  ̅H denotes the finite Hankel transform  
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 ̅   ∫
 

 
  [                   –                 ]                 

of the velocity V(r). Substituting the boundary conditions V(a) = 

0 , V(b) = ( b), we see that the right – hand side of equation 

(4.2.4) becomes simply  

    
       

       

       
 

Thus we obtain the first – order ordinary linear equation :  

 

 
 
   

  
     

        
       

       
              

for the determination of the finite Hankel transform ( ̅ ). [1]  

Since the outer cylinder starts from rest when t = 0 , we have 

the initial condition  ̅    when t = 0 , so that the appropriate 

solution of equation (4.2.6) is  

 ̅    
  

  
  

       

       
(       

  )           

Substituting this value for (   ) into the inversion formula for 

the finite Hankel transform employed her we have. 

 

           
                 

  
          

        
        

     

[                   –                 ]           

 

where the sum is taken over all the positive roots of equation 

(4.2.2). [1]  
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Now from equations  

        
   

   
              

  
          

       
[                  

                   ]            

and  

    (
     

 
)   

     

   
 

       

       
            

it follows at once that :  

   

 
 (

     

     
)            

                 

  
          

        
 

 

[                   –                 ]           

 

so that we may write the solution finally in the form [1] 

 

      
   

 
 (

     

     
)          

                 

  
          

        
     

    

 [                   –                ]             

 

(4-3) Motion of a viscous Fluid under a surface load 

     In the discussion of the plastie reeoil of the earth after the 

disappearance of the Pleistocene ice sheets a boundary value 

problem in the theory of viscous fluids arises which can be 

solved by means of the theory of Hankel transforms. The 
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curvature of the earth is neglected, and as a model we treat the 

motion of a semiinfinite, in compressible, viscous fluid under 

the action of aradially symmetrical pressure applied to the free 

surface. Since, in the case of the earth, we are dealing with 

extremely small accelerations and very high viscosity, we may 

neglect the inertial terms in the equations of motion in 

comparison with those arising from viscous forces.[1] 

Neglecting the terms arising from the acceleration, the 

equations of motion of a fluid in a gravitational field may be 

written in the vector form. 

μ                               

Provided that the positive (Z) axis is taken as pointing down 

ward. The velocity (v) at the point (     ) in the fluid must also 

satisfy the equation of continuity. Transforming to cylindrical 

coordinates (r,Z,  ) and assuming cylindrical symmetry, we see 

that the equation (4.2.1) become  

 

 
 
 

  
 ( 

   

  
)   

  

  
  

    

   
  

 

 
 
  ̅

  
           

 

 

 
 
 

  
 ( 

   

  
)   

    

   
   

 

 
 
  ̅

  
            

 

where we have written ( ̅ = p - g Z) similary the equation of 

continuity div ( v = 0 ). transforms to  

 

 
 
 

  
        

   

  
                

The components of stress associated with the (Z) direction are. 
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and  

                                  (
   

  
 

   

  
)            

The boundary conditions are that, on the free surface, the 

shearing stress (    ) is zero and that the normal component of 

stress (   ) is equal to the applied pressure. In addition, it is 

assumed that at infinity the stresses and the components of 

velocity are zero. If we suppose that the equation of the free 

surface is Z =  (r,t) and that the equation of the undisturbed 

free surface is Z = 0, then we take ( ) to be small in comparison 

with the other distances which enter into the problem. 

Such as. for instance, the radius of the circle to which the load 

is applied. Just as. in the case of surface waves. we may take, at 

least in first approximation, the free surface to be Z = 0 . Thus 

we replace the value of (   
  

⁄         ) by its value at Z=0, 

and similarly with the other quantities except (g Z = g   (r,t)) . 

If we denote the applied pressure by  (r,t) , we have 

           ) when Z =   (r,t). Or, by means of equation (4.3.5) 

with the " surface wave approximation". 

