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Abstract 

 In this study we introduced the analysis of some linear and 

nonlinear oscillator systems , we study the dynamic systems and 

their periodicity orbits and also we study the local bifurcations 

of vector fields and maps, and a significant role in the behavior 

of nonlinear systems. This study discussed four chapters. 

 In chapter one we introduced the analysis of oscillating 

systems with one degree of freedom, a model for flow of water 

in a pump, tank, and pipe system. In chapter tow we study an 

operational analysis of nonlinear dynamical systems, forced 

vibrations of nonlinear systems. In chapter three we study linear 

and nonlinear maps and closed orbits, Poincare maps, and 

forced oscillations and in chapter four we develop the general 

theory for dealing with bifurcations of fixed points of                

n-dimensional flows, the center manifold and normal form 

theorems. We also study the local bifurcations of maps and 

develop an analogous theory for them, and studied two–species 

oscillatory system: bifurcation and stability analysis. 
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 ملخص البحث

الدراسةةةةاولت بلةةةةتوليةةةةلواللالةةةة وتوللةةةةته وال   ةةةة وب  ةةةةروال   ةةةة وفييييه  يييي    

قد واللال لوللةته والد ت م ي ةاوبمةدارالا والدبر ةاوبلمةتودراسةاواتهمةاوالل ةر والملذلذلاوبو

المال ةةاوللملةة لواهللةة واوللةةدبالوبدبروةة والماةة ومةةاوسةةلبيوالةةته و  ةةروال   ةةا وبوةةذ و

والدراساوقدمتوماوارلياومصبل 

مةةةاوال صةةةةلواتبلوقةةةةدمتوالةةةةته والملذلذلةةةةاوذاتوالدرلةةةةاواتبلةةةة وبقةةةةد وتمةةةةبذ وو

اوالمضةة  توباتت ل ةةا وبمةةاوال صةةلوالوةة تاولت بلةةتودراسةةاواللال ةةلولاتسةة  اوالمةة  ومةة

ال يلةةةاوللةةةته و  ةةةروال   ةةةاولللذلةةةذل توذاتواللةةةب.وللةةةته و  ةةةروال   ةةةا وبمةةةاوال صةةةلو

الو لةةتولتةة بلواللاةةتوالةةدبالوال   ةةاوبالم ةةرو   ةةاوبمةةدارالا والممللةةاوبدبالولباتي ر ةةاو

 اوالي ماوالمليللةاولنتهمةاوالل ةرنو تةدوبالذلذل توذاتواللب. وبال صلوالرالعولت بلوالتهرو

التلةة  والارلةةاولوتسةة  ل توذاتوالليةةدوالتةةبتاوبمريةةزو د ةةد.وال  ةة توبال ةةيلوالتةة ه  و

بلتةةة بلوا ضةةة ةواتهمةةةاوالل ةةةر والمال ةةةاوللةةةدبالوبلةةة ول ةةةب روالتهر ةةةاوالمتةةة هر.ول  ةةةي لو

والت هما وبدراساوته م نوللذلذاوالل ر وبلال لواهسللرار 

و

و

و

و
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و

Proposal of the Research 

The analysis of linear and nonlinear Oscillator Systems 

 Objectives of the Research: 

 Here the researcher wants to give precise light to affection 

the natural phenomena which are being and going to obey rules 

of linear and nonlinear oscillator systems. 

 Moreover to find out it possible equations and to look for 

whether have solutions or no. 

 Dynamically a large part of engineering and physics is 

concerned with study of oscillations of nonlinear and linear 

systems. 

 No doubt that electrical circuits with lumped parameters 

are of the same form as the equations for mechanical systems. 

Significance of the Research: 

 Many problems in Dynamic system electrics or other 

scientific fields use linear and nonlinear systems specially those 

which have vibrating system. 

 Oscillations of linear and the analysis of nonlinear 

oscillatory systems are very important in study of many world 

problems. 

Research Hypothesis: 
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1. Dynamics and electrics problems often use oscillations of 

linear and analysis of nonlinear systems in terms of 

equations or differential equations. 

Example: 

 the linear system: 

  dx 

  dx 

 Where A is an n x n matrix. 

2. The nonlinear studies the cases which have a form 

equation x = ƒ(x) where x = x (t) Є IR
n
 is a vector valued 

function of an independent variable (usually time) and  

f:U      IR
n
 is a smooth function defined on some subset    

U  IR
n
. 

3. The nonlinear and linear flows are related via differ 

morphisms (Sternberg srequires theorem) certain non-

resonance conditions among the eigenvalues of DF(x). 

4. The parameters are playing a very important role in how 

to express about the bifurcations. 

5. There are relations between the vector fields and the 

studying of analysis of bifurcations.  

Question of the Research: 

1. Are that possible to stay Dynamics and electrics circuits 

problems use oscillations of linear and analysis of 

nonlinear systems? 

= Ax, x ЄIR
n
 

. 

. 
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2. Is that possible to find theorem which relates nonlinear 

and linear flows via? 

 

 

3. Are Natural phenomena being obey rules of oscillations 

linearity and analysis of nonlinear systems? 

4. Are the rules of linear and nonlinear systems give us some 

additional insights in to nature of oscillated phenomena 

and vibrated one's? 

5. Are parameters important in a bifurcations and how? 

 

 

 

 

 

و
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Chapter One 

Oscillations of linear systems 

1.1. Oscillating systems with one Degree of freedom 

 Let us consider the vibrating systems of Figure (1)system 

(a) represents a mass that is constrained to move in a linear path. 

It is attached to a spring of spring constant k and is acted upon 

by a dashpot mechanism that introduces a frictional constraint 

proportional to the velocity of the mass. The mass has exerted 

upon it an external force Po sinωt. By Newton's law we have. 

 Mx = kx – Rx + Po sin ωt        dx 

               dt 

              d
2
x 

              dt
2
 

 Where k is the spring constant and R is the friction 

coefficient of the dashpot. 

 System (b) represents a System undergoing torsional 

oscillations. It consists of a massive disk of moment of inentia 

(j) attached to a shaft of torsional stiffiness k. The disk 

undergoes torsional damping proportional to its angular 

.. . 

(1.1.1) 

x =  

x =  

. 

.. 

. 

.. . 
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velocity(θ). The disk has exerted upon it an oscillatory torgue  

Tosin ω t. By Newton's law we have. 

 Jθ = - kθ – Rθ + Tosin ωt    (1.1.2) 

 System (c) is a series electrical circuit having inductance , 

resistance , and elastance. By Kirchhoff's law the equation 

satisfied by the mesh charge q is  

 Lq+ Rq + Sq = Eo sinωt   (1.1.3) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R L 

S 
Eo sin ωt  

(c) 

K 

M 

x 

Po sin ωt 

( a ) 

K 

 

 

I 

To sin ωt 

RT 

( b ) 

 

.. . 
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Figure (1) 

 

 

 By comparing these three equations , we obtain the 

following table of analogues. 

Linear  Torsional  Electrical  

Mass M Moment of inertia J Inductance L 

Sliffiness K Torsional stiffness K Elastance S=1/c 

Damping R Torsional stiffness R Resistance R 

Impressed force Fo sinωt Impressed torgue To 

sinωt 

Impressed potential Eosin

ωt 

Displacement x Angular displacement θ Capacitor charge q 

Velocity x = v Angular velocity differential 

Equation 

θ = ω Current i = q 

Mx+Rx+kx=posinωt  Jθ+Rθ+kθ= Tosinωt  Lq+Rq+sq = Eo sinωt  

  We see from this table of analogues that it is necessary 

only for us to analzge one system and then by means of the table 

we may obtain the corresponding solution for others  3 .   

1.2.  Vibrations in mechanical 

 Generally speaking vibrations occur whenever a physical 

system in stable equilibrium is disturbed for then it is subject to 

forces tending to restore its equilibrium. In the present section 

we shall see how situations of this kind can lead to differential 

equations of the form. 

 d
2
x     dx  

  dt
2
        dt 

. 

+ p + qx = R(t) 

 

. .. .. . . .. 

. . 



 - 12 - 

 and also how the study of these equations sheds light on 

the physical circumstances. 

 

 

 

 

 

 

 

 

        Figure (2) 

Undamed simple harmonic vibrations: 

 As a continuing example, we consider a cart of mass M 

attached to a nearby wall by means of a spring Figure.1.2.1. The 

spring exerts no force when the cart is at its equilibrium position 

x = 0 If the cart is displaced by a distance x, then the spring 

exerts a restoring force. Fs = -kx, where k is a positive constant 

whose magnitude is a measure of the stiffness of the spring. By 

Newton's second law of motion, which says that the mass of the 

cart times its acceleration equals the total force acting on it, we 

have. 

       d
2
x     (1.2.1) 

       dt
2
 

or 

  d
2
x      k       (1.2.2) 

M 

+ x  = o ,  

= Fs M 
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    dt
2
        M 

  

 

It will be convenient to write this equation of motions in 

the form 

 d
2
x        (1.2.3) 

 dt
2
 

 where a =   k/M,  and its general solution can be written 

down at once, 

 x = c1 sin at + c2 cos at.     (1.2.4) 

 If the cart is pulled aside to the position x = xo and released 

without any initial velocity at time t = o, so that our initial 

conditions are  

         dx      

         dt 

 Then it is easily seen c1 = o and c2 = xo so( 1.2.4 ) 

becomes. 

 x = xo  cosat.      (1.2.6) 

 The amplitude of this simple harmonic vibration is xo and 

since its period T is the time required for one complet 

e cycle , we have aT = 2π and  

           2π           M    (1.2.7) 

            

 Its frequency ƒ is the number of cycles per unit time, so ƒT 

= 1 and 

+ a
2
x = o, 

=T   2π= 
a k 

= o when t = o, x = x o and υ = 
(1.2.5) 
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                                      (1.2.8) 

        T       2π      2π       M 

 It is clear from (1.2.8) that the frequency of this vibration 

increases if the stiffness of the spring is increased or if the mass 

of the cart is decreased, as our common sense would have led us 

to predict 1, 2 , 4 . 

1 Example (1.2.1): 

 Consider a spring – mass system with mass of 1 unit and 

spring constant of 9 units. Suppose the mass is raised 1 units and 

released with adown ward velocity of 1.2 units. Construct an 

initial – value problem for this situation , solve it , and describe 

the properties of the solution. 

 Example 1.2.1 is an initial – value problem for the linear 

oscillator equation. 

 y + 9y = o ,  y(o) = -0.3 ,  y (0) = 1.2 

 The general solution. 

 y = c1 cos 3t + c2 sin 3t. 

 By apply the initial condition we get the solution. 

 y = - 0.3 cos 3t + 0.4 sin 3t. 

  The graph of the solution appears in figure (3) from the 

graph, we can see that the motion is periodic. 

               

              

       1       3 

       T      2π 

=ƒ =  =  
1  a  1  k  

.. . 

T = = 
a 3 

2 
2 

ƒ = = 
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Figure (3) 

The solution of y + 9y = 0,y(0) = -0.3,y(0) = 1.2. 

 Driven harmonic oscillator: 

 A driven harmonic oscillator satisfies the non 

homogenous second order linear differential equation. 

 d
2
x  

         dt
2
 

 where Ao is the driving amplitude and is the driving 

frequency for a sinusoidal diving mechanism. This type of 

system appears in AC LC (inductor – capacitor) circuits and 

idealized spring systems lacking internal resistance or external 

air resistance  2  . 

Damped Vibrations: 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

 

 

.. . 

+ a2x = Ao cos ωt, 
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 As our next step in developing this physical problem. We 

consider the additional effect of a damping force Fd due to the 

viscosity of the medium through which the cart moves (air, 

water , oil , etc.). We make the specific assumption that this 

force opposes the motion and has magnitude proportional to the 

velocity , that is , that Fd = -c (dx/dt), where c is a positive 

constant measuring the resistance of the medium. Equation 

(1.2.1) now becomes. 

      d
2
x       (1.2.9) 

       dt
2
 

 So 

 d
2
x     C   dx    k             (1.2.10) 

 dt
2
     M   dt    M 

 Again for the sake of convenience, we write this in the 

form. 

 d
2
x            dx              (1.2.11) 

  dt
2
  dt 

 where b = c/2M and a=   k/M . The auxiliary equation is  

 m
2
 + 2bm + a

2
 = o       (1.2.12) 

 and its roots m1 and m2 are given by          (1.2.13) 

 m  , m   = -2b ±   4b
2
 – 4a

2
  = - b ±   b

2
 – a

2
  

  

The general solution of (1.2.11) is of course determined by the 

nature of the numbers m1 and m2. As we know , there are three 

cases , which we consider separately. 

 CASE A, b
2
 – a

2
 > o or b > a. In loose terms this amounts 

to assuming that the frictional force due to the viscosity is large 

M  = Fs + Fd 

+  +  x = o 

+2b  + a2x =  o. 

2 
2 1 
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t 

f 

x 

compared ton the stiffness of the spring. It follows that m1 and 

m2 are distinct negative numbers , and the general solution of 

(11) is  

 x = c1 e
m t

 + c2 e
m  t

       (1.2.14) 

 If we apply the initial conditions (1.2.5) to evaluate c1 and 

c2 , (1.2.14) becomes. 

            xo        

         m – m 

  

The graph of  this function is given in Figure (4). 

 

 

 

 

 

 

  

      Figure (4) 

 

It is clear that no vibration occurs, and that the cart merely 

subsides to its equilibrium position. This type of motion is 

called overdamped. We now imgine that the viscosity is 

decreased until we reach the condition of next case [1 , 2, 3 , 4]. 

 CASE   B. b
2 
– a

2
 = o or b = a Here we have m1 = m2 = -b 

 = -a. and the general solution of (1.2.11) is  

 x = C e
-at

 + C2 te
-at      

(1.2.16)  

X =  (m1em  t – m2 em2t ). (1.2.15) 

 

 

 

 

X0 

0.5 

0.4 
0.3 

0.2 

0.1 

0 

-

0.1 

-

0.2 

-

0.3 

-

0.4 

-

0.5 

 

 

1 2 

2 
1 2 
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 When the initial conditions (1.2.5) are imposed, we obtain. 

 x = xo e 
–at

 (1 + at) .     (1.2.17) 

 This function has a graph similar to that of (1.2.15) , and 

again we have no vibration. Any motion of this kind is said to be 

critically damped. If the viscosity is now decreased by any 

amount, however small, then the motion becomes vibratory, and 

is called underamped. This is the really interesting situation, 

which we discuss as follows. 

 CASE  C. b2 
– a

2
 < o or b < a . Here m1 and m2 are con 

jugate complex numbers – b ± c  , where  

  =  a
2
 – b

2
   ,  

 And the general solution of (1.2.11) is  

 x = e 
–bt

 (c1 cos  t + c2 sin  t).    (1.2.18) 

 When c1 and c2 are evaluated in accordance with the 

invtial conditions (1.2.5) , this becomes. 

 x =        e
-bt

 ( cos  t + b sin t).   (1.2.19) 

                 

If we introduce θ = tan
-1

 (b/) , then (1.2.19) can be expressed in 

the more revealing form. 

       x0  √  
2
+ b

2
                                         

                            

 This function oscillates with amplitude that falls off 

exponentially, as Figure. (5) Shows. It is not periodic in the 

strict sense , but its graph crosses the equilibrium position x= o 

X0 

 

 

x = e-bt cos ( t – o).            (1.2.20) 
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at regular intervals. If we consider its "period" T as the time 

required for one complete "cycle". 

 Then  T = 2 π and  

        2π =  2π   =         2π 

                         a2 –b2          k/m- C2/4M2 

   

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure (5) 

Also , its " frequency" ƒ is given by 

        1                    1                1    

`       T                  2π               2π     

X 

X0 

T 

t 

T = 

ƒ = k/M -  c
2
/4M

2
 a

2
-b

2
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 This number is usually called the natural frequency of the 

system. When the viscosity vanishes, so that c = O , it is clear 

that (1.2.21) and (1.2.22) reduce to (1.2.7) and (1.2.8.8). 

Furthermore, on comparing (1.2.8) and (1.2.22) we  see that the 

frequency of the vibration is decreased by damping, as we might 

expect. (1.1,2). 

 Forced vibrations: The vibrations discussed above are 

known as free vibrations because all the forces acting on the 

system are internal to the system itself. We now extend our 

analysis to cover the case in which an impressed external force 

Fe = f (t) acts on the cart. Such a force might arise in many ways 

, for vibrations of the wall to which the spring is attached , or 

from the effect on the cart of an external magnetic field (if the 

cart is made of iron). In place of (9) we now have. 

 M             = Fs + Fd + Fe     (1.2.23) 

 Or  

 M   +             + c              + kx = f (t).  (1.2.24) 

                                          

 The most important case is that in which the impressed 

force is periodic and has the form of f (x) = Fo cosωt, so that 

(1.2.24) becomes. 

 

 M             + c            + kx = Fo cosωt.      (1.2.25) 

  

d
2
x 

dt
2

 

 

d
2 
x  

dt
2

 

 

dx  

dt 

 

 

 

 

d
2
x 

dt
2

 

 

dx 

dt 
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Fo 

(k-ω
2
M) 

2
+w

2
c

2
 

 We have already solved the corresponding homogeneous 

equation (1.2.10), so in seeking the general solution of (1.2.25) 

all that remains is to find a particular solution. This is most 

readily accomplished by the method of undetermined 

coefficients. Accordingly, we take x = A sin ωt + B cosωt as a 

trial solution. On substituting this into (1.2.25) we obtain the 

following pair of equations for A  and B, 

 ωcA + (k – ω 2M) B = Fo , 

 (k – ω2M) A – wcB = o. 

 The solution of this system is  

A =                                    and  B =     

   Our desired particular solution is therefore  

   

x =        ωcsin ωt + (k-ω
2
M) cos ωt)     ( 1.2.26) 

 

 By introducing  = tan
-1

 (ωc/k-ω2M), we can write 

(1.2.26) in the more useful form. 

 x =                                      cos(ωt - )          (1.2.27) 

                 

 If we now assume that we are dealing with the under 

damped motion discussed above, then the general solution of 

(1.2.25) is  

x = e 
–bt

(c1 cos  t + c2 sin t) +                                    cos(ωt-y) 

                                                           

ωcFo 

(k-ω
2
M) 

2
+ω

2
c

2
 

 

 (k- ω
2
M )Fo 

(k-ω
2
M)

 2
+ω

2
c

2
  

 

 

Fo 

(k-ω
2
M) 

2
+ω

2
c

2
 

 

Fo 
      

(k – ω
2
M)

2
+ω

2
c

2
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 The first term here is clearly transient is the sense that it 

approaches O as t        ∞ .As a matter of fact , this is true 

whether the motion is under damped or not , as long as some 

degree of damping is present. Therefore, as time goes on, the 

motion assumes the character of the second term, the steady. 

state part. On this basis, we can neglect the transient part of 

(1.2.28) and assert that for large the general solution of (1.2.25) 

is essentially equal to the particular solution (1.2.27).The 

frequency of this forced vibration equals the impressed 

frequency ω/2π, and its am plitude is the coefficient  

Fo    

    (k – ω
2
M)

2
+ω

2
c

2
 . 

 This expression for the amplitude holds some interesting 

secrets , for it depends not only on ω and Fo but also on k , c , 

and M. As an example , we note that if c is very small and ω is 

close to   k/m (so that k – ω
2
M is very small) , which means that 

the motion is lightly damped and the impressed frequency ω/2π 

is close to the natural frequency.  

  1   k   -  c
2
               , 

        2π   M    4M
2
  

 then the amplitude is very large. This phenomenon is 

known as resonance. A classic example is provided by the 

forced vibration of a bridge under the impact of the feet of 

marching columns of men whose pace corresponds closely to 

the natural frequency of the bridge  [1,2,3,4] . 
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1.3 Discharge and charge of a capacitor 

 An interesting application of the differential equation 

governing the distribution of charges and currents in electrical 

networks is the following one. 