 ̅               
   

  
                         

The relation between ( ) and (  ) is that, at the free surface, 

the rate of change of ( ) is equal to (  ) ; hence we have    
  

  
                     

Finally, the condition that the shearing stress on the free 

surface is Zero becomes, in this approximation. [1] 
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(4-4) Harmonic Analysis of Nonlinear Viscous Flow 

      In this part we have discussed problems in viscous fluid flow 

by assuming that the motion was so slow that the terms of the 

second order in the velocity could be neglected. Thus, in the 

discussion of the diffusion of vorticity we made use of the 

approximate equation  

  

  
    

                   

instead of the exact equation  

  

  
   

  

  
  

  

  
     

               

      For the variation of the vorticity.In this section we shall 

consider this latter equation. Because of its nonlinearity this 

equation does not lend itself readily to the application of 

methods based on the theory of integral transforms, but some 

progress has recently been made in this direction by kampe de 

Feriet. It is possible to set up relations between the double 

Fourier transforms of the various physical quantities entering 

into the problem and then, with the help of these relations, to 

form and integrodifferential equation governing the behavior 

of the double transform of the vorticity. The study of this 

equation is very difficult but would seem to be the rational 

starting point for the rigorous discussion of the behavior of the 

transform of the vorticity and the related spectral function. 

Though the solution of particular boundary value problems by 

this method will be exceedingly complicated, it should be 
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possible to investigate in this way the validity of Several of the 

working hypotheses which have been made in the past, such as 

the assumption that the big eddies have a tendency to 

degenerate into smaller ones.    [1] 

We shall first of all write down some important properties of 

double Fourier transforms of which we shall make use. If 

       is areal function of the variables ( ) and ( ), then its 

double Fourier transform  

         
 

  
 ∫ ∫                   

 

  

 

  

               

has complex conjugate  

          
 

  
 ∫ ∫                    

 

  

 

  

        

                    

  then, by a method similar to that employed in establishing the 

Faltung theorem we may readily show that:  

∫ ∫                           

  

 

  
      = 

∫ ∫          
                    

 

  

 

  

          

Where        and        are real function of ( ) and (y). In 

particular, we shall make use of the special case g = f,  
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∫ ∫         

 

  

 

  

 ∫ ∫|        |
       

 

  

 

  

             

 

  If we introduce the double Fourier transform  (       ) of 

the stream function          through the eguation 

 (        )   
 

  
 ∫ ∫                     

 

  

 

  

       

                       

Then it follows from equation  

     
  

  
     

  

  
 

that the Fourier transforms  (ω  ω    ) and  (ω  ω    ) of 

the velocity components          and           satisfy the 

relations [1] 

  (ω  ω    )   ω    (ω  ω    ) (ω  ω    )  

   ω   (ω  ω    )  

Similarly, by multiplying both sides of the equation 

     
 

 
   

   

    by              and integrating over the whole       plane, 

we obtain the equation  
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  ω 

  ω 
      

for the double transform  (ω  ω    ) of the vorticity           

From these relations it follows immediately that  

 

 

 (ω  ω    )  
 

    
     

    (ω  ω    ) 

 (ω  ω    )  
     

    
     

    (ω  ω    ) 

                        (ω  ω    )   
     

    
     

    (ω  ω    ) 

 

Now, from equation (4.4.6), we have that  

  
 

 
 ∫ ∫             

 

  

 

  

   

 

 
 ∫ ∫           ω  ω 

 

 

  

 

  

           

 

so, substituting for (U) and (V) and their complex conjugates 

from the last two of the equations (4.4.7), we obtain the 

expression 

                   ∫ ∫
    

    
     

 

 

  

 

  
  ω  ω                
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This integral (E) has a simple physical interpretation – it 

represents the kinetic energy of the fluid flow. If we from the 

spectral decomposition of this function , we write  

   ∫ ∫   

 

  

 

  

ω  ω      ω  ω               

Where the function   ω  ω     is called the spectral function.  

A simple expression for this spectral function is obtained by 

identifying equations (4.4.10) and (4.4.11). We find that [1] 

 

             ω  ω      
 

    
     

   |   ω  ω     |
              

 

     These equations show that the harmonic analysis of the flow 

of a viscous fluid can be based on the study of the Fourier 

transform    ω  ω      of the vorticity, but even in the rather 

special case we are considering here, in which the fluid fills the 

entire space, we have no simple method of determining the 

form of the function    ω  ω      . We shall now set up the 

nonlinear integrodifferential equation upon whose solutions 

the determination of    ω  ω      rests. From equation (4.4.5) 

we have  

 ∫ ∫       
  

  
            

 

  

 

  

        

∫ ∫               

 

  

 

  

ω   
     ω     ω          
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Now the Fourier transform          is, by equation (4.4.7) of 

the form  

    

  
     

             

so that 

∫ ∫  
  

  
            

 

  

 

  

       