 Consider the electrical circuit of Figure (6) .Let a charge qo 

be placed on the capacitor, and let the switch S be closed at t = 0 

. Let it be required to determine the charge on the capacitor at 

any instant later. 

 When the switch is closed, we have, by Kirchhoff's law, 

the equation. 

    d
2
q               dq              q   

    dt
2
                dt               c   

 To solve this , let us introduce the transform 

 ℓq  = Q        (1.3.2) 

 

 

 

 

       Figure.(6) 

  

The initial conditions of the problem are  

 q = qo  

    at t = 0     (1.3.3) 

       dq   

                dt 

 Hence we have  

C 

S 

L R  +     + =  0 

i = = 0 

(1.3.1) 
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    dq           (1.3.4) 

             dt  

     d
2
q    

              dt
2
 

  

Hence Equation. (1.3.1) transforms to 

          Q       (1.35) 

          C 

Or  

 (S
2
 L + sR + 1/c) Q = Ls qo + Rqo         (1.3.6) 

 

Let 

        R              1   (1.3.7) 

        2L             Lc 

 

We , therefore have  

   sqo     2a qo   (1.3.8) 

         s
2 
+ 2 as + wo

2
                  s

2
+2as + ωo

2
 

By the use of transforms Noumbers , 2.22 and 2.23 of the 

table of  Laplace transforms 3 , we obtain . 

 a   

              ß 

q   = qo e 
– at

 (1+ at) if a = ωo 

 a                     (1.3.9) 

                                       ωs 

 a   

                                       ωs 

ℓ 

ℓ 

=  sQ – qo 

= s
2
Q – sqo 

L (s
2
Q – sqo) + R (s Q – qo) + = o 

a = ωo = 

Q  = + 

q   = qo e 
– at

 ( cosh ßt + sinh ßt) if a > ωo 

q   = qo e 
– at

 (cos ωst +   sin ωst) if a < ωo 

q   = qo e 
– at

 (cos ωst 

+   

sin ωst) if a < ωo 
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Where ωs =    ωo
2
 – a

2 
and  B =   a

2 
– ωo

2
  

The charging of A capacitor: 

Let us consider the circuit of Figure (7). In this case, at t = 

o, the switch is closed and the potential E of the battery is 

impressed on the circuit, It is required to determine the manner 

in which the charge on the capacitor behaves. The equation 

satisfied by the charge is now        

E   (1.3.10) 

                L   

 

 

 

 

 

 

Figure. (7) 

To  solve this equation , we again let  

ℓq = Q       (1.3.11) 

And since E is a constant, we have  

    E       E        (1.3.12) 

    L      Ls 

The initial conditions are now 

q  =  o       (1.3.13) 

q  =  o 

Hence we have  

  ℓq  =  s
2
 Q      (1.3.14) 

E 

L 

R 

C 

q + 2aq + ωo
2
q = 

.. 

ℓ 

. 

= 

at t = o 

.. 

. 
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ℓq  = sQ 

Equation (1.3.10) transforms to 

      E     (1.3.15) 

         Ls 

 

And hence 

E      (1.3.16) 

       L(s
2
 + 2as + ωo

2
) 

 

To obtain the inverse transform of (1.3.16) , we must use 

transform No 3.32 of the table of Laplace transforms  3  and this 

obtain . 

 a  

                             B 

q  = CE  1 – e
-at

 ( 1 + at)      if a = ωo          

       a      

          ωs 

Where β and ωs are as defined in (9). 

In each case , the charging current is given by  

i = q. The analogous mechanized problem is that of 

determining the motion of a mass when it has been given an 

initial displacement and is acted upon by a spring and retarded 

by viscous friction or if the mass has a sudden force applied to  

it  3  . 

1.4 A Model for flow of water in a pump , Tank , and 

pipe system: 

(s
2
 + 2as + ωo

2
) Q 

= 

Q = 

q  = CE  1 – e
-at

 ( cosh β t + sinh βt) 

q  = CE  1 – e
-at 

(cos ωst + sin ωst)    ifa < ωo 

. 

ifa > ωo 

(1.3.17) 
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 Figure (8) illstrates a device consisting of a pump (E),        

a storage tank (C) , a pair of narrow rigid pipes (Ri) , and a 

switch (s) that can open either of the pipes. The pump pushes 

water up pipe R1 with a constant amount of pressure. If that pipe 

is open, water rises through it into the storage tank. Similarly, if 

the switch is set so that pipe R2 is open, then water drains from 

the tank under the force of its own weight. Both pipes can be 

closed, but the switch does not permit both pipes to be open at 

the same time. 

 Given this simple. Conceptual model, we can use basic 

principles of water flow to obtain a mathematical model. Let 

V(t) be the volume of water in the tank. Let i(t) be the flow rate 

of the water through either open pipe. The flow rate is the rate of 

change of the volume, so V = i . Let E(t) be the pressure 

produced by the pump, let Vc(t) be the pressure of the water in 

the tank and let VR(t) be the pressure associated with the 

movement of water in whichever pipe is open. We have to 

determine the connection among the three pressures, and we 

have to connect the pressures Vc and VR with the volume of the 

tank or the flow rate through the pipe. We begin with the 

relationship of the pressures. The pressure in an open pipe 

results from the combination of the pressure from below and the 

pressure from above.  VE be the pressure from below (VE  = E 

when pipe R1 is open and VE = o when pipe R2 is open). Then the 

net pressure from below is the pressure from below minus the 

. 
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pressure from above, using the notation of the model , we have   

VR  = VE – Vc, or. 

 VR + Vc = VE      (1.4.1)  

 The pressure of the water in the water in the tank is 

proportional to the height of the water column, which is simply 

the volume divided by the constant cross – sectional area. 

 

 

 

 

 

 

 

 

 

 

 

             Figure (8): Aconepetual model for a water flow problem 

 We have 

    V ,        (1.4.2) 

            C 

 Where C is the cross – sectional area multiplied by , a 

proportionality constant. Given two tanks of different cross – 

sectional, each containing the same volume, the one with. The 

smaller cross – sectional area will produce a greater pressure 

because the water column will rise higher. The flow of water in 

Vc  = 

E 
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either pipe is caused by pressure in the pipe. In particular the 

flow rate should be proportional to the pressure. Let R be a 

constant that measures the resistance of the pipe to flow.       

Then        VR 

        R 

 Or 

 VR  = R i  = RV      (1.4.3) 

 We can combine Equation (1) and (2) to obtain a formula 

for VR in terms of Vc,  

 VR = RV  = RC Vc. 

 Substituting this result into the pressure balance equation 

(1) yields the differential equation. 

 RC Vc + Vc  = VE. 

 At this point, the notation can be simplified by dropping 

the subscript from Vc. From here on, V without a subscript 

indicates Vc. In its final form, we have the model. 

 RC  V + V  = VE       (1.4.4) 

 The conceptual model for the flow of water can also be 

thought of as a conceptual model for an RC series circuit, as 

depicted in Figure (9). The water volume V corresponds to the 

electric charge q. The pipe and tank correspond to circuit 

elements called a resistor and capacitor , respectively, the 

quantities Vc, VR , E, and i represent the voltage measured 

across the compactor , the voltage measured across the resistor, 

the voltage ( or electromotive force) produced by the power 

i  = 

. 

. . 

. 

. 
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supply , and the electric current. The properties R and C are the 

resistance and capacitance , respectively , of the electric circuit , 

measured in ohms (Ω) and farads (F). Voltage and current are 

measured in volts (V) and amperes(A). 

 Whatever results we obtain for the differential equation (4) 

can be interpreted in the language of electric circuits or the 

language of water flow.  

 

 

 

 

  

     

 

Figure (9) 

Example 1.4.1 

 Consider the water flow scenario of Figure (8) and the 

equivalent electric circuit scenario of Figure (9). Suppose the 

switch is initially set so that the tank is not open to either pipe , 

and there is initially no water in the tank. At time o , the switch 

is set so that pipe R1 is open , thus , VE = E AT  t = 0.03, the 

switch is reset so that pipe R2 is open , corresponding to VE = 

o.we want to determine the behavior of the system , as given by 

v (t) and i (t). 

R1 a    S 

E 400V 
10kΩ 

b 

 

R2 

υc C 0.1μF 
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 The initial – value problem for the tank pressure before  t  

= 0.03 is. 

 R1CV + V  = E , V (0) = 0. 

 This differential equation is a decay equation, so it can be 

solved by using the translation y = V – E to yield the 

homogeneous problem. 

 R1 cy + y = 0 , y (0)  = -E- 

This problem has the solution  

 y =  - E e 
–t/(R

1
c)

 , 

 V = E(1 – e 
–t/(R

1
C)

). 

 Using the parameter values R1 = 10
6
. C = 10

-7
 , and E = 

400, as given in figure we get. 

 V = 400 (1 - e 
-100t

). 

 This solution holds as long as the switch is open to the 

pump. In particular, let V1 be the pressure at t = 0.03 , then  

 V1 = V (0.03) = 400 (1-e
-3

) ≈ 380. 

 At  t  = 0.03 , the movement of the switch changes the 

relevant problem. The pressure now satisfies the initial – valiue 

problem. 

 R2 CV + V = 0 ,  V(0.03) = V1 

 This problem is homogeneous, and easily solved, with the 

result. 

 V = V1 e
-(t-0.03)/(R2c)

 ,  

 Given the parameter values , this is  

 V = 400 ( 1 – e
-3

) e 
– 1000 t + 30

 

. 

. 

. 



 - 32 - 

   

 

 

Altogether, we have a complete formula for the pressure ,  

 

 V = 400   1- e 
– 100t 

  t < 0.03 

   (1 – e 
-3

) e 
-1000t+30

  t > 0.03 

 Differentiating this formula give the result 

 i = CV = 0.04  0.1e 
– 100t

   t < 0.03 

         -(1-e 
-3

) 
e -1000t+30

  t > 0.o3 

 

For the flow rate. 

 The solution is illustrated in Figures (10) and (11). 

  The tank stores water , and since the pressure is 

proportional to the amount of water , we can think of the tank as 

storing pressure to be converted to flow at some later time. In 

the two stages of the problem, the tank is first charged and then 

drained, with each stage accomplished through the flow of 

water. The resistance to flow is less in the second pipe than in 

the first, hence, the draining process is faster, and the flow rate 

during draining is larger in magnitude. Similarly, the capacitor 

in the electric circuit stores charge and voltage, we can think of 

the stored voltage as a potential foe future current. The capacitor 

is charged and then discharged, with the rates of these processes,  

. 
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and the associated currents, dependent on the relative resistances 

of the associated portion of the circuit  1  . 

 

 

    

 

 

 

 

 

          

 

                      

 

 Figure (10) 

 

The tank pressure for the flow problem of Example 1. 
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                       Figure (11) 

 

The flow rate for the flow problem of Example 1. 

1.5 Circuit with mutual in ductance: 

 Let us consider the circuits of Figure (12) . In this case we 

have two circuits coupled magnetically. The coefficient L12 is 

termed the mutual inductance coefficient. It is positive if the 

magnetic fields of i1, and i2 is add. If they are opposed, then the 

coefficient L12 is negative. In any case the equation governing 

the currents in the two circuit are given by applying Kirchhoff's 

laws to the two loops and are. 

       di1     di2        

        dt             dt 

       di2      di1  

        dt       dt 

 We wish to determine the currents i1 and i2 on the 

supposition that at t  = 0 the  switch s is closed and the initial 

currents are zero. Let us introduce the transforms 

 ℓ i1 = I1 

 ℓ i2  = I2         

 Now since we have  

 i1  =  o 

 i2  =  o      at t = o       

 and also E is a constant , Equation.(1.5.1) transforms to  

L11 + L12 
  

 + R11 i1  =  E  

L22 + L12 
  

+  R22 i2  = o 

(1.5.1) 

(1.5.2) 

(1.5.3) 
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      E 

      s    

        s L22 I2 + s L12 I1 + R22 I2 = o  

 We now solve these two algebraic equations by using 

crammer's rule and obtain  

 E  sL12 

 O       sL22 + R22 

I1  =  

sL11 + R11  sL12 

 sL12   sL22+R22     (1.5.5) 

 sL11+R11  E 

 sL12   O 

I2 =   

 sL11 + R11  sL12 

 sL12      sL22+R22 

 

 

 

 

 

 

 

    

 

Figure(12) 

S 

S 

E 

 

 

R11 

R22 L22 L11 

i1 i2 

 

L12 

sL11  I1  + s L12 I2 + R11 I1=   

s 

(1.5.4) 
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Hence we have  

                E(sL22 + R22)     (1.5.6) 

 (L11 L22–L
2

12) s
2
+(R11 L22+R22 L11)s+R11R22 s 

  If we let 

        R11 L22 + R22 L11      (1.5.7) 

         2(L11 L22 – L
2
12) 

And                R11 R22     (1.5.8) 

   L11 L22 – L
2
12  

We then have  

   E     sL22 + R22 

 L11 L22 – L
2
12   (s

2
+2as+ωo

2
)s 

 

   -E      L12       (1.5.9) 

       L11L22 –L
2
12      s

2
+2as +ωo

2
 

In this case  

a
2
 > ωo

2
     a

2
 – ωo

2   
= β       (1.5.10) 

Using the transforms nos. 2.23 and 3.23 of the table of 

transforms  3  , we obtain after some algebraic reductions. 

     E               (a
2
 –β

2
) L22 – aR22  

          R11       βR22         

         (β
2
 – a

2
)L12E  

            β R11 R22 

a  = 

I1 = 

ωo
2 
= 

I1 = 

I2  = 

i1 = 1 – e 
–at

 cosh βt + e
-at

 sinh βt 

i2  = e
-at

 sinh βt 

(1.5.11) 
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 for the transforms of I1 and I2. We see that, as time el apse, 

i1 approaches its final value E/Ru. If we set di2/dt = o and solve 

for t , we find that i1 rises to a maximum value when. 

  

       1  β          

                β           a 

 and then approaches zero asymptotically. An interesting 

special case is the symmetrical one. In this case the resistances 

of each mesh are equal, and the self- inductances are equal. We 

then have. 

 R11  = R22 = R   L11  = L22  = L 

 L12  = M 

 Equations (1.5.4) then become 

          E 

           s            (1.5.14) 

 sL I2 + sMI1 + RI2 = o 

 If we add the two equations, we obtain 

               E   

                s 

 

 If we subtract the second equation from the first one,we 

have. 

              E        (1.5.16) 

               s 

 If we now let 

 x1 = I1 + I2   x2 = I2 – I2         (1.5.17) 

 We have  

           E  

t = tanh
-1

 

sL I1 + s MI2 + RI1 = 

sL (I1 + I2) + sM (I1 + I2) + R (I1 + I2) = 

sL ( I1 – I2) –sM (I2 – I2) + R (I1 – I2) = 

s(L + M) x1 + Rx1 = 

(1.5.12) 

(1.5.13) 

(1.5.15

) 
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            s     (1.5.18) 

            E  

             s  

 

 

Hence 

              E     E   (1.5.19)

  

                    s(L+M) +R) s    s (L-M)+R s 

 

 

If we let 

             R         R     (1.5.20) 

          L+M                    L-M 

We obtain 

      E  1            E        1       (1.5.21) 

  L+M       (s+a1)s   L-M     (s+a2)s 

  

Using transform No. 2.1 of the table of Laplace transforms                              

3    ,we have. 

      E             E        (1.5.22) 

        R                              R 

Hence 

       E  

                         R 

        E         (1.5.23) 

         R 

 And adding the two equation we obtain  

         E    2 – e
-a1t – e

-a2t      (1.5.24) 

         R           2 

s(L + M) x1 + Rx1 = 

x1 = x2 = 

a1 = a2 = 

x1 = x2 = 

ℓ-1
x1  =  ( 1-e

-a1t).ℓ  -1
x2 = ( 1-e 

–a2t) 

i1 + i2  = ( 1 – e
-a1t) 

i1 - i2  = ( 1- e
-a2t) 

i1 = 
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 Subtracting the second equation from the fist equation, we 

obtain. 

         E     

                 2R 

These are the currents in the symmetrical case  3 . 

1.6. Circuits coupled by a capacitor: 

 let us consider the circuit of Figure (13). In this case we 

have two coupled circuits. The coupling element is now a 

capacitor. Let the switch S. be closed at t = o, and let it be 

required to determine the current in the system. We write 

Kirchhoff's law for both meshes. We then obtain. 

       di1        q1      q1 –q2        

      dt                  C1     C12 

- 

      di2         q2     q2 – q1       (1.6.1) 

      dt                  C2        C12 

 

 

 

 

 

Figure (13) 

Where 

        dq1         dq2      (1.6.2) 

                  dt          dt 

let us introduce the transforms 

i1 = (e
-a2t – e

-a1t) 

L1 + R1i1 + + = E 

L2 + R2i2 + + 

i1 = i2 = 

= 0 

        R1                 L1          C1         L2                 R2          C2 

i1 i2 

E 
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 ℓi1 = I1   ℓq1= Q1 

 ℓi2 = I2  ℓq2 = Q2      

 

 

 If we assume  

 i1 = o  q1  = o  at t = 0     

 i2 = o  q2  = o 

 Equation (1.6.1) transform into 

      I1        I1 – I2   

              sC1        sC12 

 

        I2       I2 – I1  

        sC2     sC12 

We now solve these equations algebraically for the 

transforms I2 and I2. We this obtain. 

   E     -1 

   s     sC12 

       1          1 

                                sC2      sC12  (1.6.6) 

    1        1              1 

              sC1      sC12    sC12 

     1                        1       1 

           sC12                                sC2     sC12 

 

   1      1    E 

I2 =           sC1   1C12    s 

  1       

         sC12      O 

 

   1   +  1     1 

     sC1   sC12      sC12 

sL1 I1 + R1 I1 + I1 

+ 

- E 

sL2 I2 + R2I2 + + = 0 

I1 = 

o               sL2 + R2 + + 

+ sL1 + R1 + - 

sL2 + R2 + 

sL1 + R2 + + 

- 

sL1 + R1  +   - 

(1.6.3) 

(1.6.4) 

s 

(1.6.5) 

+ - 

=  
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    1        1        1 

   sC12                    sC2      sC12 

  

 

 

Expanding the determinants, we obtain the transforms I1, 

and I2 as the ratios of polynomials in s. the inverse transforms of 

I, and I2 give the currents in the system. In this case , the 

determinant in the denominator of (1.6.6) of the system is a 

polynomial of the fourth  degree in s No. T. 17 in the table of 

Laplace transforms 3 . This entails the solution of a quadratic 

equation in s. the trend of the general solution may be 

determined by solving the symmetrical case in which we have. 

 R1  = R2  = R  C1  = C2  = C L1 = L2  = L (1.6.7) 

In this case Equation (1.6.5) reduce to  

         I1       I1          I2         E 

        sC     sC12      sC12        s   (1.6.8) 

     I2          I2         I1      

          sC      sC12    sC12      

 If we add the two equations, we obtain  

             I           E        (1.6.9) 

            sC                      s 

If we subtract the second equation from the first, we have. 

          1     

                                                    sC 

- sL2  +  R2  + + 

sL I1  + RI1  + 
  

+
   

-   = 

sL I2  + RI2  + +   -   = 0 

sL (I1  + I2) +R (I1 + I2) + (I1 + I2) = 

sL (I1  - I2) +R (I1 + I2) +   (I1 - I2) 

 



 - 42 - 

    1               I              E         

           sC12          sC12                    s 

 If we let 

 x1 = I1 + I2 

 x2 = I1 + I2     

We obtain 

       1       E 

                         sC             s           

                                  1    1  +   2                 E 

                                  s    C      C12               s 

If we let 

 R          1     1    1        2               

        2L                           LC               L   C     C12 

 

The two equations become 

             E  

      L          (1.6.14) 

             E 

             L 

 The inverse transforms of x1 may now be calculated by 

No. 2.22 in the table of transforms   3  .In this the case. 

 ω1
2
 > a

2 
  ω2

2
 > a

2
      (1.6.15) 

We have 

        E       

                        Lωa       (1.6.16) 

(I1  -  I2) + 

sLx1 + Rx1  +   x1  = 

= a ω1
2
  = 

ω2
2
  = 

(s
2
 + 2as + ω1

2
) x1 = 

(s
2
 + 2as + ω2

2
)  x2 = 

ℓ-1
  x1  = (e 

–at
 sin ωat) 

+ (I1 - I2) = (1.6.10

) 

(1.6.11) 

 

(1.6.12) 

 
sLx1 + Rx2  +   x2  = 

(1.6.13) 

 

+ 

ωa = ω1
2
 – a

2
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      E         

                        Lωb 

 

 

 

Hence , adding the two equations (1.6.16) , we have  

  E       sin ωat     sinωbt 

         2L           ωa              ωb 

         E          sin ωat       sinωbt                    (1.6.17) 

         2L            ωa              ωb 

 If there is no resistance in the circuit, then a = o and the 

currents oscillate without loss of amplitude with the angular 

frequencies ω1 and ω2   3   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

ℓ-1
  x2  = (e 

–at
 sin ωbt) 

i1 = e
-at

 

i1 = e
-at

 

+ 

+ 

ωb = ω1
2
 – a

2
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----------------------------------Chapter Tow 

Oscillation of non linear systems 

2-1 An operational analysis of nonlinear dynamical 

systems: 

 A powerful method of determining the free oscillations of 

certain nonlinear systems will be given in this section. The 

method presented here is an operational adaptation of the one 

developed by Linstedt and Liapounoff . 

 The method may be illustrated by a consideration of a 

mechanical oscillating system consisting of a mass attached to a 

spring. The equation of the free vibration of such a system is  

        md
2
x          (2.1.1) 

     dt
2
   

 where md
2
x /dt

2
 is the inertia force of the mass, F(x) is the 

spring force, and x is measured from the position of equili-

brium of themass when the spring is  not stressed. Let us 

consider the symmetrical case where. 

 F(x) = kx + bx
3
              (2.1.2)

  Hence ( 2.1.1) becomes 

        md
2
x   

+  F (x) = 0 

+ kx + bx
3
  = 0 (2.1.3) 
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   dt
2
 

or 

 d
2
x  

 dt
2
 

where 

          k  
½
  

         m   

        b 

        m  

 Equation (2.1.4) occurs in the theory of nonlinear vibrating 

systems and certain types of nonlinear electrical systems and 

serves to illustrate the general method of analysis. Let us 

consider the solution of Equation. (2.1.4) subject to the initial 

conditions. 

 x  =  a   

 x = 0 

 That is, the mass is displaced a distance a and allowed to 

oscillate freely. We are interested in studying the subsequent 

behavior of the motion. 

 Let us now multiply Equation.(2.1.4) by e
-st

 dt and 

integrate from 0 to ∞. We thus obtain. 

       d
2
x  

               dt
2
 

Let us use the notation  

 Lx (t)  = y(s) 

0 

+ ω2
x +  x

3
  = 0 

ω = 

 = 

  e-st
 + ω2

x + x
3
  dt = 0 

 

(2.1.4) 

(2.1.5) 

(2.1.6) 

at  t = 0 
(2.1.7) 

(2.1.8) 

(2.1.9) 

∞ 

. 



 - 46 - 

Now, by integration by parts, it may easily be shown that 

  Ld
2
x   

 
  dt

2
  

where xo and xo are the initial velocity and displacement of the 

particle at t = 0. 

 In view of the initial conditions (2.1.7) and the Laplace 

transform (2.1.10) , Equation. (2.1.11) may be written in the 

form. 

 (s
2
 + ω2

) y  = sa -  Lx
3
 

Now let 

 x = x0 + x1 + 
2
x2 + 

3
x3 + …    (2.1.12) 

        ω2 
= ω2

0 + c1 + c2
2
 + c3

3
 + …    (2.1.13) 

 y = yo + y1 + 
2
y2 + 

3
y3 + …    (2.1.14) 

yi (s) = Lxi(t)  

 In these expressions the quanties xr(t) are functions of time 

to be determined, and ω0 is the frequency , which will be 

determined later. The ci quantites are constants which are chosen 

to eliminate resonance conditions in a manner that will become 

clear as we proceed. The functions yr(s)are  the Laplace 

transforms of the function xr(t). 

 In most nonlinear dynamical systems the quantity  is 

small compared with ω2
, and the series (2.1.12) may be shown 

to converge. In the following discussion let us limit our 

calculations by omitting all the terms containing  to a power 

= s
2
y – sx0 – x0 (2.1.10) 

. 

. 



 - 47 - 

higher than the third. Substituting the above expressions into 

(2.1.11), we obtain 

 

 s
2
(y0 + y1 + 

2
y2 + 

3
y3) 

 +(ω2
0 + c1 + c2

2
 +c3

3
) (y0 + y1 + 

2
y2 + 

3
y3) 

  = sa – L(x0 + x1+ 
2
x2 + 

3
x3)

3
  (2.1.16) 

If we now neglect all terms containing  to powers higher than 

the third, we obtain. 

 (s
2
yo + ωo

2
yo) +  (s

2
y1 + ωo

2
y1 + c

1
yo + Lxo

3
) 

         + 
2
(s

2
y2 + ω2

oy2 + c2yo + c1y1+ L3xo
2  

x1)
  

 
     +

3 
s

2
y3+ ω2

oy3 + c3yo + c2y1+  c1y2 + L
(
3x

2
ox

2 
+ 3xox

2
1) =sa 

          (2.1.17) 

 This equation must hold for any value of the quantity . 

This means that each factor for each of the three powers of  

must be zero. Hence Equation (2.1.17) splits up into the 

following system of equations: 

     s
2
yo + ωo

2
yo = sa                     (2.1.18) 

     s
2
y1+ ωo

2
y1 = - c1yo – Lx

3
o           (2.1.19) 

     s
2
y2 + ωo

2
y2 = - c2yo – c1y1 – L3x

3
ox1         (2.1.20) 

     s
2
y3 + ωo

2
y3 = - c3yo– c2y1 – c1y2 –L(3x

2
ox + 3xox

2
1)   (2.1.21) 

Using the notation 

      1 

          s
2
 + 

2
 

 Eq.(2.1.18) may be written in the form  

T() = 
   

(2.1.22) 
  



 - 48 - 

 yo = saT (ωo) = Lxo 

 From the table of transforms (see p.617)  3   ,we have 

 L
-1

 saT(ωo) = acos ωot = xo          (2.1.24 ) 

 This represents the first approximation to the solution of 

Eq.(2.1.4) Subject to these initial conditions (2.1.7). The 

transform of the second approximation as given by (2.1.19) may 

be written in the form. 

 y1 = -c1yoT(ωo) – T(ωo) Lx
3
o     (2.1.25) 

From the table of transforms  3  we have 

           a3 

            4  

Substituting (1.1.23) and (1.1.26) into (1.1.25), we obtain 

     3a3     a3  

      4         4 

Now, from the table of transform   3 , it is seen that 

     t            

            2ωo      

 Hence the first term of the right-hand member of(2.1.27) 

corresponds to a condition of resonance. We may eliminate this 

condition of resonance by placing the coefficient of this term 

equal to zero. Then  

 3a
3
           (2.1.29) 

    4  

Or  

   3a
2
       (2.1.30) 

      4 

L
-1

sT
2
 (ωo) =   sin ωot 

c1a + = 0 

c1 = - 

sT (ωo) T (3ωo) – y1 = -sT
2
(ωo)  c1a + 

sT (ωo) T (3ωo) Lx
3
o = La

3
 cos

3ωot = 

(2.1.28) 
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This determines the constant c1. With the resonance condition 

eliminated, (2.1.27) reduces to 

   a3        

            4 

 Making use of the table of transforms 3, we obtain second 

approximation. 

       -a
3
   

         4 

               a
3
                    

            32ω2
o 

If we limit our calculations to the second approximation, we 

obtain from (2.1.12) , (2.1.24), and (2.1.32). 

    a
3
               

                            32ωo
2
 

The angular frequency is obtained by substituting the value of c1 

given by (2.1.30) into (2.1.13). This gives 

 ω2
o  = ω2

 + ¾ a
2
        

 From this we see that the presence of the term x
3
 in the 

equation introduces a higher harmonic term cos3ωo t and the 

fundamental frequency is not constant but depends on the 

amplitude a and increases with a provided that the quantity  is 

positive. 

 The third approximation is obtained by substituting the 

above values of yo, y1, xo, and x1 into (2.1.21). This gives. 

        c1a
3
   

 

x1 = L 
-1

y1 = L
-1

 sT (ωo) T (3ωo) 

(cos 3ωot – cos ωot) x = acos ωot +     

(cos 3ωot – cos ωot) = 2.1.32   

2.1.33   

2.1.34   

4 
y2 = - c2saT

2
(ωo) + T(ωo) sT(ωo) T(3ωo) – T(ωo)L(3xo

2
x1) 

L(3x20x1)     
     2.1.35)) 

y1 = - sT(ωo)T(3ωo) 2.1.31   
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We must now compute 

               3a
5
                                     

    32ω2
o 

By using the table of transforms we easily obtain 

      3a
5
s   

                            (4×32)ω2
o 

 

Substituting this value of L(3xo
2
x1) and making use of the 

identity 

      1           

         b
2
 – a

2
 

We write (1.1.35) in the form 

         c1a
3
          3a

5
 

       32 ω2
o     64 ω2

o 

       c1a
3
               3a

5
  

      32 ω2
o       (4×32) ω2

o 

                    3a
5
     

             (4×32)ω2
o 

 To eliminate the condition of resonance, we equate the 

coefficient of the sT
2
(ωo) term to zero, substituting the value of 

c1 into the coefficient. We thus obtain. 

 

  3a
4
         

         128ω2
o 

L(3x
2
ox1) = L 

T(a) T (b) =   

 cos
2
 ωot cos3ωot- cos

3
 ωot) 

 

(T(a) – T(b) 

y2  = sT
2
( ωo)  - c2a + 

+ sT(ωo) T(3ωo)  -    - 

- sT(ωo)T(5ωo) 

c2 = 

2.1.36)

) 

L(3x
2
ox1) = L T(5ωo) + T(3ωo) + T(3ωo) – 2T(ωo) 

 

(2.1.38

) 

+ 

(2.1.39) 

(2.1.40) 

(2.1.37) 
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On substituting the value of c1 into the second member of 

(2.1.39), we see that this term vanishes and we have. 

     3a
5
              

           128ω2
o 

 Using the table of transforms to obtain the inverse 

transform of y2, we have the third approximation. 

                         a
5
             

                    1.024ω4
o 

From (1.1.12) we thus have the third approximation 

      a
3
      

    32ω2
o 

      
2
a

5
                 

            1.024ω4
o 

where now the fundamental frequency is given by (2.1.13) as  

           3a
4
 

2
    

            128ω2
o 

The fourth approximation is obtained in the same manner from 

(2.1.21). 

We compute 

              3a
7
s  

      (4 × 1.024) ω4
o   

By using the table of transforms. Substituting the values of the 

quantities yo , y1 and y2 as given above into Equation. (2.1.21) 

and making use of the relation (2.1.45), we obtain. 

 c2T (ωo) a
3
s                               

y2  = - sT(ωo) T (5ωo) 

x2  = (cos 5ωot- cos ωot) 

x  = a cos ωo t +   (cos 3ωot – cosωot) 

+ (cos 5ωot – cos ωot) 

ω2
o = ω2

 + ¾ a
2
  - 

L(3x
2

ox2 + 3xox
2
1) =   (2T(7ωo) + T(5ωo)-3T(3ωo)) 

(2.1.41) 

(2.1.42) 

2.1.43)) 

(2.1.44

) 

(2.1.45) 

32ω2o 
y3  = - c3 saT

2
(ωo) – T(3ωo) – T (ωo) 
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  3a
7
 sT(ωo)             (2.1.46) 

         (4× 1,024)ω4
0 

The condition for no resonance leads to   

         c2a
3
           c1a

5
             (2.1.47) 

          32ω2
0    1.024ω4

0 

Subsisting the values of c1 and c2 given by (2.1.30) and (2.1.40),    

into (2.1.47), we obtain 

 c3  = 0           (2.1.48) 

Suppressing the resonance terms, Equation(2.1.46) reduces to 

              3a
7
           6a

7
       

                   2.048ω4
0                                    4.096ω4

0 

  

Computing the inverse Laplace transform by the use of the table 

of transforms  3 , we obtain. 

        a
7
              

         32.768ω6
0                    

Substituting xo, x1, x2, x3 into (2.1.12), we obtain the fourth 

approximation 

           a
3
   

         32ω2
0 

 

- c1T(ωo)a
5
s 

c3a = + 

y3  = sT(ωo)T(3ωo) + sT(ωo)T(7ωo) -  
  

x3  = (5cos ωot – 3cos 3ωot + cos 
7ωot) 

      (2.1.51 ) 

x  = a cos ωot + (cos 3 ωot – cos ωot) 

 

1,024ω4
o 

 

(T(5ωo) – T(ωo) 

2T(7ωo) + T(5ωo) – 3T(3ωo) ــ 

2.1.50)) 
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     
2
a

5
          

    1.024ω4
0 

        
3
a

7
                       (2.1.52 )  

             32.768ωo
6
 

To this approximation the fundamental frequency ωo is given by 

and is          

            3        a
4
         (2.1.53 ) 

         128        ω2
o 

 Now, in all the calculations, terms to higher power than 

the third have been omitted. We may simplify Equation. (2.1.53) 

by substituting on the right-hand side the value of ω2
o given 

by(2.1.34). We thus obtain. 

          3           a
4
        (2.1.54 ) 

           128            ω2
+¾a

2
 

Expanding the term in parentheses in powers of   and 

retaining powers of  only up to the third, we have 

         3
2 
    a

4
     9

3
a

6
 

           128     ω2 
   512ω4

   

 

 Further approximation may be carried out by the same 

general procedure. 

The vibrations of a pendulum: 

 The above analysis may be applied to the study of a 

theoretical pendulum the equation of motion of such a pendulum 

is 

+ (cos 5ωot – cos ωot) 

+ (5 cosωot – 3 ωot+cos 7 ωot) 


2

 

+ 

ω2
o = ω2

 + ¾ a
2
 - 2 

ω2
o = ω2

 + ¾a
2
 – 

ω2
o = ω2

 + ¾ a
2
 - 
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        g          (2.1.55) 

                լ 

 Where l is the length of the pendulum and g is the 

gravitational constant. If we develop sin θ in a power series in θ 

and retain only the first two terms of the series, we obtain.  

   g          g                  (2.1.56) 

   լ           6l  

If we stipulate the initial condition that, that, at t = 0, θ = θo, we 

may make use of the preceding analysis by letting. 

  θo = a      (2.1.57) 

   g 

   l 

          g 

         6l 

 Using the first approximation for the angular frequency 

as given by (2.1.34), we have 

     g    g θ20 

                         I       8I 

 To this approximation the period of the oscillation is 

given by. 

   2      2 

   ωo       (g/I)( θ20/8) ½ 

For small amplitude θ0 the radical nay be expanded in powers 

of θ0, and we may write 

   I  ½     θ20 

   g     16 

This formula gives excellent results for small amplitudes of 

oscillation. 

+ θ sin θ = 0 

+ θ θ – θ3 = 0 

.. 

.. 

ω2 = 

 = 

ω20 = 

2.1.58  

2.1.59)) 

2.1.60)) 

T= (2.1.61) 

T= 2 1 + (2.1.62) 

- 
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2.2 Forced vibration of nonlinear systems: 

 In the last section free vibrations of oscillating system with 

nonlinear restoring forces were considered. In this section the 

forced oscillations of system with nonlinear restoring forces will 

be considered. 

 As a typical example of such a system, let us consider the 

mechanical case of an oscillator of mass m acted upon by a 

nonlinear elastic restoring force F(x) and by a periodic external 

force Fo cos ωt. The equation of motion of such a system is 

  d
2
x        

  dt
2
 

 Let us first discuss the case in which the restoring force is 

symmetric, that is, has equal magnitude at corresponding points 

on both sides of the position of equilibrium or position of rest. 

In this case only odd powers may occur in the law of force. 

Otherwise we have an unsymmetrical law of force and hence an 

unsymmetric vibration. This is expressed mathematically by the 

condition. 

  F(-x)  = F(x)             (2.2.2 ) 

 Since the methods of analysis and the qualitative results do 

not depend greatly upon the special form of F(x), we shall 

choose the following form for the restoring force F(x),. 

  F(x) = kx - δx
3
             (2.2.3 ) 

 Where  k > 0. 

+ F(x) = Fo cos t (2.2.1) 

 

m 
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 If δ > 0, it is said that the restoring force corresponds to a 

soft spring while if δ < 0 , the restoring force is said to 

correspond to a hard spring. Is the case that δ > 0 the restoring 

force decreases with the amplitude of oscillatios as in the case of 

a pendulum. In this case the natural frequency decreases with 

increasing amplitude. 

 Inserting (2.2.3) into (2.2.1 ), we have the equation of 

motion 

    d
2
x  

                     dt
2
 

 This equation is known in the literature as Duffuing
,
s 

equation. 

 Experiments performed on dynamical systems whose 

equation of motion are of the form(2.2.4)show that as the time t 

increases, the motion of the system becomes periodic after some 

transient motions have died out. The period of the resulting 

oscillations is found to have a fundamental frequency of ω/2 

and may therefore be represented by a Fourier series in 

multiples of ω. 

 The amplitude of the steady state (as t   ) may be 

calculated by the following approximate method. As a first 

approximation let us assume. 

  x1 = a cos ωt             (2.2.5 ) 

+ kx – δx3 = Fo cos ωt m (2.2.4) 

    )   
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 where the amplitude a is to be determined. If we substitute 

this expression for x in (2.2.4) and make use of the 

trigonometric identity. 

  cos
3
 ωt = ¼ cos 3ωt + ¾ cos ωt          (2.2.6 ) 

 We obtain the equation  

         δ a3              (2.2.7 )   

  4 

 If the fundamental vibration is to satisfy Eq. (2.2.4), we 

must have   3δ                    Fo 

                   4m                                m 

Where 

  ωo =   k 

    m 

This is the natural angular frequency of the system in the 

absence of the nonlinear term. 

 Equation (2.2.8) determines the amplitude of the 

oscillation. If we divide Equation (2.2.8) by ω2
0, we obtain 

  3δa
3
           ω2

         F0 

         4m ω2
0       ω

2
0     ω

2
0m 

 The roots of this cubic equation in a may be obtained 

graphically by constructing y-a coordinate system, as shown in 

Figure (1). This figure represents the cubical parabola. 

  3δa3             (2.2.11 ) 

  4mωo2 

   

 

a
3 
+ (ω2

- ω2
o) a +  =   0 (2.2.8)  

( 2.2.9 )  

1-  a-  = (2.2.10) 

maω2
 + ka - ¾δa

3
 – cos 3ωt = Fo cos ωt 

y =  
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Figure. (1) 

and the straight line 

    ω
2
          F0 

    ω
2
0      ω

2
0m 

 The possible values of a are the abscissa of the points of 

intersection of these curves. 

 If ω is large, the slope of the straight line is negative and 

there is only one point of intersection Po. There is also only one 

point of intersection for ω = ωo. If now ω decreases, the straight 

line rotates until it intersects the cubical parabola at three points 

P1, P2, and P3. The abscissa of these points corresponds to three 

possible amplitudes. The amplitude-versus-frequency curve has 

the form shown in Figure.( 2) 

 A more precise analysis shows that if we approach from 

the low frequency side, the amplitude corresponding to the 

lower branch is the stable -one. As ω increases, we arrive at the 

y =    1-  a-   (2.2.12)  
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limiting point G. As a continues to increase beyond this point, 

only the upper branch yields a real point of intersection in 

Figure.(1). It is then seen that with a continuous increase of ω, 

the amplitude a will suddenly jump from the lower branch to the 

upper one at G. 