 ∫ ∫
      ω  

  
     

       

 

  

 

  

    
     ω     ω          

                       

Similarly it may be shown that  

∫ ∫       
  

  
            

 

  

 

  

       

  ∫ ∫
      ω  

  
     

       

 

  

 

  

    
     ω     ω        

                     

Hence it follows that equation  

  

  
  

  

  
   

  

  
    

   

is equivalent to 

    ω  ω     

  
    ω   

  ω  
     ω  ω       
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 ∫ ∫
        ω  

  
     

       

 

  

 

  

      
     ω    

 ω                      

It will be observed that, in the case in which (  ω     ω  

 ), this equation reduces to the approximate equation   

(
  

  
     ω   

  ω  
     ω  ω     ) which we used previously 

to obtain the solution of special problems. This suggests that in 

a case in which the term on the right – hand side of equation 

(4.4.16) would appear to be small we may obtain approximate 

solutions of the equation by writing (Z = Z0 + Z1), where Z0 is the 

appropriate solution of the corresponding initial value problem 

on the equation (
  

  
     ω   

  ω  
     ω  ω     ) . If we 

then insert this form in equation (4.4.16) and retain only terms 

in (Z0) on the right, we obtain the equation  

      ω  ω     

  
    ω   

  ω  
      ω  ω      

  ∫ ∫
        ω  

  
     

        

 

  

 

  

       
     ω    

 ω                          

for the determination of the small quantity (Z1).[1] 

   This equation being linear in (Z1), may be solved readily under 

the initial condition (Z1 = 0) to give the first approximation to 

(Z1). The process may then be repeated, retaining terms of the 

next highest order of small quantities on the right. In this       

way we may build up the solution in cases in which the 

nonlinear terms represent a small perturbation of the linear               



84 
 

flow described by equation (
  

  
    

  ). In the general case in 

which the nonlinear term is appreciable there does not appear 

to be any general method of attack.  [1] 

In the above analysis we have assumed that the viscous fluid 

fills the whole of the (   ) plane. If it is bounded by a curve ( C ) 

which encloses a domain (D) of finite area (S), then we may 

employ finite Fourier transforms of the type. 

         
 

  
 ∫ ∫          

                          

to obtain some general inequalities governing the behavior of 

certain physical quantities. It is obvious that  

|        |  
 

  
 ∫ ∫  |       |                 

so that, by schuarz's inequality, we have 

|        |
  

 

   
 [∫ ∫

 
             ]            

since   ∫ ∫
 
             c       e s    e       e        

         
 
 
 

  
 [∫ ∫   

           ]
 
             

In particular, if (U) denotes the finite transform of u     , then  

| |  
 
 
 

  
 (∫ ∫

 
        )

 
   

     
 
 

  
            

Where (E) is the total energy of the fluid, defined by the 

analogue of equation (4.4.9). Similarly  
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                             | |  
     

 
 

  
                   

Now from equation (4.4.8) it follows that  

2iZ ω  ω   ω    ω               

and hence 

|  ω  ω  |  
 

 
  |ω | | |   |ω | | |              

Substituting from equations (4.4.22) and (4.4.23) into equation 

(4.4.25), we find that 

|  ω  ω  |   
     

 
 

  
  |ω |   |ω |              

Equation (4.4.12) then gives and upper bound for    ω  ω       

   ω  ω    
  

   

 |ω |   |ω | 
 

ω   
  ω  

 
  

From which it follows immediately that 

   ω  ω     
  

   
   

Indeed it can be proved that [1] 

          
   

     
      

 
 ⁄   

( 4-5 ) Stability of theory of Hydrodynamic 
    We assume that at every point x of the fluid, and at all times 
t, we can define properties like  density  (x, t),  velocity u(x, t),  
and  pressure p(x, t),  and  that  these vary smooy 
(differentiably) over the fluid.  Note that we do not deal with 
the dynamics of individual molecules. A small volume δV  thus 
has mass δV  and momentum δV  u. [ 3 ] 
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  The material derivative:  A fluid  particle, sometimes called a 
material element, is one that moves with the fluid, so that its 
velocity is u(x, t) and its position x(t) satisfies x˙ = u(x, t). The  
rate  of  change  of  a  quantity  as  seen  by  a  fluid  particle  is  
called  the material derivative and written D/Dt.  It is given by 
the chain rule as 
  

 

  
  

 

  
                       