 

 

 

 

 

Figure (2) 

 These discontinuities or jumps in amplitude are frequently 

observed in nonlinear vibration processes both electrical and 

mechanical. 

The higher approximations: 

 It will now be shown how the next approximations of the 

motion are obtained. If Equation.(2.2.4) is solved for d
2
x/dt

2
 and 

if the first approximation(2.2.5) is substituted in the right-hand 

member for x, we obtain. 

 d
2
x =   F0               k a              3δ a

 3
     δ a

 3
 

 dt
2
      m                m               4m              4m 

Making use of (2.2.8), this reduces to 

 d
2
x                          δ a

 3
 

 dt
2
                 4m 

 

cos ωt- cos ωt+ cos ωt+ cos 3ωt 

    (2.2.13 )    

= -ω2 a cos ωt + cos 3ωt      (2.2.14) 
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Integration gives 

                     δ a
 3
             δ a

 3
ω

2
o 

         36mω
2
    36kω

2
 

This second approximation may then be substituted into 

(2.2.4) to obtain the third approximation. In this manner any 

number of terms of the Fourier-series solution may be obtained. 

The investigation of the convergence of the process shows that 

the series obtained converges if δ is small. 

The case of an unsymmetrical restoring force: 

 If we add a quadratic term to the elastic restoring force so 

that  

 F(x) = kx + δx
2 
            (2.2.16 ) 

 Then the vibration becomes unsymmetric since changing 

the sign of x does not change that of the quadratic term, and 

hence the restoring force has different values at two points 

that are symmetric with respect to the origin. The equation of 

motion is now. 

 d2x 

 dt2 

 In this case we assume 

 x1 = a cos ωt + b      (2.2.18) 

 As the first approximation. The constant b is introduced 

to allow for the lack of symmetry. We insert this 

x2 = a cos ωt -  cos 3ωt = a cos ωt  cos 3ωt  

     (2.2.15) 

+ kx + δx
2
 = Focos ωt m   (2.2.17)   
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approximation into(2.2.17) and determine a and b in such a way 

that the constant term and the fundamental vibration satisfy the 

differential equation. 

 Using the trigonometric identity 

  1 + cos 2ωt 

         2 

 We obtain the two equations 

  k         a
 2 

   

                   δ         2 

and 

                 2δ a b     F0 

   m     m 

 If δ is small, we have from (2.2.20) 

  δ a
 2
 

  2k 

 If we now substitute this into (2.2.21), we have  

  δ
2
            Fo  

  km            m 

 This is a cubic equation for the amplitude a. It may be 

solved graphically, and it is found that under certain conditions 

it has three roots so that the "jump" phenomenon occurs here as 

in the case of the symmetrical vibrations. The higher 

approximations are obtained in the same manner as in the sym-

metrical case. 

 

cos
2 ωt =    (2.2.19) 

b
2
 + b + =  0 (2.2.20) 

a (ω2
- ω2

o) 

-  
+ =  0 

b  =  (2.2.22) 

 a 
3
 + a (ω2

 – ω2
o) +  (2.2.23) =  0  

(2.2.21) 
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Sub harmonic response: 

 Periodic solutions of the Doffing equation (2.2.4) have 

been considered. These solutions have a fundamental period      

P = 2/ω equal to the period of the external exciting force. 

Experiments show that permanent oscillations with a frequency 

of ½,1/3 , …, 1/n of that of the applied force can occur in 

nonlinear systems. This phenomenon is called subharmanic 

resonance. 

 It is known that in linear systems having damping the 

permanent oscillations of the system have a frequency exactly 

equal to that of the exciting force, and hence subharmonic 

resonance is impossible in linear systems. In nonlinear systems, 

however, even with damping present, the phenomenon of 

subharmonic resonance is exhibited. 

 The usual explanation offered of the phenomenon of 

subharmonic resonance is that the oscillations of a nonlinear 

system contain higher harmonics in profusion. It is therefore 

possible that an external force with a frequency the same as one 

of the higher harmonics may be able to sustain and excite 

harmonics of lower frequency. This of course requires cretin 

conditions to be true of the system. The mathematical discussion 

of the problem of subharmonic resonance is a matter of some 

difficulty. As an example of a typical investigation of the 
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possibility of subharmonic response, consider the following 

nonlinear differential equation: 

 d2x         F0 

 dt2        m 

Assume that a possible solution of this equation has the 

following form. 

  wt 

                     3 

If this assumed form of the solution is substituted into    

(2.2.24), the result may be written in the following form: 

   w2                     wt     b                   Fo                 

    9                        3      4                    m 

 For ( 2.2.25) to satisfy (2.2.24 ) we must therefore have 

   Ao    Ao
3
 

    9    4 

And  

  b      Fo 

  4      m 

 Hence an oscillation of the type (2.2.25) with an amplitude 

of  

        4Fo 

        mb 

 

 

+ w2
0x + bx

3
 =  cos wt (2.2.24) 

w
2

oAo - Ao + ¾bAo
3
 cos  +  Ao

3
 cos wt = cos wt  (2.2.25

) 

w
2
oAo – w

2
 + 3b ( 2.2.26)  = 0  

A
3

o = ( 2.2.27 )  

½ 

x  = Ao cos 

Ao =  
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is possible provided the angular frequency of the forcing 

function satisfies the equation. 

   27 4Fo 

     4 mb 

  

The stability of this solution requires a separate 

investigation [3]. 

2.3  Forced Oscillations with Damping: 

 In many practical problems, particularly in the field of 

electrical circuit theory, approximate solutions of nonlinear 

differential equations must be determined in which the forcing 

function contains a constant plus a harmonic term and the circuit 

contains damping. The following equation is typical of this class 

of differential equations: 

  di 

  di                   (2.3.1) 

 This equation governs the oscillations of an electrical 

circuit consisting of an inductance L and a resistance R, both of 

which are linear, in series with a nonlinear capacitor. So is the 

constant initial elastance of this capacitor, and a is a constant 

which is the measure of the departure of the capacitor from 

linearity.  In practical circuits a is a small positive number. The 

functions i and q are the current of the circuit and the charge 

separation on the plates of the capacitor, respectively. The 

functions are related by the differential equation 

w2
 = 9w2

o + b 

   
(2.2.28 )  

L + Ri + Soq + aq
3
 = Eo + Em sin(wt + θ) 
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         (2.3.2) 

In order to obtain an approximate steady- state solution by 

Duffing’s method, a periodic solution of the following form is 

assumed for (2.3.1), 

 j = Im sin wt       (2.3.3) 

                              1m                                    

      w      (2.3.4) 

  Where Qo is the constant charge accumulation on the plates of 

the capacitor and Im is the maximum amplitude of the alternating 

current of the circuit. Substitute these expressions into (2.3.1), 

and let: 

 

      di               Im 

      dt                                                        w 

    3aQ
3

0I
2
m 

        2w
2
 

         Im 3a1
3
m  1m 

          w          4w
3
                      w 

  3Qoa1
2
m   a1

3
m 

    2w
2
    4w

3
                    

                                           

 With this notation Equation. (2.3.1) becomes 

 F(t) = E0 + Em cos  sin wt + Emsin  cos wt        (2.3.6) 

        The undetermined coefficients  and Qo and the phase angle  

may be adjusted to make (2.3.3) and (2.3.4) an approximate solution 

of (2.3.1) by equating the constant term and the coefficient of sin  

q = Qo - cos wt 

F(t) =  L + Ri + S0q + aq
3
  i = 1m sin wt   q = Q0-    

   

cos wt 

=  S0Q0 + aQ
3

0 + + R1msin  wt 

+ wL1m – S0 - - 3aQ
2

0 cos wt 

+ cos2wt -  cos3wt  (2.3.5) 
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and cos  to the right- hand member of (2.3.6). This procedure 

leads to the following three equations: 

   31
2

m 

           2w
2
        

     

    R1m  = Emcos  

   S0    1m     31
2

m 

    w     w      4w
2
 

                                   
 

 The above equations are three simultaneous equations for 

the determination of the unknowns  , Qo, and the phase angle 

. If numerical values for the parameters involved are available, 

a solution of these equations may be affected by a graphical 

procedure similar to that outlined in section before. 

In practical applications, however, considerable simplification 

may be introduced because the parameter  is a very small 

number. Since  is small, the second term of (2.3.7) may be 

neglected and the following approximate value for Qo obtained,  

  E0       (2.3.10) 

  S0 

where  =   is the initial capacitance of the nonlinear 

capacitor. If the direct potential is large  in comparison with the 

maximum value of the harmonic potential so that    , 

then, for the frequencies ordinarily used in practice, we have 

           1
2
m 

            2w
2
         (2.3.11) 

S0Q0 + aQ0 Q
2
0 + =  E0 (2.3.7) 

(2.3.8) 

1m wL - - 3a Q
2

0 + = Em sin  (2.3.9) 

Q0 + = C0E0 

Q
2

0 >> 
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 If the term I
2
m/4  is  neglected in (2.3.9), this equation 

may be written in the form: 

    1 

             w       (2.3.12)    

Hence, if (2.3.8) and (2.3.12) are squared and the results added, 

we obtain 

       1                                      

       w 

and the amplitude of the alternating current of the system is 

given by 

                                         (2.3.14)  

 It is thus apparent that the effect of the direct potential is to 

increase the effective elastance of the system by an amount 

 . The tangent of the phase angle  may be determined 

by the division of (2.3.12) by (3-8). This procedure yields 

                         o             (2.3.15) 

  

The principal harmonics of the current    may be obtained by 

writing (2.3.8) in the form 

       di            (2.3.16)            

       dt   

And substituting (2.3.3) and (2.3.4) into the right- hand member 

of (2.3.16). If this is done and Equations (2.3.7), (2.3.8) , and 

1m  wL -  ( S0 + 3aC
2
0E

2
0) = E0 sin   

1
2
m  R

2
+  wL-  ( S0 + 3aC

2
0E

2
0)

 2 
  = E

2
m  

Ri = E0 + Em sin(wt + )- (L  + S0q + aq
3
) 

(2.3.13)  
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(2.39) used to simplify the resulting expression, the result yields 

the following value for the current   : 

            a1
3
m                  3aQ01

2
m                            

    4w
3
R                    2w

2
R 

Higher- order harmonics may be obtained by substituting 

(2.3.17) into the right- hand member of (3-16) and repeating the 

procedure. It may be noted that, if a = 0, the system becomes a 

linear one and denominator of (2.3.14) reduces to the ordinary 

impedance of a linear series circuit. 

2.4 Forced oscillations of A nonlinear inductor:  

 An important technical problem is the computation of the 

amplitude and phase of the fundamental and the harmonic 

content of the steady – state current in a circuit of the type 

depicted by Figure.(3). 

 This circuit contains a harmonic potential Em sin (ωt + θ) 

and a bias potential Eo in series with a linear resistor and a 

nonlinear inductor. The nonlinear inductor consists of a coil of 

N turns wound on a magnetic core having a cross – sectional 

area A and a mean length s. 

 The differential equation that determines the circuit current 

i is 

 Ri + N = Eo + Em sin  (ωt + θ)   (2.4.1) 

 i = 1msin wt +  cos3wt -  cos2wt - 
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Where  is the magnetic flux in the core of the nonlinear 

inductor. The flux  is related to the current i by Amper
,
s law 

which, expressed in suitable units, is 

          Ni       (2.4.2) 

          s 

Where H = magnetic intensity of the core 

 s = mean length of the magnetic path in the core 

 For many practical purposes, the magnetization curve of 

the core material of the inductor may be represented by the 

following third – degree polynomial: 

 B = o H – kH
3
       (2.4.3) 

 

 

 

 

 

 

 

Figure. (3) 

  

In this expression B is the magnetic induction and k is a constant 

determined empirically by adjusting Equation. (2.4.3) to fit the 

actual magnetization curve of the material of the core. μo is the 

initial permeability of the core material. It is defined by the 

equation 

H = 
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           dB 

           dH H=0              (2.4.4 ) 

If A is the mean cross – sectional area of the inductor core, 

the flux  may be expressed in the form 

                N             Ni 
3
           (2.4.5) 

               s        s 

 

     AN
2
 0         kAN

4
 i     (2.4.6) 

         s           s
3
 

 It is convenient to write this expression in the following 

form: 

 N = L0i – bi
3
              (2.4.7 ) 

 

Where 

  0 N
2
A  kAN

4
         (2.4.8) 

      s       s
3
 

Lo is the initial inductance of the nonlinear inductor. If N as 

given by Equation.(2.4.7) is substituted into (2.4.1), the result is 

      di            d  

      dt                   dt         

 To determine the steady-state response of the nonlinear 

inductor, it is necessary to determine a periodic solution of 

Equation. 

(2.4.9). The method of  undetermined coefficients suggests that 

a periodic solution of the following form be assumed for the 

current: 

 io  = Io + Im sin ωt           (2.4.10 ) 

 = AB = A (oH - kH
3
) 

=A  

 = i N ــ

Lo = b = 

Lo + Ri – b   

o = 

io – kA 

3
 i 

i
3
= Eo + Em sin (ωt + θ) (2.4.9) 
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Where Io= undetermined dc component of the steady- state 

current 

Im= the undetermined amplitude of the fundamental of the 

steady – state alternating current of the circuit. 

 To determine Io and Im, substitute Equation.(2.4.10) into 

the left member of (2.4.9) and write. 

         dio     d      

         dt       dt 

 = RIo + RIm sin ωt + (ωLoIm - ¾bI
3
mω) cosωt   

     - 3bI
2
oIm ω – (3ωIoI

2
mb) sin 2ωt + ¾ bI

3
m ωcos 3ωt  (2.4.11 ) 

 F(t) represents the potential drop that would exist across 

the circuit elements if the current flowing through the circuit had 

the form of Equation.(2.4.10). Since the impressed potential of 

the circuit has the form. 

  E(t) = Eo + Em sin (ωt + θ) = Eo + E4sin ωt + E2 cos ωt (2.1.12)     

Where 

 E1  = Em cos θ  E2  = Em sin θ            (2.4.13) 

 It is evident that F(t) ≠ E (t) and that Equation.(2.4.10) 

cannot be adjusted to give the exact solution of the differential 

equation (2.4.9). However, an approximate solution of practical 

utility may be obtained by requiring that the constant term, the 

sine term, and the cosine term of F(t) be made equal to E(t). 

This stipulation leads to the following three equations: 

 RIo  = Eo       (2.4.14) 

 RIm = E1  = Em cosθ     (2.4.15) 

F(t)  = Lo   + Rio – b i
3

o 
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          I
2

m       (2.4.16) 

        4 + I
2
o 

 These three simultaneous equations serve to determine the 

unknown amplitudes Io and Im and the phase angle θ between 

the applied harmonic potential and the fundamental of the 

resulting alternating current of the circuit. Equation (2.2.14) 

gives the following value for the direct component of the 

current: 

 

  Eo       (2.4.17) 

  R 

 The amplitude of the alternating current Im may be 

obtained by squaring Equations. (2.4.15) and (2.4.16) and 

adding the result. This procedure gives 

 I
2
m  R

2
  + ω2

 (Lo - ¾bI
2
m – 3bI

2
o) = E

2
m       (2.4.18) 

 This is a cubic equation in I
2
m and can be solved by a 

graphical construction for a given frequency ω. In general 

Equation. (2.4.18) will have either one or three real roots for the 

amplitude Im. The possibility of different amplitudes may lead to 

"jump phenomena" in special cases. 

 If the bias potential is large so that the direct current Io is also 

large, it may be assumed that. 

 I
2

m        (2.4.19) 

 4 

ωLoIm  - 3bωIm = E2 = Em sinθ 

Io  = 

 I
2

o> 
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 If the term I
2

m /4 is neglected in Equation. (2.4.18), this 

equation can be solved for the amplitude Im directly. The result 

is as follows. 

                  Em             (2.4.20 )  

                R
2
 + ω2

(Lo – 3bI
2
o)

2
 

Or 

             Em           (2.4.21) 

  R
2
 + ω2

(Lo -3(b/R
2
) E

2
o)

2
 

 Equation (2.4.21) shows that the effect of increasing the 

bias potential is to decrease the effective inductance of the 

circuit and hence to increase the amplitude of the alternation 

current. This indicates that (by) changing the magnitude of the 

biasing potential is possible to effect a considerable change in 

the  amplitude Im of the alternating current of the circuit. 

 The tangent of the phase angle θ of the alternating current 

of the nonlinear inductor may be obtained by means of 

Equations.(2.4.15) and (2.4.16)in the form. 

      E2      ω   3bE
2
o         (2.4.22 ) 

       E1      R            R
2
 

 To this degree of approximation, it is seen that the 

nonlinear inductor circuit behaves as if it were a linear circuit 

that has a resistance R and an inductive reactance XL = ω(Lo – 

3bE
2
o/R

2
). 

 

Im = 

Im = 

tan θ  =   = Lo – 
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Chapter three 

The dynamic systems and their periodicity orbits 

3.1.The Linear System x = Ax 

We first review some features of the linear system 

 dx def  

 dt  

where A is an n x n matrix with constant coefficients. For 

more information and background see a standard introductory 

text on differential equations such as Braun [1978]: for more 

detailed review of the linear algebra from the viewpoint of 

 =   x =  Ax,  x R
n

 . (3.1.1) 

. 
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dynamical system theory, Hirsch and Smale [1974] or Arnold 

[1973] are recommended. 

 By a solution of (3.1.1) we mean a vector valued function 

x(xo, t) depending on time t and the initial condition 

 x(0) = xo:           (3.1.2) 

 x (xo, t) is thus a solution of the initial value problem  

(3.1.1)-(3.1.2). In terms of the flow t, we have x(xo, t)  t(xo). 

Theorem 1.0.4  5 guarantees that the solution x(xo, t) of the 

linear system is defined for all t R and xo R
n
. Note that such 

global existence in time dose not generally hold for nonlinear 

systems, as we have already seen. However, no such problems 

occur for (3.1.1), the solution of which is given by 

   

x(xo, t) = e
tA 

xo,      (3.1.3) 

 Where e
tA

 is the n x n matrix obtained by exponentiation 

A. We will see how e
tA

 can be calculated most conveniently in 

moment, but first note that it is defined by the convergent series. 

           t
2
       t

n 
         (3.1.4) 

           2!                    n! 

A general solution to (3.1.3) can be obtained by linear 

superposition of n linearly independent solutions (x
1
(t), …, 

x"(t): 

 

  x(t) =   cjx
j
(t),      (3.1.5)                           

    j = 1 

 Where the n unknown constants cj are to be determined by 

initial conditions. 

e
tA

  =  1 + tA + A
2
  + … + A

n
  + … 

n 
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 If A has n linearly independent eigenvectors v
j
, j = 1, …,n, 

then we may take as a basis for the space of solutions the vector 

valued functions 

  x
j
(t) = e

jt
v

j
, 

 Where j is the eigenvalue associated with v
j
. For complex 

eigenvalues without multiplicity, j, j = j ± iBj, having 

eigenvectors v
R
 ± iv

1
, we may take. 

  x
j
 = e

jt
 (v

R
 cos Bt – v

I
 sin Bt),   (3.1.6) 

  x
j
 
+1

 = e
jt

 (v
R
 sin Bt + v

I
 cos Bt) ,                  (3.1.7 ) 

 as the associated pair of (real) linearly independent 

solutions. When there are repeated eigenvalues and less than n 

eigenvectors, then one generates the generalized eigenvectors as 

described by Braun [1978], for example. Again one obtains a set 

of n linearly independent solutions. We denote the fundamental 

solution matrix having these n solutions for its columns as  

 X (t) =  x 
1
(t) , … , x

n
(t)  .            (3.1.8 ) 

 The columns x
j
(t), j = 1, …, n of X (t) form a basis for the 

space of solutions of (3.1.1). It is easy to show that 

 e
tA

 = X(t) X (0) 
-1

.,             (3.1.9 ) 

 Example (3.1.1) Find e
tA

 for 

 

   2 1 3 

  A =  0 2 0 

   1 0 0 

Solution: 
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2-λ  1  3  

0  2-λ  0 = 0 

1    0  0-λ  

(2-λ)  (2-λ) (0-λ) – 0  -  1× 0 + 3  0 – (2-λ)  = 0 

(2-λ)  -λ(2- λ)   - 3 (2- λ)   = 

(2- λ)  - λ(2- λ) – 3   = 0 

(2- λ)  λ
2
 -2 λ – 3  = 0 

(2- λ) (λ
2
-2 λ – 3) = 0 

(2 – λ) (λ – 3) (λ + 1) = 0 

:. λ = 2 ,  λ = 3 ,  λ = 1 

As  λ = 2 

 

 0 1 3  x 

 0 0 0  y =  0 

 1 0 -2  z 

 

 y + 3z = 0     y = -3 z 

 x – 2z = 0  x = 2z 

 let z  = 1          y = -3 , x = 2 

:. The eigenvector is 

:.  x   2 

 y      =  -3 

 z   1 
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As  λ = 3 

 -1 1 3 x  

  0      -1 0 y =  0 

  1  0 -3 z 

 - x + y + 3 z = 0 

 -y = 0  y = 0 

 x – 3z =  0 

 x = 3z 

let z = 1  x = 3 

 

 

 

 

:. The eiegen vector is 

:.  x  3 

 y = 0 

 z  1  

 

As λ =  -1 

 3 1 3 x 

 0 3 0 y    =  0 

 1 0 1 z 

 3x + y + 3z = 0 

 3y = 0  y = 0 

 x + z = 0   x = -z 
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let  z  = 1  x = -1 

:. The eiegen vector is 

:. x  -1 

 y = 0 

 z  1 

:. The fundamental solution is 

 X(t) =   2e
2t

 3e
3t

      -e
-t
 

     3e
2
t  0       0 

     -e
2t

  e
3t

        e
-t
 

 

 X(0
)-1

=   0        ¼ -¼ 

         1/3       -1/12    5/12 

         0 ¼         ¾ 

:. e
tA

 =  X (t) X (0)
-1

 

    e
3t

  e
2t

    e
3t

 e
-t
  -e

2t
 5e

3t
 -3e

-t
 

             2 4  4    2   4     4 

:. e
tA

 =   0  3e
2t

     -3e
2t

 

            4      4 

      e
3+

 -e
2t

  e
3t

   e
-t
           e

2t
  5e

3t
       3e

-t
 

      3    4   12      4      4     12      4         

 

Equation (3.1.1) may also be solved by first finding an 

invertible transformation T which diagonalizes A or at least puts 

it into Jordan normal form (if there are repeated eigenvalues). 

Equation (3.1.1) becomes. 
. 

- - + - 

+ + + - 
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 y = J
 
y,            (3.1.10 ) 

Where J = T
-1

 AT and x = T y, Equation (3.1.10) is easy to 

work with, but since the columns of T are the (generalized) 

eigenvectors of A, just as much work is required as in the 

former method. The exponential e
tA

 may be computed as 

 e
tA

 = Te
tj
 T

-1
           (3.1.11 ) 

 (cf. Hirsch and Smale [1974], pp. 84 – 87), where 

exponentials are evaluated for the three 2 × 2 jordan form 

matrices: 

   1  0     e
1t

  0  

     0 2      0           e
2t

  

 

    -B   cos Bt - sin Bt 

   B     sin Bt  cos Bt 

   λ 0     1  0 

   1 λ     t  1 

 We also note that if v
j 
is an eigenvector belonging to a real 

eigenvalue j of A, then v
j
 is also an eigenvector belonging to 

the eigenvalue e
j

 of e
A
. Moreover , if span  Re(v

j
), Im (v

j
) is an 

eigenspace belonging to a complex conjugate pair j , j of 

eigenvalues, then it is also an eigenspace belonging to e
j 

, e
j

. 

3-2 Flows and Invariant Subspaces: 

 The matrix e
tA

 can be regarded as a mapping from R
n
 to 

R
n
: given any point xo in R

n
, x (xo,t) = e

tA
xo is the point at which 

A = e
tA

 = , 

e
tA

 = e
t

 , 

A = 
, e

tA
 = e

λt
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the solution based at xo lies after time t. The operator e
tA

 hence 

contains global information on the set of all solutions of(3.1.1), 

since the formula (3.1.3) holds for all points xoR
n
. , we say that 

e
tA

 defines a flow on R
n
 and that this flow (or 

"
phase flow

"
) is 

generated by the vector field Ax defined on R
n
: e

tA
 is our first 

specific example of a flow t. 

 The flow e
tA

 :R
n       

R
n
 can be thought of as the set of all 

solutions to (3.1.1). In this set certain solutions play a special 

role: those which lie in the linear subspaces spanned by the 

eigenvectors. These subspaces are invariant under e
tA,

 in 

particular, if v
j
 is a (real) eigenvector of A, and hence of e

tA, 
then 

a solution based at a point cjv
j
 R

n
 remains on span v

j
 for all 

time; in fact. 

  x (cv
j
, t) = cv

j
e
jt

               (3.2.1) 

    Similarly, the (two-dimensional) subspace spanned by 

Re v
j
 , Im  v

j
 , when v

j
 is a complex eigenvector, is invariant 

under e
tA. 

In short , the eigenspaces of A are invariant subspaces 

for the flow. 

 We divide the subspaces spanned by the eigenvectors into 

three classes: 

 The stable subspace, E
s
 = span v

1
, … , v 

s
  ,

 
 

 The unstable subspace, E
u
 = span  u

1
, … , u

 u
  

 The center subspace , E
c
 = span   w

1
, … , w

  c
 

 Where v
1
, … , v 

s
 are the ns (generalized) eigenvectors 

whose eigenvalues have negative real parts, u
1
, … , u 

u
 are the nu 

n
 

n
 

n
 

n
 

n
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E
u

 

E
u

 

(generalized) eigenvectors whose eigenvalues have positive real 

parts and w
1
, … , w 

c
 are those whose eigenvalues have zero real 

parts. Of course, ns + nc + nu = n. The names reflect the facts 

that solutions lying on E
s
 are characterized by expontial decay 

(either monotonic or oscillatory), those lying in E
u
 by 

exponential
 
growth, and those lying in E

c
 by neither. In the 

absence of multiple eigenvalues, these latter either oscillate at 

constant amplitude (if ,  = ± iβ) or remain constant (if  = 0). 

A schematic picture appears in Figure (1) with two specific 

examples. 

 

 

 

 
 
  

  

 

 

 

 

 

 

 

 

 

 

Figure (1). Invariant subspaces. (a) The three subspaces; (b) 

E
S

 

E
U

 

E
S

 

E
C

 

E
S

 

n
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     0 1  

              0  -4  

 (E
s
 = span (1, -4), E

c
 = span (1,0) E" = ) ; (c) 

   -1 -1 0 

     1 -1 0 

     0  0 2 

 (E
s
 = span (1, 0 , 0) , (1 , 1, 0) , E

c
 = , E

u
 = (0 , 0 , 1). 

 

When there are multiple eigenvalues for which algebraic 

and geometric multiplicities differ, then one may have growth of 

solutions in E
c
. 

 

3.3 The Nonlinear System x = ƒ(x) 

 We must start by admitting that almost nothing beyond 

general statements can be made about most nonlinear systems. 

In the remainder of this chapter we will meet some of the 

delights and horrors of such systems, but we must bear in mind 

that the line of attack we develop only one, and that any other 

tool in the workshop of applied mathematics, including 

numerical integration, perturbation methods, and asymptotic 

analysis, can and should be brought to bear on a specific 

problem. 

 We recall that the basic existence – uniqueness theorem 

for ordinary differential equations, implies that, for smooth 

functions ƒ (x), the solution to the initial value problem. 

A = 

A = 

 ز

, 

. 
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 x = ƒ (x) ;  x R
n
,  x(0) = xo           (3.3.1 ) 

 is defined at least in some neighborhood t  (-c,c) of t = 0. 

Thus a local flow t: R
n
  R

n
 is defined by t(xo) = x (t, xo) in a 

manner analogous to that in the linear case, although of course 

we cannot give a general formula like e
tA

. 

 A good place to start the study of the nonlinear system       

x = ƒ (x) is by finding the zeros of ƒ or the fixed point of (3.3.1). 

These are also referred to as zeros, equilibria, or stationary 

solutions. Even this may be a formidable task, although in most 

of our examples it will not be. Suppose then that we have a fixed 

point x, so that ƒ(x) = 0, and we wish to characterize the 

behavior of solutions near x. We do this by linearizing        

(3.3.1) at x, that is, by studying the linear system. 

   = D ƒ (x) ,   R
n
,           (3.3.2 ) 

 where Dƒ = ƒi/xj  is the jacobian matrix of first partial 

derivatives of the function ƒ = (ƒ1(x1, … , xn) , ƒ2(x1,…, xn),       

ƒn(x1,…xn))
T
 (Tdenotes transpose) and x = x + , | |  <<1.Since 

(3.3.2) is just a linear system of the form (3.1.1), we can do this 

easily . In particular, the linearized flow map Dt(x) arising 

from (3.3.1) at a fixed point x is obtained from (3.3.2) by 

integration: 

  Dt( x ) = e
tD(x) 

             (3.3.3) 

 The mportant question is, what can we say about the 

solutions of (3.3.1) based on our knowledge of (3.3.2)? The 

answer is provided by two fundamental result of dynamical 

 ز

- 

- 
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systems theory which we give below, and may be summed up 

by saying that local behavior (for||small)does carry over in 

certain"nice" cases  5   . 

 Theorem (3.3.1) (Hartman – Grobman). If D(x) has zero 

or purely imaginary eigenvalues then there is a homeomorphism 

h defined on some neighborhood U of x in R
n
 locally taking 

orbits of the nonlinear flow t of (3.3.1), to those of the linear 

flow e
tD(x)

 of (3.3.2). The homeomorphism preserves the sense 

of orbits and can also be chosen to preserve parameterization by 

time. 

 A more delicate situation in which the nonlinear and linear 

flows are related via diffeomorphisms (Sternberg's theorem) 

requires certain non-reaonance conditions among the 

eigenvalues of D(x). We shall not consider this here. 

 When D(x) has no eigenvalues with zero real part , x is 

called a hyperbolic or nondegenerate fixed point and the 

asymptotic behavior of solutions near it(and hence its stability 

type) is determined by the linearization. If any one of the 

eigenvalues has zero real part, then stability cannot be 

determined by linearization, as the example. 

  x-  x2x + x = 0           (3.3.4) 

shows Rewritten as a system (with x1 = x, x2 =  x ),             

  x1 = 0 1    x1    0           

  x2         -1 0    x2 x
2

1x2  

- 

- 

- - 

.. . 

- (3.3.5) 

 

. 

. 

. 
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 We find eigenvalues ,  = ± i. However, unless  = 0, the 

fixed point (x1, x2) = (0,0) is not a center, as in the linear system, 

but a non hyperbolic or weak attracting spiral sink if  > 0, and a 

repelling source if  < 0. 

 Before the next result we need a couple of definitions. We 

define the local stable and unstable manifolds of x, W
s
loc (x),  

W
u

loc( x ) as follows. 

W
s
loc ( x ) =  xU/t(x)      x as t      , and t (x)  U for all t  0  , 

W
u

loc( x ) =   xU/t(x)      x as t      , and t(x) U for all t  0  ,

          (3.3.6) 

Where U  R
n
 is a neighborhood of the fixed point x. The 

invariant manifolds W
s
loc and W

u
loc provide nonlinear analogues 

of the flat stable and unstable eigenspaces E
s
, E

u
 of the linear 

problem(3.3.2). The next result tells us that W
s
loc and W

u
loc are 

in fact tangent to E
s
, E

u
 at x.      

 Theorem 3.3.2. (Stable Manifold Theorem for a Fixed 

point). Suppose that x =(x) has a hyperbolic fixed point x. 

Then there exist local stable and unstable manifolds W
s
loc(x), 

W
u

loc(x) of the same dimensions ns, nu as those of the 

eigenspaces E
s
, E

u
 the linearized system (3.3.2), and tangent to 

E
s
, E

u
 at x. W

s
loc (x), W

u
loc(x) are as smooth as the function . 

 For proofs of these two theorems see, for example, 

Hartman(1964) and Car (1980), or , for a more modern 

treatment, Nitecki (1971), Shub (1978), or Irwin (1981). Hirsch 

. 
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et al, (1977) contains a more heneral result. The two result may 

be illustrated as in .Figure (2). 

  

 

 

 

Figure (2) linearization and invariant subspaces.(a) Hartman
'
s 

theorem ;(b) local stable and unstable manifolds 

Note that we have not yet said anything about a center 

manifold, tangent to E
c
 at x, and have, in fact, confined 

ourselves to hyperbolic cases in which E
c
 does not exist. 

The local invariant manifolds W
s
loc , W

u
loc have global 

analogues W
s
, W

u
, obtained by letting points in W

s
loc flow 

backwards in time and those in W
u
loc flow forwards: 

W
s
(x)  = t(W

s
loc(x),            

W
u
(x)  =  t(W

u
loc (x). 

Existence and uniqueness of solutions of (3.3.1) ensure 

that two stable (or unstable) manifolds of distinct fixed points 

x
1
, x

2
 cannot intersect, nor can W

s
(x) (or W

u
(x)) intersect itself. 

However, intersections of stable and unstable manifold of 

distinct fixed points or the same fixed point can occur and, in 

fact, are a source of much of the complex behavior found in 

dynamical systems. The global stable and unstable manifolds 

need not be embedded submanifolds of R
n
 since they may wind 

around in a complex manner, approaching themselves arbitrily 

t0 

t0 

3.3.7)) 



 - 88 - 

closely. We give an example of a map poscssing such a structure 

in the next section. 

To illustrate the ideas of this section, we consider a simple 

system on the plane: 

 x  = x, 

 y = -y + x
2
,      

which has a unique fixed point at the origin. For the 

linearized system we have the following invariant subspaces: 

 E
s 
 =  (x,y) R

2
 /x = 0 ,       

 E
u
  =  (x,y) R

2
 /y = 0 ,  

In this case we can integrate the nonlinear system exactly. 

Rather than obtaining a solution in the form(x(t), y(t)), we 

rewrite (3.3.8) as a(linear)first-order system by eliminating time: 

 dy       -y   

 dx        x 

This can be integrated directly to obtain the family of 

solution curves 

  x
2
   c 

   3        x 

Where c is constant determined by initial conditions. Now 

Theorem 3.3.1, together with (3.3.9), implies that W
u
loc(0,0) can 

be represented as a graph y = h(x) with h(0) = h(0) = 0, since 

W
u

loc is tangent to E
u
 at (0,0). Thus c  = 0 in (3.3.10) and we 

have 

        x
2
 

+ x (3.3.10)  

+  y (x)  = 

(3.3.12 )  

. 

. 
(3.3.8) 

(3.3.9) 

= 

,  (3.3.11)  

. 

W
u
(0,0) =  (x,y) R

2
/y = 
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         3 

       Finally, noting that if x (0) = 0, then x  0, and hence x (t)   

0, we see that W
s
(0,0)  E

s
. Note that , for this example, we 

have found the global manifolds; see Figure (3). 

 It is well known that nonlinear systems possess limit sets 

other than fixed points; for example, closed or periodic orbits 

frequently occur. A periodic solution is one for which there 

exists 0 < T <  such that x (t) = x(t+T) for all t. We consider 

the stability of such orbits in section 3.5, but note here that they 

have stable and unstable manifolds just as do fixed points. 

 

 

 

 

  

 

 

 

Figure(3) Stable and unstable manifolds for equation (3.3.8).(a) the linear 

system; (b) the nonlinear system. 

 

Let γ denote the closed orbit and U be some neighborhood of γ; 

then we define. 

W
s
loc(γ) =  xU || t(x) – γ |      0 as t      ,and t(x)U for t  0 

W
u

loc(γ) =  xU||t(x) – γ |      0 as t      ,and t(x)U for t  0 

b)) a)) 

. 
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3.4.Linear and Nonlinear Maps: 

 We have seen how the linear system (3.4.1) gives rise to 

flow map e
tA

: R
n
     R

n
, when etA is an n x n matrix. For fixed t = 

τlet e
tA 

= B, then B is a constant coefficient matrix and the 

difference equation. 

  xn+1 = Bxn   or   x       Bx,   (3.4.1) 

           Is a discrete dynamical system obtained from the flow of 

(3.1.1). Similarly, a nonlinear system and its flow t give rise to 

a nonlinear map. 

  xn +1 = G(xn)  or   x       G(x),          (3.4.2 ) 

 Where G = t is a nonlinear vector valued function. If the 

flow t is smooth (say r-times continuosly differentiable), then 

G is a smooth map with a smooth inverse: i.e., a 

deffeomorphism. This is one example of the way in which a 

continuous flow gives rise to a discrete map; a more important 

one, the Poincare map will be considered in Section 3.5. 

 Deffeomorphisms or discrete dynamical systems can also 

be studied in their own right and more generally we might also 

consider noninvertible maps such as 

  x x ــ x
2
              (3.4.3 ) 

 An orbit of a linear map x     Bx is a sequence of points 

   xi i


=- defined by xi+1 = Bxi. Any initial point generates a 

unique orbit provided that B has no zero eigenvalues. 
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 We define stable, unstable, and center subspaces in a 

manner analogous to that for linear vector fields: 

 E
s
 = span  ns (generalized) eigenvector 

 whose eigenvalues have modulus < 1    , 

 E
u
 = span  nu (generalized) eigenvector 

   whose eigenvalues have modulus > 1    , 

 E
c
 = span  nc (generalized) eigenvector 

   whose eigenvalues have modulus = 1     , 

 Where the orbits E
s
 and E

u
 are characterized by 

contraction and expansion, respectively. If there are no multiple 

eigenvalues, then the contraction and expansion are bounded by 

geometric series: i.e., there exist constants c > 0, α < 1 such that 

, for n  0, 

      xn   c αn
 xo  if xo E

s
,     

     x–n   c αn
 xo  if xo E

u
, 

 If multiple eigenvalues occur, then much as in the case of 

flows, the contraction (or expansion) need not be exponential, 

However, an exponential bound can still be found if  j  < 1 for 

all eigenvalues. 

 In spite of problems caused by multiplicities, if B has no 

eigenvalues of unit modulus, the eigenvalues alone serve to 

determine stability. In this case x = 0 is called a hyperolic fixed 

point and in general, if x is a fixed point for G (G(x) = x and 

DG(x) has no eigenvalues of unit, modulus, then x is called a 

hyperbolic fixed point. 

(3.4.4) 
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 There is a theory for diffeomorphisms parallel to that for 

flows , and in particular the linearization theorem of Hartman – 

Grobman and the invariant manifold results apply to maps just 

as the flows (Hartman (1964) Nitecki (1971) , Shub(1978): 

Theorem 3.4.1. (Hartman – Gobman). Let G: R
n
    R

n
 be a (C

1
) 

diffeomorphism with a hyperbolitc fixed point x. Then there 

exists a homeomorphism h defined on some neighborhood U on 

x such that h (G()) = DG(x) h () for all   U. 

Theorem 3.4.2. (Stable Manifold Theorem for a Fixed Point). 

Let G: R
n
R

n
 be a (C

1
) diffeomorphism with a hyperbolic fixed 

 point x. Then there are local stable and unstable manifolds      

W
s
loc(x), W

u
loc(x), tangent to the eigenspaces E

s
x, E

u
x of DG(x) 

at x and of corresponding dimensions. W
s
loc(x), W

u
loc(x), are as 

smooth as map G. 