 
Mass conservation: 
 

  

  
                       

 
For an incompressible fluid, the density of each material 
element is constant, and Incompressible flow: 
 

  

  
                                                   

 
   In  this  Reserch we  shall  concentrate  on  fluids  that  are  
incompressible  and  have  uniform density, so that   is 
independent of both x and t.  [3 ] 
  Streamfunctions in 2D and axisymmetry . For two-dimensional 
flows, the condition  · u = 0 is automatically satisfied by 
 

                            
           .(4.5.4 ) 

 
φ(x, y) is called the streamfunction. 
In axisymmetric flows, in terms of cylindrical polar coordinates 
(r, θ, z), the incompressibility condition    u = 0 is satisfied 
using the Stokes streamfunction, φ (r, z), 
 

 =    (0,
 

 
     (  

 

 

  

  
     

 

 

  

  
 )             
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 The Navier-Stokes Equations for an incompressible fluid 
 

 
  

  
    (

  

  
             )                       

                                ) 
 

                            
 

  In (4.5.6) μ is the viscosity, assumed constant, and F a body 
force, perhaps gravity, F =  g. In cylindrical polar cordinates,   
(r,  , z), with velocity u = (            , (4.5.6  -  4,5.7) become 
Cylindrical  
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Coordinates  
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Boundary Conditions. [3 ] 
  In order to determine the velocity u(x, t) and pressure p(x, t) in 
some region V , we need to know what boundary conditions to 
apply on the surface S. The appropriate conditions to apply are 
that the velocity and the total stress should be continuous 
across any interface. Here ‘total stress’ includes any surface 
tension (see below.) 
(a) Fluid/solid boundaries: 
 A solid boundary can provide whatever stress is needed to 
support the fluid motion, so it is sufficient to require that the 
fluid velocity u be the same as the velocity of the boundary. 
Thus for a stationary boundary 
 
            u = 0 . …………………………………(4.5.9) 
 
  Note that requires that the tangential velocity components be 
zero as well as the normal component. In inviscid flow only the 
normal velocity need be continuous at an interface, and a ‘slip 
velocity’ must be permitted. The presence in the Navier-Stokes 
equation of the second derivative μ  u requires an extra 
boundary condition. 
(b) Fluid/fluid boundaries: 
 These are more complicated, because the interface can move. 
Furthermore, it is a physical fact that an extra normal stress, 
due to surface tension, acts on the interface. This extra stress 
takes the form   K(x) where   is the positive surface tension 
constant, and K is the curvature of the fluid surface, which can 
be defined by K =  · ̂ where   ̂is the unit normal to the 
interface.  [ 3 ] 
If one of the fluids is dynamically negligible, as often happens 
with a liquid/gas interface, then we can treat one fluid as 
having a constant pressure    and neglect its motion. If the 
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interface is stationary, then the appropriate boundary 
conditions to apply on the other fluid are zero normal velocity 
and zero tangential stress. (So if the surface is y = 0 and velocity 

(u, v, 0) then we have v = 0 and μ     ⁄ = 0. For inviscid flow,   

μ = 0 and the tangential stress condition is trivial.) If the 
interface moves and we describe its position at time t by the 
function  (x, t) = 0, then the kinematic boundary condition for 
the normal velocity can be written 
 

  

  
                      

 
Inviscid and high-Reynolds-number Flows .  
When written in terms of nondimensional variables, a 
parameter, Re, known as the Reynolds number appears in the 
equations. Re essentially measures the relative importance of 
the inertial to the viscous forces. and is defined by Re =  LU/μ 
where L is a typical length-scale of the problem, and U a typical 
velocity magnitude. 
  At low values of Re, it can be proved that only one steady 
solution of the Navier-Stokes equations exists, and that this 
flow is stable in the sense defined below. For high values of Re, 
there are many examples where more than one stable, steady 
solution is known to exist. Flow instability is strongly linked 
with the existence of more than one solution. 
  When Re   1, it is tempting to neglect the viscous terms, 
setting μ = 0. If this is done, one of the boundary conditions 
must be omitted, usually allowing tangential slip. Some caution 
is necessary, as viscous boundary layers form near solid 
surfaces in which the velocity develops strong gradients so that 
the viscous term cannot be neglected. Boundary layers typically 

have thickness 
 

  
 