 Global stable and unstable manifolds are defined as for 

flows, by taking unions of backward and forward iterates of the 

local manifolds. We have 

W
s
loc(x) =  x U G

n
(x)      x as n      + , and G

n
 (x) U,n 0      , 

W
u

loc(x) =  x U G
-n

(x)      x as n      + , and G
-n

 (x) U,n 0     , 

and  

  W
s
(x) = UG

-n
(W

s
loc(x)), 

  W
u
(x) = UG

n
(W

u
loc(x)), 

 We should bear in mind, however, that flows and maps 

differ crucially in mind, however, that flows and maps differ 

n0 

n0 

- 
- 

- 

- 
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crucially in that, while the orbit or trajectory t(p) of a flow is a 

curve in R
n
, the 

 orbit G
n
(p) of a map is a sequence of points, Thus, while the 

invariant manifolds of flows are composed of the unions of 

solution curves. Those of maps are unions of discrete orbit 

points, see Figure(4) This distinction will be important later, in 

the discussion of global behavior. 

We note that, when we write G
2
(p), we mean G(G(p)) and, 

similarly, that G
n
(p)means the nth iterate of p under G. Thus, if 

there is a cycle of k distinct points pj = G
j
(po), j = 0 …, k – 1, 

and G
k
(po) = po, we have a periodic orbit of period k. The 

stability of such an orbit is determined by the linearize map 

DG
k
(po), or, equivalently DG

k
(pj) for any j. By the chain rule, 

we have DG
k
(po) = DG(G

k -1
(po)) … DG(G(po)). DG(po). 

 

 

 

 

 

 

 

 

 

Figure(4) Invariant manifolds and orbits for a map G:R
2
     R

2 
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 Much as for flows, the behavior of the linear map (3.4.1) is 

governed by the eigenvalues and the eigenvectors of B. Since 

maps are rarely dealt with in texts on differential equations or 

nonlinear oscillations, we include some details here. For a one-

dimensional map, where B = b is a scalar and the orbit of a point 

pj j=0 is simply given by the geometric sequence pj = b
j
 po, there 

are four "common" cases and three "unusual" ones listed below 

in Table (1).  

Table (3.4.1) Behavior of the Linear Map x  bx 

Case Description Sketch 

1. b < - 1 

 

2. b (-1, 0) 

 

3. b (0,1) 

 

4. b > 1 

 

5. b = -1  

 

6. b = 0 

 

7. b = + 1 

Orientation reversing source 

 

Orientation reversing sink 

 

Orientation preserving sink 

 

Orientation preserving source 

 

Orientation reversing, all points of 

period 2 

All points go to 0 on first 

iterate(noninvertible) 

Orientation preserving, all points 

fixed 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

In general, the stability type of the fixed point x = 0 is 

determined by the magnitude of the eigenvalues of B. If  j  < 1 

for all eigenvalies, then we have a sink ; if   j > 1 for some 

. . . . 
P1 0 P0 P2 

. . . . 
P1 0 P2 po 

. . . 
0 P2 P1 P0 

. . . . 
0 P1 P1 

. 

P1 0 P0 P2 = 

. . 
0  =  pj, j  1      po   

. . . . 

. . 
0          po  =  pj,j  

P0 

∞ 
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eigenvalues: a source. If  j = 1 for any eigenvalues then a norm 

is preserved in the directions v
j
 associated with those 

eigenvalues (unless they are multiple with nontrivial Jordan 

blocks). 

 If an even number of eigenvalues have negative real parts, 

then the map x   Bx is orientation preserving, while if an odd  

 

 

 

 

 

 

 

 

 

number have negative real parts it reverses orientation. We give 

some two-dimensional examples in Figure  (5).  

 To get a feel for the rich and complex behavior possible 

for nonlinear maps we may like to experiment with the 

following two examples. Solutions may be conveniently 

obtained on a programmable pocket calculator or a 

minicomputer: 

 As a final example of a two-dimensional map with rather 

rich behavior, consider the simple linear map. 

  x  1 1 x  
(x,y)T

2
 = R

2
/Z

2
,    (3.4.5)    

) 

, 
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  y  1 2 y  

 

 

  
Position of eigenvalues with respest to unit circle in complex plane 

shown above orbit structures. The oriented rectangle ABCD is mapped to 

ABC D in each case. 

             

1 0 

     0 2 

 Where the phase space is the two-dimensional torus. On 

the plane (the covering space) we simply have a saddle point, 

 

 with eigenvectors v
1,2 

= (1,(1 5)/2)
T
 belonging to the 

eigenvalues 1.2 = (3    5) /2. Since the map is linear , W
s
(0) =  

E
s
, W

u
(0) = E

u
 and thus span   (1,(1+  5)/2)

T
 

 
 is the unstable 

manifold and span  (1,(1 -  5)/2)
T
  the stable manifold. However, 

Our phase space is the torus, T
2
, obtained by identifying points 

whose coordinates differ by integers. The map is well defined 

on T
2
 since it preserves the periodic lattice. Any  point of the 

unit square 0,1) × 0 , 1) mapped into another square is translated 

back into the original square; for example, if (x, y) =                  

x x. 

Figure (5) orientation preserving (a), (b) and orientation reversing 

(c)linear maps 
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(- 1.4, + 1.2), we set (x, y) = (0.6 , 0.2). See Figure (6). Thus the 

unstable manifold " runs off the square" at (2/(1+ 5), 1) and 

reappears, with the same slope , at (2/(1+  5),0) to run off at      

(1, ( 5  -1)/2), etc. Since the slopes of W
s
 and W

u
 are irrational 

((1   5)/2) these manifolds are dense in the unit square (or wind 

densely around the torus). Thus each manifold approaches itself 

arbitrarily closely, and hence is not an embedded submanifold of 

T
2
. Arnold and Avez 1968, pp.5-7 have nice illustrations of the 

torus map. 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.Closed Orbits, Poincare Maps, and Forced 

Oscillations: 

 In classical texts on differential equations the stability of 

closed orbits or periodic solutions is discussed in terms of the 

characteristic or Floquet multipliers. Here we wish to introduce 

a more geometrical view which is in essence equivalent: the 

Poincare map. Since the ideas are so important, we devote a 

considerable amount of space to familiar examples from forced 

oscillations. 

Figure (6).The linear map on the torus(the hyperbolic toral autmorphism)(a) On 

R
2
the covering space;(b) on T

2
.   
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 Let  be a periodic orbit of some flow t in R
n
 arising from 

a nonlinear vector field (x). We first take a local cross section 

  R", of dimension n – 1. The hypersurface  need not be 

planar, but must be chosen so that the flow is everywhere 

transverse to it. This is achieved if (x) . n(x)  0 for all x  , 

where n(x) is the unit normal to  at x. Denote the (unique) 

point where  intersects  by p, and let U   be some 

neighborhood of p.(If  has multiple intersections with , then 

shrink  until there is only one intersection).Then the first return 

or Poincare map P:U      is defined for a point q U by. 

   P(q)  = (q),                (3.5.1 ) 

 Were  = (q) is the time taken for the orbit t(q) based at q 

to first return to . Note that  generally depends upon q and 

need not be equal to T = T(p), the period of , However,      T 

as q       p. 

 Clearly p is a fixed point for map P , and it is not difficult 

to see that the stability of p for P reflects the stability of  for the 

flow t. In particular, if p is hyperbolic, and DP(p), the 

linearized map, has ns eigenvalues with modulus less than one 

and nu with modulus greater than one (ns + nu = n – 1), then dim 

W
s
 (p) = ns, and dim W

u
(p) = nu for the map. Since the orbits of 

P lying in W
s
 and W

u
 are formed by intersestions of 

orbits(solution curves) of t with , the dimensions of W
s
() and 
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W
u
() are each one greater than those for the map  5  .  This is 

most easily seen in the sketches of Figure (7). 

 As an example, consider the planar system. 

  x  = x - y - x (x
2
 + y

2
),     

  y  =  x + y - y(x
2
 + y

2
),  

 

 

 

 

 

 

 

 

Figure 3.5.1. The Poincare map. (a) The cross section and the map; (b) a 

closed orbit. 

 

and take our cross section 

   =  (x, y)  R
2| x > 0, y = 0 . 

 Transforming (3.5.2) to polar coordinates r = (x
2
 + y

2
)
1/2

,  

 = arctan (y/x), we obtain. 

   r = r (1 – r
2
),      

    = 1, 

and the section becomes 

  =  (r,) R
+
 × S

1| r  0,  = 0)  . 

 It is easy to solve (3.5.3) to obtain the global flow 

              1   

. 

. 3.5.2 

. 

. 

(3.5.3) 

t(r0, 0)   =((1 + ( - 1)e
-2t

)
-1/2

,t + 0) 

( 7) 
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                                                r
2
0 

 The time of flight  for any point q   is simply  = 2, 

and thus the Poincare map is given by 

               1       

      r
2
o 

 Clearly, P has a fixed point at ro = 1, reflecting the circular 

closed orbit of radius 1 of (3.5.3). Here P is a one-dimensional 

map and its linearization is given by. 

      dP          1           1     
     

          2e
-4

  

     dro ro=1    2           r
2
o                     r

3
o     ro = 1 

 = e
-4

 < 1.        (3.5.5) 

 Thus p = 1 is a stable fixed point and  is a stable or 

attracting closed orbit  5  . 

 We note that we could have computed DP(1)  a little more 

simply by considering the flow of the vector field (3.5.3) 

linearized near the closed orbit r =1. Since (d/dr)(r – r
3
)= 1 – 3r

2
, 

this is  

    = 2 , 

    = 1, 

with flow 

   Dt(0,0) = (e
-2t
0,t + 0).          (3.5.7 ) 

 Hence DP(1) = e
-2(2)

 = e
-4

, as above 

 To demonstrate the general relationship between Poincare 

maps and linearized flows we must review a little Floquet theory 

(Hartman (1964), §§IV.6,IX.10).Let x (t) = x(t + T) be a 

solution lying on the closed orbit , based at x(0) = p. 

P(ro) = (1+( – 1)e
-4

)
-1/2

 
(3.5.4) 

DP(1) = = - (1+ ( -1)e
-4

)
-3/2

 

3.5.6)) . 

. 
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Linearizing the differential equation about , we obtain the 

system 

    = D(x)(t)),            (3.5.8 ) 

 Where D(x(t)) is an n × n, T-periodic matrix. It can be 

shown that any fundamental solution matrix of such a T-

periodic system can be written in the form 

  X(t) = Z(t)e
tR

;   Z(t) = Z(t + T),             (3.5.9) 

  

Where X, Z, and R are n × n matrices (cf. Hartman (1964), 

P.60).In particular, we can choose X(0) = Z(0) = 1, so that 

  

  X(T) = Z (T)e
TR

 = Z(0)e
TR

 = e
TR

        (3.5.10 ) 

 It then follows that the behavior of solutions in the 

neighborhood of  is determined by the eigenvalues of the 

constant matrix e
TR

. These eigenvalues, 1,… , n, are called the 

characteristic(Floquet)multipliers or roots and the eigenvalues 

1, … , n of R are the characteristic exponents of the closed 

orbit . The multiplier associated with perturbations along  is 

always unity; let this be n. The moduli of the remaining n – 1, 

if none are unity, determine the stability of . 

 Choosing the basis appropriately, so that last column of 

e
TR

 is (0,…, 0,1)
T
, the matrix DP(p) of the linearized Poincare 

map is simply the (n – 1) × (n-1) matrix obtained by deleting the 
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nth row and column of e
TR

. Then the first n -1 multipliers 1, 

…,n-1 are the eigenvalues of the Poincare map. 

 Although the matrix R in (3.5.9) is not determined 

uniquely by the solutions of (3.5.8) (Hartman 1964, P.60), the 

eigenvalues of e
TR

 are uniquely determined (e
TR

 can be replaced 

by any similar matrix C
-1

e
TR

C).However, to compute these 

eigenvlues we still need a representation of e
TR

 and this can only 

be obtained by actually generating a set of n linearly 

independent solutions to form X(t). Except in special cases, like 

the simple example above, this is generally difficult and requires 

perturbation methods or the use of special functions. 

 We have seen how a vector field (x) on R
n
 gives rise to a 

flow map t on R
n
 and, in the neighborhood of a closed orbit, to 

a (local) poincare map P on a transversal hypersurface . 

Another important way in which a flow gives rise to a map is in 

non-autonomous, periodically forced oscillations. Consider a 

system. 

  x =  (x, t);   (x, t)  R
n
 × R,           (3.5.11) 

 Where (.,t) = (.,t +T) is periodic of period T in t. System   

(3.5.11) may be rewritten as autonomous system at the expense 

of an increase in dimension by one, if time is include as an 

explicit state variable: 

  x = (x, ),            

   =1;   (x, )  R
n
 x S

1
  

. 

. (3.5.12) 
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 The phase space is the manifold R
n
 x S

1
, where the circular 

component S
1
 = R (mod T) reflects the periodicity of the vector 

field  in . For this problem we can define a global cross 

section. 

   =  (x, )  R
n
 x S

1|  = 0)   ,        (3.5.13 ) 

 Since all solutions cross  transversely, in view of the 

component  = 1 of (3.5.12). The Poincare map P:      , if it is 

defined globally, is given by  

  P(x0) = . T(x0,0)                 (3.5.14) 

 Where t:R
n
 × S

1
 R

n
 × S

1
 is the flow of (3.5.12) and  

denotes projection onto the first factor. Note that here the time 

of flight T is the same for all points x . Alternatively, P(xo) = 

x (xo, T + o), where x(xo, t) is the solution of (3.5.12) based at x 

(xo, o) = xo. 

 The Poincare map can also be derived as a discrete 

dynamical system arising from the flow ψ(x, t) of the time-

dependent vector field of (3.5.11). Since  is T-periodic, we 

have ψ (x, nT)  ψn
(x, T) = ψn

T(x). The map P(xo) = ψT(xo) is in 

this sense another example of a discrete dynamical system  5    . 

 The system:    

  x  =  x
2
,             (3.5.15 ) 

    = 1, 

 

with solution 

. 

. 

. 
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                 1      
-1

   

        xo 

 

and the Poincare map 

      1         
-1   

 

       x0 

  

on  = (x, )   = 0shows that P may not be globally 

defined. Here , trajectories of t based at xo 1/2 approach  at 

a time t  2. However, P:U    is usually defined for some 

subset U. 

 

 

 

 

 

 

 

 

 

 

 

We illustrate the Poincare map for forced oscillations in 

Figure (8). As in the previous case, it is easy to see that a fixed 

point p of P corresponds to a periodic orbit of period T for the 

t(xo, o) = 

P(x0) = , x0(-,1/2) 

-t , t + o , 

-2 

8 



 - 115 - 

flow. In addition, a periodic point of period k > 1(P
k
(p) = p but  

P
j
(p)  p for 1  j  k – 1) corresponds to a subharmonic of 

period kT. Here P
k
 means P iterated k times, thus P

2
(po) = 

P(P(po); etc. This, of course, also applies for the autonomous 

case discussed earlier. Such periodic points must always come 

in sets of : po, … , pk-1 such that P(pi) = pi+1, 0  i  k – 2 and     

po = P(pk – 1). 

Forced Linear Oscillations: 

 We start with a problem for which a general solution can 

be found and the Poincare map computed explicitly. Consider 

the system. 

  x + 2x + x =  cos t;  0   < 1,  (3.5.16) 

 Or  

  x1     0 1 x1    0        (3.5.17 ) 

  x2 -1    -2 x2       cos  ,   

   = 1. 

 Here the forcing is of period T = 2/. Since the system is 

linear, its solution is easily obtained by conventional methods 

(cf. Braun 1978 : 

 x(t) = e
–t

(c1 cos dt + c2 sin dt) + A cos t + B sin t, 

         (3.5.18) 

 where d =  1- 
2
 is the damped natural frequency and A 

and B, the coeffic-ients in the particular solution, are given as  

      (1- 
2
)              2           (3.5.19)     

.. . 

. 

. 

. 

= + 

A = B= , 



 - 116 - 

         (1- 
2
)

2
 +4

2


2
)                (1- 

2
)
2
 +4

2


2
) 

The constants c1, c2 are determined by the initial 

conditions. Letting x = x1 = x10 and x = x2 = x20, at t = 0,we have 

x(0) = x10 = c1 + A            c1 = x10- A, 

x(0) = x20 = -c1 + dc2 + B            c2 = (x20 + (x10 –A)- B)/ d     

                (3.5.20 ) 

 Thus, since t(x10, x20, 0) is given by (3.5.18)   and 

  x2(t)  = x1(t) e
-t

   -  (c1 cos dt + c2 sin dt) 

  + d(-c1 sin dt + c2cos dt) 

- (Asin t – B cos t), 

we can compute the Poincare map explicitly as . 

2/(x10,x20,0).In the case of resonance,  = d = 1 - 
2
, 

we obtain 

P(x10, x20) = ((x10 – A)e
-2/

 + A, (x20 - B)e 
-2/

+B.  (3.5.21) 

As expected, the map has an attracting fixed point given by     

(x1, x2) = (A, B) or c1 = c2 = 0. The map is, of course, linear 

and since the matrix  

  P1  P1 

  x10   x20  = e
-2/

  0        (3.5.22)        

  P2  P2      0        e
-2/

 

  x10   x20 

 

 

is diagonal with equal eigenvalues, the orbits of P 

approach(A,B)radially, cf. Figure (9).  

          

. 



 - 117 - 

      

 

 

 

 

 

 

 

Figure (9) The poncar map of the linear oscillator equation. 

 

 

Chapter four 

 

The Stability of Bifurcations, Co dimensions of 

Equibilria and Periodic Orbits    
 

In this chapter, we study the local bifurcation of vector 

fields and maps. As we have seen, systems of physical interest 

typically have parameters are which appear in the defining 

systems of equations. As these parameters are varied, changes 

may occur in the qualitative structure of the solution for certain 

parameter values. These changes are called bifurcation and the 

parameter values are called bifurcation values. To the extent 

possible, we develop in this chapter. 

We start by considering some simple examples of 

bifurcations of fixed points of flows in one and two dimensions 
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X 

and go on to develop the general theory for dealing with 

bifurcations of fixed points of  n-dimensional flows.  

The principal components of this theory are the center manifold 

and normal form theorem. At the end of the chapter we turn our 

attention to local bifurcations of maps and develop an analogous 

theory for them. 

4.1 Bifurcation Problems  

The term bifurcation was originally used by Poincar'e to 

describe the "splitting" of equilibrium solutions a family of 

differential equations. If                                 

 is a system of differential equations depending on the k-

dimensional parameter μ, then the equilibrium solutions of 

(4.1.1) are given by the solutions of the equation fμ(x)=0. As μ 

varies, the implicit function theorem implies that these equilibria 

are described by smooth functions of μ away from those point at 

which the jacobian derivative of fμ (x) with respect to x, Dxfμ has 

azero eigenvalue. The graph of each of these functions is a 

branch of equilibria of (4.1.1). At an equilibrium (xo,μo) where 

Dxfμ, has a zero eigenvalue, several branches of equilibria may 

come together, and one says that (xo,μo) is a point of bifurcation. 

As an example consider equation (4.1.1)with  fμ(x) = μx – 

x
3
. Here Dxfμ = μ- 3x

2
,and the only bifurcation point is 

(x,μ)=(0,0).It is easy to check that the unique fixed point x = 0 

existing for μ ≤ 0 is stable, that it becomes unstable for μ > 0, 

and that the new bifurcating fixed points at x = ±√ μ  are stable. 

(4.1.1) 
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Bifurcation point 

Branches of equilibria 

μ 

We obtain the qualitative picture of Figure (4.1.1) in which the 

branches of equilibria are shown in (x,μ) space. This figure is an 

example of a bifurcation diagram [5]. 

 

 

 

 

 

 

 

In each case find the nontrivial fixed points and investigate 

their stability. Also sketch the bifurcation diagrams. Some of 

these bifurcations are more degenerate than others, in that small 

perturbations to fμ can change the topological structure of their 

bifurcation diagrams. Can you identify these, and sketch some 

perturbed bifurcation diagrams? 

Bifurcations of equilibria usually produce changes in the 

topological type of a flow, but there are many other kinds of 

changes that occur in the topological equivalence class of flows. 

We shall include all of these in our use of the term bifurcation. 

Definition 4.1.1. 

A value μ0 of equation (4.1.1)for which the flow of (4.1.1) 

is not structurally stable is a bifurcation value of μ. 

This definition is not completely satisfactory because it impels 

one to study the finely detailed structure of flows for which 

Figure (1).  The bifurcation diagram  for  fµ = µx – x
3
 ---- sources; ---- 

sinks 
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complete descriptions do not exist. Consequently, attempts to 

construct a systematic bifurcation theory lead to very difficult 

technical questions, not all of which have relevance for 

applications of the theory. To avoid such complications, we 

frequently loosen the definition given above and examine only 

some of the qualitative features of a system of differential 

equation. We do not, however, retreat to the "static" problem of 

dealing only with the bifurcations of equilibria (cf. Sattinger 

[1973]). 

Another peculiarity of this definition is that a point of 

bifurcation need not actually represent a change in the 

topological equivalence class of a flow. For example , the 

system x = - (μ2
x + x

3
) has abifurcation value  μ =0, but all of 

the flows in this family have a globally attracting equilibrium at      

 x = 0. However, arbitrary perturbations (unfoldings) do give 

topologically distinct flows.  

Given a system (4.1.1), we want to draw its bifurcation set. 

This consists of the loic in μ-space which correspond to systems 

for which structural stability breaks down in specific ways 

which we classify to the extent that we are able to do so. We 

also sometimes find it convenient to draw bifurcation diagrams: 

the loci in the (x, μ) product space of (parts of)the invariant set 

of (4.1.1). these invariant sets need not merely be fixed points, 

as in Figure(1): periodic orbits, for example, are often 

. 
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represented in terms of some measure (│x│) of their 

amplitude.[5] 

What is of particular interest is that there are identifiable 

kinds of bifurcation which appear repeatedly in many problems. 

I ideally, we would like to have a classification of bifurcations 

which produced a specific list of possibilities for each example, 

starting with only general considerations such as the number of 

parameters in the problem, the dimension of the phase space and 

any symmetries or other special properties of the system (e.g. 

the forced Duffing equation and the Lorenz systems are volume 

contracting: this excludes a lot of types of behavior in these 

systems). Parts of such a classification have been developed, 

The classification schemes are based upon concepts which have 

their origin in the theory of transversality in differential 

topology. The transversality theorem implies that when two 

manifolds (surfaces) of dimension k and I meet in n-dimensional 

space, then in general, their intersection will be a manifold f 

dimension (k+1 – n ). If k + 1 < n then one dose not expect 

intersections to occur at all. For example tow-dimensional 

surfaces in 3-space generally intersect along curves, while tow 

curves in 3-space generally do not intersect. The meaning of in 

general is given in terms of function space topologies for the 

space of embeddings of 1- dimensional manifolds in-space. We 

only remark here that non-transversal intersections can be 

perturbed to transversal ones , but  transversal intersections 
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retain their topology under perturbation. A general position or 

transversal intersection of manifolds in n-dimensional space is 

one for which the tangent spaces and we shall give a fairly 

complte survey of what is known in this chapter of the 

intersecting manifolds span n-space. The dimension formula can 

be expressed also in terms of codimension. The codimension of 

an I-dimensional submanifold of n-space is(n - 1). Then the 

intersection of two submanifold ∑1, ∑2 generally satisfies          

(n - 1) + (n – k ) = 2n – ( 1+ k)= n – (1 + k – n ). Therefore the 

codimension of  ∑1 ∩ ∑2 is the sum of the codimensions of ∑1 and 

∑2 if the intersection is transversal. 

As an example, consider two curves in the plane, one of 

which is the x-axis, the other being the graph of a function f. The 

two curves intersect transversally at a point x if f (x) = 0 ( the 

intersection condition) and f' (x)≠ 0 (transversally). We say that 

a transversal intersection of the curves simple zero. If f has only 

simple zeros, then small perturbations of f have the same 

number of zeros as f. In a family fµ the simple zeros vary smooth 

functions of µ. (This statement is just the implicit function 

theorem.) Nonsimple zeros do not have these properties. For 

example, the family   fµ (x) = µ +x
2
 has a nonsimple zero at  

(x,µ) = (0,0). For µ > 0, the functions fµ have no zeros at all.  

Not however, that if one regards fµ(x) = F(x,µ) as function of 

two variable, then it's graph intersects the (x,µ) coordinate plane 

transversally along the curve µ + x2 = 0. Thus while the 



 - 113 - 

. 

bifurcation point (x,µ)  = (0,0) corresponds to an unstable 

system, the bifurcation diagram corresponding to the family of 

systems is stable to small perturbation. We note that looss and 

Joseph [ 1981] make a strong distinction between such " turning 

point" or "fold" bifurcations and branching bifurcations  such as  

that of Figure (1). 

 

 

 

 4.2 Center Manifolds: 

In this section we begin our development of the techniques 

necessary for the analysis of bifurcation problems. We discuss 

and state the center manifold theorem. Which provides a means 

for systematically reducing the dimension of the state spaces 

which need to be considered when analyzing bifurcations of a 

given type. We use the Lorenz system and its bifurcation at        

p = 1 as an example which illustrates the role of center 

manifolds in bifurcation calculations. There are two analogous 

situations to consider: an  equilibrium for a vector filed and 

fixed point for a diffeomorphism. The second case often arises 

from the Poincare return map of a periodic orbit of a flow. 

Suppose that we have system of ordinary differential equations  

x = f (x) such that f(0) = 0  . If the linearization of f at the origin 

has no pure imaginary eigenvalues, then Hartman's 

theorem[5]states that the numbers of eigenvalues with positive 

. 
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. 

and negative real parts determine the topological equivalence of 

the flow near 0. If there are eigenvalues with zero real parts, 

then the flow near the origin can be quite complicated.  

In general the center manifold method isolates the 

complicated asymptotic behavior by locating an invariant 

manifold tangent to the subspace spanned by the ( generalized) 

eigenspace of eigenvalues on the imaginary axis. There are 

technical difficulties here that are not present in the stable 

manifold theorem, however. These involve the nonuniqueness 

and the loss of smoothness in the invariant center manifold . 

Before stating the main result, we illustrate these issues with a 

pair of examples. 

Our first example is due to Kelley [ 1967]. Consider the system 

                               x = x
2
  ,                               

                               y = - y ,            

The solutions to this system have the from x(t) = xo/(1-t xo) 

and y (t) = yoe
-t
. Eliminating t, we obtain solution curves which 

are graphs of the functions y (x) = (yoe
-1

/
xo

)e
1/x

. For x < 0, all of 

these solution curves approach the origin in a way which is         

" flat": that is, all of their derivatives vanish at x = O . For x > o 

the only solution curve which approaches the origin ( as t    - ∞ ) 

is the x-axis. Thus the center manifold, tangent to the direction 

of the eigenvector belonging to 0 ( the x-axis) is far from 

unique. We can obtain C
∞
 center manifold by piecing together 

any solution curve in the left half plane with the positive half of 

(4.2.1) 
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the x-axis; cf. Figure (2). Note however, that the only analytic 

center manifold is the x-axis itself. 

To explain the lack of smoothness in center manifolds, we 

first make a simple observation about the trajectories which 

approach a node. Consider the linear system  

 

 

With b > a > 0. Dividing these equations, we obtain. 

 

dy       by 

dx       ax 

The solutions of equation (4.2.3) are easily seen to have 

form y(x) = C |x|(a/b)
 . The graphs of the functions y(x) are the 

solution curves of (4.2.2). If we extend one these solution curves 

to the origin, then it fails to be infinitely differentiable if b/a is 

not an integer and C ≠ 0. If r < b/a < r +1, then the extended 

curve will be C
r
 but not C

r+1
. Even if b/a is an integer, the curve 

formed from the union of 0 and two solution curves to the right 

and left of 0 will only be b/a-1 times differentiable in             

general  [5]. 

We now give an example which illustrates that a center 

manifold may be forced to contain curves that are patched 

together at a node like those we  have just described. Consider 

the system 

 

 

= 
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Figure (2). The phase portrait of equation (4.2.1), showing some 

center manifolds(heavy curves). 

in which the "parameter" μ plays the role of a ( trivial) 

dependent variable. 

It is easy to verify that, for the system linearized at             

(x,y, μ)=( 0.0.0), the y-axis is an unstable subspace and the (x, 

μ) plane the center subspace. The equilibria of this system 

consist of the μ -axis and the parabola μ = x
2
 in the (x, μ) 

coordinate plane, Figure (3) Since μ = o, the planes μ = constant  

are invariant under the flow of  (4.2.4). In a plane μ = constant ≠ 

o, all of the equilibria are hyperbolic. Those on the μ -axis with 

μ < 0 and along the parabola are saddles, while those along the 

positive μ-axis are unstable nodes. We want to find the center 

manifold of 0. For μ ≤ 0 the flow of (4.2.4.)is topologically a 

one parameter family of saddles, and the only choice for a center 

manifold comes from points in the (x, μ) coordinate plane. 

When μ > 0 , the unstable manifolds of the saddles along the 

parabola ( each a vertical line x =  +    μ ) form an invariant 

manifold M which separates R
3
 into two invariant regions. The 

. 
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center manifold must intersect M, but it can only do so by 

containing the parabola of equilipria. It follows  that the center 

manifold for μ > 0 must consist of the equilibria along the 

parabola. Of (4.2.4) together with stable saddle separatrices of 

the equilibria along the parabola. For (4.2.4) ,these all lie in the 

(x, μ) coordinate plane and the center manifold is the (x , μ ) 

coordinate plane. However if we modify the system (4.2.4) by 

changing the second equation to y= y +x
4
 , then we assert            

( without proof) that the center manifold must still consist of the 

equilibria together with their saddle separatrices. However, 

these now no longer fit together in a C
∞
 way along the curve of 

nodes on the positive half of the μ – axis. The degree of 

smoothness decreases as one moves away from the origin 

because the linearization of (4.2.4) at the point (0,0, μo) has 

eigenvalues in the plane μ = μo which are 1 and μo . Therefore 

the degree of smoothness we expect is bounded by 1/ μo. If we 

are interested only in a  C
r
 invariant mainiflod with r < ∞   , then 

our search for one will be successful as long as we restrict 

attention to a sufficiently small neighborhood of the origin          

(of diameter at most 1 /r in this example). 

With these examples as motivation, we now state 
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Figure (3). Invariant manifolds for equation (4.2.4.) 

 

 

 

 

 

 

 

 

 

Theorem 4.2.1 ( Center manifold Theorem for Flows).  

Let  f be a C
r 

vector filed on R
n
 vanishing at the origin                

(f (0) = 0)and let A =D f (0), Divide the spectrum of A into three 

parts ζs , ζc , ζu  with 

 

                          Re λ                             

 

 

Let the ( generalized ) eigenspaces of ζs , ζc and ζu be E
s
, 

E
c
 and E

u
 respectively, then there exist C

r
 stable and unstable 

invariant  manifolds W
u
 and W

s
 tangent to E

u
 and E

s
 at O and a 

C
r-1

 center manifold W
c
 tangent to E

c
 at O. the manifolds W

u
, 

W
s
, and W

c
 are all invariant for the flow of f. the stable and 

unstable manifolds are unigue, but W
c
 need not be. 

We illustrate the situation in Figure (4) note that we cannot 

assign directions to the flow in W
c
 without specific information 

on the higher-order terms of f near o.  

0 
 

0 
 

0 

< 
 

= 
 

< 

if 
 

if 
 

if 

λ 
 

λ 
 

λ 

 





 

ζs , 
 
 

ζc   , 
 

ζu , 

 



 - 119 - 

. 

For more information on the existence, uniqueness, and 

smoothness of center manifolds and for profs of Theorem 3.2.1 

and the results to follow, see Marsden and McCracken [1976], 

Carr [1981], and Sijbrand [ 1981] Kelley's [ 1967]. 

One might guess that a simpler alternative to using the 

center manifold theorem for a system would be to project the 

system onto the linear subspace spanned by E
c
. Thus, if one 

writes a vector filed as f = fu + fs + fc with 

 

 

 

 

 

 

 

 

 

fu ε  E
u
, fs ε  E

s
 , and fc ε  E

c
, near the equilibrium one 

would hope that fc restricted to E
c 

provides the correct 

qualitative picture of the dynamics in the center directions. The 

Lorenz system illustrates that this is not always the case and 

thus provides an instructive example of the role played by the 

center manifold calculations in a bifurcation problem[5]. 

Recall the Lorenz system 

 

Figure (4)The stable, unstable, and center manifolds. 
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. 

. 

(u+ ζ v )w, 
 

-ζ 

1 + ζ 

 

1 

1 + ζ 

 

. . ζ 

1 + ζ 

 

ζ 

1 + ζ 

 

ζ 

1 + ζ 

 

. 

. . . 

x   = ζ (y – x), 

                                   y = px – y – xz,                      (4.2.5) 

z = - β z + xy. 

 

This system is a Galerkin projection of a set of partial 

differential equations for two- dimensional. We shall study the 

bifurcation of (4.2.5) occurring at ( x,y,z) = o and p = 1. the 

jacobian derivative at o is the matrix. 

 

 

                                                                                       (4.2.6)               

 

 

When p = 1, this matrix has eigenvalues 0, – ζ -1 and -β with 

eigenvectors ( 1,1,0 ) , (ζ,- 1,0), (0,0,1). Using the eigenvectors 

as a basis for a new coordinate system, we set. 

 

 

      =                                      ,           =  

 

Under this transformation ( 4.2.5) becomes  

u =                x  +           y =             (y – x ) +                  [(x – y) –xz]  

 

   =        

   v =    1      x –    1       y =    ζ        (y-x) –    1     [x-y) –  [ x-y) – xz] 

         1 + ζ      1 + ζ           1 + ζ                1 + ζ              

         = - (1 + ζ  ) v +    1    ( u + ζ v ) w, 

-ζ          ζ       O 

p           -1       O 

O           O      -β 

 

 

x 
 

y 
 

z 

1 
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2σ 
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u
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β 
 

(4.2.10) 

σ 

1 +σ 
(4.2.11) 

~ ~ ~ 

. 

(4.2.9) 

~ 

u
2

 

β 
 

~ 

~ 

~ 

                                  1 + ζ 

       w = z = - β z + xy = -  βw + ( u + ζ v) ( u  - v),            (4.2.8) 

or  

          u 

          v   =          - ( 1 + ζ )                      +  

       w 

 

so that the linear part is now standard ( diagonal) form . In the         

(u, ν,w) coordinates, the center manifold is a curve tangent to 

the u-axis. Note that the projection of the system onto the u-axis, 

obtained by setting ν = w = 0 in the equation for u , yields u = 0 

the u axis is not invariant, however , because the equation for w 

includes the term u
2
. If we make a further monlinear coordinate 

change by setting w = w – u
2
 / β, however, we obtain. 

             
 
                                          

 w = w -       = - β    w -          + (σ-1 ) uv – σv
2
 +           u(u + σ v)w, 

 

or  

 w  = - βw  + (σ – 1) uv – σv
2
 + 2           u(u + σv)   w  +            . 

 

 In the ( u,v,w) coordinate system. We have 

  u = -           ( u + σ v)  w +     

 

Now projection of the equation onto the u-axis in these 

coordinates gives the equation u= (-σ / β ( 1 + σ )) u
3
. Note also that 

0 

0 

0 

0 

 

 

0 

0 

0 

β - 

U 

V 

w  

     -ζ   (u+ ζ v )w 

    1 + ζ 

     -ζ   (u+ ζ v )w 

      1 + ζ 

 ( u + ζ v) ( u  - v), 

 
 

. 
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~ 

~ 

no terms of the form u
2
 occur in the equations for v and w , and thus 

that the u-axis is invariant in our transformed equations" up to 

second order".  

Further efforts to find the center manifold can proceed by 

additional coordinate changes that serve to make the u-axis invariant 

for the flow.  

This can be done iteratively by changes in v and w which add 

to these coordinates mononomials in u, just as w was obtained from 

w. Additional such coordinate changes will not change the 

coefficient ( - ζ /β(1 + ζ) of u3 in the equation for u, but will affect 

higher degree terms of the from um, m ≥ 4. We shall see in 

subsequent sections that the equation u=( - ζ /β(1 + ζ) u3 along with 

the effect of varying p near 1 is sufficient to deduce the qualitative   

dynamics of the bifurcation in the Lorenz system (and the fluid 

system we started with). It is clearly important to include the 

calculation of the initial portion of the Taylor series of the center 

manifold in this analysis. Failure to do so gives a misleading picture 

of the dynamics at the point of bifurcation. 

In studying the Lorenz example we have really been trying to 

approximate the ( one- dimensional) equation governing the flow in 

the center manifold. We shall now develop a systematic method for 

performing such approximations. 

The center manifold theorem implies that the bifurcating 

system is locally topologically equivalent to  

x  = ƒ(x) 

y  = -y ;  (x , y , z)  W
c
 xW

s
 xW

u
 ,  

z = z 

˜ 
. 

˜ ˜ ˜ ˜ 

˜ ˜ 
. 
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at the bifurcation point. We now tackle the problem of 

computing the " reduced" vector field f. For simplicity, and because 

it is the most interesting case physically, we assume that the unstable 

manifold is empty and that the linear part of the bifurcating system is 

in block diagonal form: 

x = Bx + ƒ (x, y) , 

y = Cy + g (x, y)   ,  (x, y)  R
n
 xR

m
,                                                                                 

where B and C are n x n and m × m matrices whose 

eigenvalues have, respectively , zero real parts and negative real 

parts, and f and g vanish, along with their first partial derivatives, at 

the origin, 

Since the center manifold is tangent to E
c 
( the y = 0 space) we 

can represent it as s ( local) graph 

W
c
 = { (x,y) /y= h (x)};              h(0) = Dh(0) = 0,  (4.2..14) 

Where h: U     R
m
 is defined on some neighborhood U  R

n
 of 

the origin. Figure (5). We now consider the projection of the vector 

field on y = h (x) onto E
c
: 

 x  = Bx +       ƒ(x, h(x)).                  (4.2.15)                                           

Since h (x ) is tangent to y = O, the solutions of equation          

( 4.2.15) provide a good approximation of the flow of   x =   f  Wc. 

to W
c
. In fact we have. 

 

 

 

 

 

 

. 

. 

. 
(4.2.13) 

+ 

x  = ƒ (x) restricted 

to  
˜ ˜ ˜ 
. 
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Theorem 4.2.2 ( Henry [1981], Carr [1981]. If the origin x = 0 of 

(4.2.15) is locally asymptotically stable ( resp. unstable) then the 

origin of ( 4.2.13) is also locally asymptotically stable ( resp. 

unstable). 

This result also follows from the global linearization theory of Pugh 

and Shub [1970]. 

We now show how h(x) can be calculated, or at least 

approximated. Substituting y = h (x) in the second component of        

(4.2.13) and using the chain rule, we obtain. 

  y = Dh(x) x = Dh(x)[Bx + f (x,h(x))] = Ch(x) + g(x,h(x)), 

Or 

 N(h(x)) = Dh(x)[Bx + f(x,h(x))] = Ch(x) – g(x,h(x)) = 0, 

with boundary conditions 

h(0) = Dh(0) = 0. 