 

and must remain thin for the “core/layer” 

structure to be valid. Inside a steady boundary layer, where x 
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and y are measured parallel and normal to the boundary, the 
governing equations for u = (u, v, 0) 
 

 (         )                   

 
                           

 
  These equations are parabolic which means they must be 
solved in the downstream direction. The pressure does not vary 
across the layer and is determined by the conditions at “y =  ” 
which means the external potential flow. The boundary layer 
equations tend to be valid so long as the pressure gradient is 
favourable, which means −   > 0. If the pressure gradient is 
unfavourable, there is a strong likelihood that separation of the 
boundary layer will occur. This is manifested by the solution to 
the boundary layer equations developing a singularity. 
Separation completely alters the external flow, and leads for 
example to “stall” of aircraft. [3] 
  The vorticity equation is obtained by taking the curl of (4.5.6). 
Writing        ^ u we have 
 

 (
  

  
            )         ----------- (4.5.12) 

 
For two-dimensional flow, if we write u =  ^ (0, 0, ψ (x, y, t)) 
and ω= (0, 0, ω) then 
 

 
  

  
                                          

 
A flow for which ω= 0 everywhere is said to be irrotational. 
Then we can introduce a velocity potential, ∅, such that u =  ∅. 
  Inviscid Flows: As there is no source term in (4 . 5 . 12), 
vorticity can only be generated at boundaries. If μ = 0 then a 
flow which is irrotational initially remains irrotational for all 
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time. The time-dependent Bernoulli theorem states that for 
irrotational flows, 
 

 ∅

  
  

 

 
| ∅|      

 

 
                         

 
Turbulence: At high values of    it is found experimentally that 
fluid flows tend to become unsteady and highly chaotic, even 
though a simple steady flow could exist in theory. Turbulent 
flows are difficult to analyse and have important practical 
implications. The manner in which transition to turbulence of a 
laminar flow occurs is an important topic. The first stage in this 
process is that the underlying steady flow becomes unstable. In 
this course we examine Hydrodynamic Stability.[3] 
     Stability Concepts 
For a given problem, we solve the governing equations and 
obtain a solution which we assume is steady, u = U(x) with a 
corresponding pressure distribution p = P(x). We then make a 
small perturbation to the flow, so that 
 
           ́                    ́                 
 
where ε is a small positive constant. We then consider the 
behaviour of  ́. If ε ́ remains small for all time, we say that the 
underlying flow is stable, whereas if it eventually becomes large 
no matter how small ε is, we say the flow is unstable. 
The exact equations for   ́ and  ́ are  

 (
  ́

  
      ́    ́      ́   ́ )       ́       ́   

                         ́                                 
Linear stability theory neglects the last term on the LHS, as ε is 
arbitrarily small. The resulting linear equation has solutions of 
the form  ́ =  ̂  )    for some vector function  ̂ and constant  
s, and            ́     ̂        This is because none of the 
coefficients depends on t as U is steady. The general solution to 
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this problem will be a linear combination of all these particular 
solutions. The possible values of s can be regarded as 
eigenvalues of the system. These can be real, but are in general 
complex  
 

              
        [c s        s       ] 

 (a) If for all possible values of s we have    < 0 we say the flow 
is stable. 
(b) If there is at least one eigenvalue s for which    > 0, the flow 
is unstable. 
(c) If   = 0 for some eigenvalue, we say the flow is neutrally 
stable. In this case nonlinear terms may be particularly 
important. 
Surface stability: If the fluid has a free surface, this will deform 
in accordance with the normal stress associated with the 
perturbation velocity Free surfaces can be unstable even at 
very low   . [3] 
  The above approach looks at perturbation modes with a fixed 
spatial structure and examines how they evolve in time, a 
process known as temporal stability. An alternative approach, 
which is often appropriate, is to consider the spatial evolution 
of a localized disturbance in the flow. This disturbance may 
grow as it is advected downstream, so that the place where the 
instability occurs is far away from the disturbance. This is 
known as convective instability. In practice it is possible that 
the region of flow interest is too small for an instability of a 
given initial magnitude to develop. If a disturbance at a given 
position leads to growth at that position this is known as 
absolute instability. [3] 
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Condusions 
  The Hydrodynamic mathematical problems is for system of 

equation .  

The different problems in fluid mechanics yield different 

system of addition conditions which must be imposed on the 

solution of the Navier – stoke equation . Since mathematical 

problems in fluid mechanics and the motion may depend 

certain problems . 
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