This ( partial) differential equation for h cannot, of course, be solved 

exactly in most cases ( to do so would imply that a solution of the 

original equation had been found), but its solution can be 

approximated arbitrarily closely as a Taylor series at x= 0: 

Figure (5) The center  manifold and the projected  vector field  
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Theorem 4.2.3 ( Henry [1981], Carr [1981]. If a function Ø (x), with   

Ø(0) = DØ(0) = 0,  can be found such that N(Ø(x)) = 0(|x|
p
) for some 

p > 1 as |x| → 0 then it follows that  

h(x) =  Ø(x) + O(| x|
p
)     as | x | → 0. 

 

 

4.3 Normal Forms 

        In this section we continue the development of technical tools 

which provide the basis for our study of the qualitative properties of 

flows near a bifurcation. We assume that the center manifold 

theorem has been applied to a system and henceforth we restrict our 

attention to the flow within the center manifold. That is, to the 

approximating equation (4.2.15). we shall try to find additional 

coordinate transformations which simplify the analytic expiration of 

the vector field on the center manifold. The resulting "simplified" 

vector fields are called normal forms. Analysis of the dynamics of 

the normal forms yields a qualitative picture of the flows of each 

bifurcation type. 

We now describe in more detail the problem of calculating the 

normal forms. We start with a system of differential equations. 

  x = ƒ(x),                                          (4.3.1)     

which has an equilibrium at 0. (In (4.3.1) we omit explicit reference 

to the parameter μ). We would like to find a coordinate change         

x = h (y) with h(0) =0 such that the system (4.3.1) becomes "as 

simple as  possible." In the y-coordinates, we have   

 Dh(y)y = ƒ(h(y))  
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Or  

 y = (Dh(y))
-1

 ƒ(h(y)).                            (4.3.2) 

          The best that one can hope for is that (4.3.2) will be linear. 

Formally (this means in terms of power series), one can try to 

iteratively find a sequence of coordinate transformations h1, h2, … 

which remove terms of increasing degree from the Taylor series of 

(4.3.2) at the origin. The normal form procedures systematize these 

calculations without, however, giving the strongest results in all 

cases. In general, "as simple as possible" means that all inessential 

terms have been removed (up to some degree) from the Taylor 

series. When the procedure is applied to a hyperbolic equilibrium, 

then one obtains the formal part of Hartman's linearization theorem, 

as we now explain. After this digression, we shall return to 

nonhyperbolic bifurcating equilibria. 

   Assume for the moment that Df(0) has distinct(but possibly 

complex) eigenvalues λ1……,λn  and that initial linear change of 

coordinates has diagonalized Df(0). Then (4.3.1) written in 

coordinates becomes 

                     x1 = λ1x1 + g1(x1, ..., xn) 

                     x2 = λ2x2 + g2(x1, ..., xn)      or     x = Ax+ g(x),       (4.3.3) 

 

                     xn = λnxn + gn(x1, ..., xn) 

where the functions gi vanish to second order at the origin. We 

would like to find a coordinate change h of the form identity plus 

higher order terms, which has the property that ( 4.3.2) has          

non- linear terms which vanish to higher order than those of g. If k is 



 - 127 - 

∂ yj 

λi Pi (y)  

∂ yi 

. 

. 

= 

1 n 

j 

the smallest degree of a nonvanishing derivative of some gi we try to 

find a transformation h of the form 

                     x = h (y) = y + P (y),                           ( 4.3.4) 

with P a polynomial of degree k, so that the lowest degree of the 

nonlinear terms in the transformed equation (4.3.3) is (k + 1). Now 

(4.3.3) takes the form 

                         y =  ( 1 + DP(y))
-1

 f (y + p(y)).              (4.3.5) 

We want to expand this expression, retaining only terms of degree k 

and lower. Denoting the terms of gi of degree k by g
k
i and P (y)    by 

( P1 (y), …, Pn(y)), we have 

      

 yi  = λi yi + λi Pi (y) + g
k
i (y) -  ∑                    ,, 

We have used in this formula the fact that (1 + DP)
-1

 = 1- DP, 

modulo terms of degree k and higher. (To compute (4.3.5) modulo 

terms of degree (k+1) we only need (1+DP)
-1

 modulo terms of 

degree k because ƒ has degree1.). Therefore, we want to find a P 

which satisfies the equation.  

       - ∑                   

                            
 

we observe that the operator which associates to P the left-hand side 

of (4.3.7) is linear in the coefficients of P. In addition  if Pi is the 

monomial y
a

1… y
an, then (∂Pi/∂yj)λjyj = ajλjPi and the left-hand side 

of (4.3.7) becomes (λ-∑jajλj)Pi and hence the monomials are 

eigenvectors for the operator with eigenvalues λi - ∑jajλj . We 

conclude that P can be found satisfying (4.3.7) provided that none of 

the sums λi -∑jajλj is zero when a1,…, an are nonnegative integers 

∂ Pi λj yj 
(4.3.6) 

(4.3.7) λi yi  
∂ Pi gik (y). ـــ 
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n 

j=1 

with ∑jaj = k. If there is no equation λi ـيـ ∑jajλj = 0 which is satisfied 

for nonnegative integers aj  with ∑jaj ≥ 2, then the equation can be 

linearized to any desired algebraic order[5]. 

        For bifurcation theory we are specifically interested in 

equilibria at which there are eigenvalues with zero real parts. At 

such equilibria, the linearization cannot be solved and there are 

(nonlinear)resonance terms in f  which cannot be removed by 

coordinate changes. The normal form theorem formulates 

systematically how well one can do, using the procedure analogous 

to that outlined above to solve the linearization problem for 

hyperbolic equilibria. The key observations which form the basis of 

the computations are  : (1) that the solvability depended only on the 

linear part of the vector field; and(2) that the problem can be reduced 

to a sequence of linear equation to be solved. The final result is a 

Taylor series for the vector field which contains only the essential 

resonant terms. 

If  L=Df(0) x denotes the linear part of (4.3.1) at x = 0, then L duces 

a map ad L on the linear space Hk of vector fields whose coefficients 

are homogeneous polynomials of degree k. The map ad L is defined 

by 

           ad  L(Y) = [ Y, L] = DLY – DYL,                            (4.3.8) 

where [.,.]denotes the Lie bracket operation (Abraham of  and 

Marsden [1978], Choquet-Bruhat et al [1977]). In component form, 

we have  

 

[Y,L]
i
  = Σ             Y

j
-          L

j
       .                                    (4.3.9) 

L
i

∂ 

yi∂ 

L
i

∂ 

y
i

∂ 
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The main result is  

Theorem4.3.1.Let x = f (x) be a C
r
 system of differential equations 

with f (0) = 0 and Df(0)x = L. choose a complement Gk for ad L (Hk) 

in Hk, so that Hk = ad L (Hk) + Gk . then there is an analytic change 

of coordinates in a neighborhood of the origin which transforms the 

system   x = f(x) to y = g(y)  = g(1)(y)+ g(2)(y) + ……..+  

g(r)(y)  +Rr with L = g(1)
(y)  and g(k)ε Gk for 2 ≤ k ≤ r and 

Rr = 0(| y |
r
).   

Proof. We give a constructive proof which can be used to 

implement the calculations of normal forms in examples. The 

procedure follows the pattern in our discussion of the linearization 

problem. We use induction and assume that x = f(x) has been 

transformed so that the terms of degree smaller than s lie in the 

complementary subspace Gi , 2 ≤ i < s. we then introduce a 

coordinate transformation of the form x = h(y) = y + P(y), where P is 

a homogeneous polynomial of degree s whose coefficients are to be 

determined. Substitution then gives the equation. 

(I + DP(y))y = f 
(1)

(y)+ f 
(2)

(y)+
…

+f 
(s)

(y)+Df (0)P(y)+0(| y |
s
).                                        

                                                                                                  (4.3.10)  

The terms of degree smaller than s are unchanged by this 

transformation, while the new terms of degree s are 

 f 
(s)

(y)+ DLP(y)L - DP(y)L = f 
(s)

(y) + ad  L(P)(y),                (4.311) 

where L(y) = f 
(1)

(y). Clearly a suitable choice of P will make  
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. 

µ 

. 

. 

f 
s
(y) +  ad L(P)(y) 

lie in Gs as desired [5]. 

4.4 Codimension One Bifurcations  Of  Equilibria 

In this section we describe the simplest bifurcations equailibria. 

These are represented by the following four differential equations 

which depend on a single parameter µ: 

                   x =  µ - x
2
      (saddle-node),    (4.4.1) 

                    x =  µx – x
2                

    (transcritical),      (4.4.2) 

x =   µx - x
3
  (pitchfork),          (4.4.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

and  

x =  - y + x(µ - (x
2
 +y

2
))     

                                y = x + y(µ - (x
2
 + y

2
))      

 
The bifurcation diagrams for these four equations are depicted 

in Figures (6)- (9). Each of the equations (4.4.1) – (4.4.4) arises 

naturally in a suitable context as determining the local qualitative 

behavior of the generic bifurcation of an equilibrium. Our purpose 

here is to describe in detail how, and under what conditions, one can 

Figure (6) saddle-node bifurcation. 

(Hopf). (4.4.4) 
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x 

µ 

µ 

x 

. 

reduce the study of the general equation (4.1.1) to one of these four 

specific examples. 

The Saddle-Node 

Consider a system of equations. 

                          

                             x `= fµ(x),                                          (4.4.5) 

With x ε R
n
,µ ε R, and fµ smooth. Assume that at µ = µ0, x = x0, 

(4.4.5) has an equilibrium at which there is a zero eigenvalue (for the 

linearization). Usually, this zero eigenvalue will be simple, and the 

center manifold theorem allows us to reduce the study of this kind of 

bifurcation problem to one in which x is one dimensional. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

x 

µ 

Figure (7). Transactional bifurcation. 

Figure (8)Pitchfork bifurcation(supercritical). 
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we can find a two- dimensional center manifold ∑    R
n
 × R passing 

through (x0,µ0) such that. 

1- The tangent space of ∑ at (x0,µ0)is spanned by an eigenvector 

of 0 for Dfµo (x0) and a vector parallel to the µ- axis. 

2- For any finite r,∑ is C
r
 if restricted to a small enough 

neighborhood of(x0,µ0). 

3- The vector field of (4.4.5) is tangent to∑. 

4- There is a neighborhood U of (x0,µ0)in Rn
 × R such that all 

trajectories contained entirely in U for all time lie in∑. 

(Note: The center manifold theorem allows one to formulate stronger 

properties than (4) which describe the qualitative structure of 

trajectories which remain close to (x0,µ0) in forward time or in 

backwards time , cf. Carr [1981]. 

Restricting (4.4.5) to Σ we obtain a one-parameter family of 

equations on the one-dimensional curves ∑µ in ∑ obtained by fixing 

µ 5 This one-parameter family is our reduction of the bifurcation 

problem. 

Let us now formulate transversality conditions for a system (4.4.5) 

with n = 1 , which yield the saddle-node bifurcation. We have      

(dfµ0 / dx)(x0) = 0,  but we take (∂fµ0/∂µ)(x0) ≠ 0 as a transversaliy 

condition. The implicit function theorem then implies that the 

equilibrai of (4.4.5) form a curve which will be tangent to the line 

µ=µ0. An additional transversality condition (d
2
fµo/dx

2
)(xo)≠0  

implies that the curve of equilibria has a quadratic tangency with 

µ=µ0 and locally lies to one side of this line. 
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This information is already sufficient to imply that the local 

phase portraits of this system are topologically equivalent to those of 

a family x = ±(µ–µ0)±(x–x0)
2
.However, we can also formulate these 

transversality conditions for an n-dimensional system without 

recourse to center manifold reduction. The following theorem states 

the necessary  conditions [5]. 

Theorem4.4.1.Let x = fµ(x)be a system of differential equations in 

R
n
 depending on the single parameter µ. When µ=µ0 , assume that 

there is an equilibrium p for which the following hypotheses are 

satisfied: 

(SNI) has Dxfµo(p) has a simple eigenvalue 0 with right eigenvector v 

and left w.Dxfµ0 (p) has k eigenvalues with negative real parts and ( n 

–k – 1 ) eigenvalues with positive ral parts ( coumting multiplicity) 

(SN2) w((∂ƒµ ⁄ ∂µ)(p,µ0))≠0. 

(SN3) ẅ(D
2
ƒµo(Р)υ,υ)≠0.  

Then there is a smooth curve of equilibria R
n
 × R passing 

through (p,µ0), tangent to the hyperplane R
n 
× {µ0}.Depending on 

the signs of expressions in ( SN2) and (SN3) there are no equilibria 

near (p,µ0)when µ<µ0 (µ >µ0) and two equilibria near (p,µ0) for each 

parameter value µ>µ0 (µ<µ0). The two equilibria for x = fµ(x) near 

Figure (9).  Hopf bifurcation (Supercritical). 

. 

. 
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(p,µ0)  are hyperbolic and have stable manifolds of dimensions k and  

k + 1, respectively. The set of equations x = fµ(x) which satisfy          

( SN1) – ( SN3) is open and dense in the space of C
∞
 one- parameter 

families of vector fields with an equilibrium at (p,µ0) with a zero 

eigenvalue.  

This formal ( and formidable ) therorem merely expresses the 

fact that the " generic" saddle node bifurcation is qualitatively like 

the family of equations x = µ - x
2 

in the direction of the zero 

eigenvector, with hyperbolic behavior in the complementary 

directions. Hypotheses (SN2) and (SN3) are the transversality 

conditions which control the non degeneracy of the behavior with 

respect to the parameter and the dominant effect of the quadratic 

nonlinear term [5]. 

The result obtained from theorem 4.4.1 are limited in two 

different ways. On the one hand, it is possible that more quantitative 

information about the flows near bifurcation can be extracted. For 

example, one can use the system x =µ−x
2
 to give estimates of how 

rapid the convergence to the various equilibria are. Higher- order 

terms in the Taylor expansion of an equation can be used to refine 

these estimates. This is an aspect of the theory of differential 

equations which we do not pursue further in this chapter because our 

attention is to focus on geometric issues rather than analytic ones. In 

this regard, we should be reminded that we often do not strive to 

state the strongest or most general theorem for a given situation but 

rather aim to illustrate the phenomena and methods of analysis in the 

simplest ways. 

. 
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The second limitation of Theorem 4.4.1 is that there may be 

global changes in a phase portrait associated with a saddle- node 

bifurcation. Consider, for example, the flows depicted in Figure 

(10), which we have already met in the Van der Pol                   

example 5 .Here a saddle- node in a two- dimensional system occurs, 

with the coalescense of a sink and a saddle. After the bifurcation , 

there is a new periodic orbit which has appeared because the 

unstable separatrix at the saddle- node lies in the two-dimensional 

stable manifold of the bifurcating equilibrium. This is an example of 

a global bifurcation phenomenon that cannot be reduced to the study 

of a neighborhood of an equilibrium or a fixed point in a return map 

[5]. 

Transcritical and Pitchfork Bifurcations: 

The importance of the saddle- node bifurcation is that all 

bifurcations of one- parameter families at an equilibrium with a zero 

eigenvalue can be perturbed to saddle-node bifurcations. Thus one 

expects that the zero eigenvalue bifurcations encountered in 

applications will be saddle- nodes.If they are not, then there is 

probably something special about the formulation of the problem 

which restricts the context so as to prevent the saddle-node from 

occurring. The transcritical bifurcation is one example which 

illustrates how the setting of the problem can rule out the saddle-

node bifurcation.  

In classical bifurcation theory, it is often assumed that there is 

a trivial solution from which bifurcation is to occur. Thus, the 

systems (4.4.5) are assumed to satisfy fµ(0) = 0 for all µ, so that x = 

0 is an equilibrium for all parameter values. Since the saddle-node 
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families contain parameter values for which there are no equilibria 

near the point of bifurcation, this situation is qualitatively different. 

To formulate the appropriate transversality conditions we look at the 

one- parameter families which satisfy the constraint that fµ(0) = 0 for 

all µ. This prevents hypothesis (SN2) of Theorem 4.4.1 from being 

satisfied. If we replace this condition by the requirement that 

w((∂2
f∂µ∂x)(υ))≠0 at (0,µ0) then the phase portraits of the family 

near the bifurcation will be topologically equivalent to those of 

Figure(7) and we have a transcritical bifurcation or exchange of 

stability[5]. 

A second setting in which the saddle-onde does not occur 

involves systems which have a symmtry. Many physical problems 

are formulated so that equations defining the system do have 

symmetries of some kind. For example, the Duffing equation is 

invariant under the transformation (x ,y) → ( - x, - y) and the Lorenz 

equiation is symmetric under the transformation (x ,y ,z) → (-x, -y, 

z).In one dimension, a differential equation(4.4.5) is symmetric or 

equivariant with respect to the symmetry x → −x if ƒµ(−x)= −ƒµ(x) . 

Thus the equivariant vector fields are ones for which ƒµ is an odd 

function of x. In particular, all such equations have equilibrium at 0. 

The transcritical bifurcation cannot occur in these systems, however, 

Figure (10) A saddle node occurring  on a closed  curve  leads to  

global bifurcation. 
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because an odd function ƒµ cannot satisfy the condition ∂
2
ƒµ/∂x

2
≠0 

required by the transcritical bifurcation (cf.SN3).if this condition is 

replaced by the transversality hypothesis ∂
3
ƒµ/∂x

3
≠0, then one 

obtains the pitchfork bifurcation. At the point of bifurcation, the 

stability of the trivial equilibrium changes, and a new pair of 

equilibria ( related by the symmetry) appear to one side of the point 

of bifurcation in parameter space, as in Figure(8) we leave to the 

reader the formulation of results analogous to The theorem 4.4.1 for 

the transcritical and pitchfork bifuracation (cf.Sotomayor[1973]) . 

We note that the direction of the bifurcation and the stability of the 

branches in  these example is determined by the sign of∂
2
ƒµ/∂x

2
 

∂
3
ƒµ/∂x

3
. In the last case, if ∂

3
ƒµ/∂x

3
 is negative, then the branches 

occur above the bifurcation value and we have a supercritical 

pitchfork bifurcation, wherease we have a subcritical bifurcation if it 

is positive. 

Hopf Bifurcations: 

Consider now a system(4.4.5) with a parameter value µ0 and 

equilibrium p(µ0) at which Dfµo has a simple pair of pure imaginary 

eigenvalues ± ίω٫ ω > 0, and no other eigenvaluses with zero real 

part. The implicit function theorem guarantees (since Dfµo is 

invertible) that for each µ near µ0 there will be an equilibrium p(µ) 

near p(µ0) which varies smoothly with µ. Nonetheless, the 

dimensions of stable and unstable manifolds of p(µ)  do change if 

the eigenvalues of Df(p(µ)) cross he imaginary axis at µ0. This 

qualitative change in the local flow near p(µ) must be marked by 



 - 138 - 

. 

. 

. 

. 

. 

. 

. . 

(4.4.8) 
 

some other local changes in the phase portraits not involving fixed 

points. 

A clue to what happens in the generic bifurcation problem 

involving an equilibrium with pure imaginary eigenvalues can be 

gained from examining linear systems in which there is a change of 

this type. For example, consider the system 

                                           x   =  µ x – ωy٫                                 

y   =  ω x + µy٫ 

whose solutions have the form  

                      x(t)                   cos ωt       –  sin ωt         x0            

                      y(t)                   sin ωt           cos ωt         y0 

When µ<0٫ , solutions spiral into the origin, and when µ > 0٫ 

solutions spiral away from the origin. When µ = 0٫ all solutions are 

periodic. Even in a one- parameter family of equations, it is highly 

special to find a parameter value at which there is a whole family of 

periodic orbits, but there is still a surface of periodic orbits which 

appears in the general problem [5]. 

The normal form theorem gives us the required information 

about how the generic problem differs from the system (4.4.6) by 

smooth changes of  coordinates, the Taylor series of degree 3 for the 

general problem can be brought to the following form (cf. Equation 

(4.3.15)) 

                x  =  (dµ+a(x
2
+y

2
))x–(ω+cµ+b(x

2
+y

2
))y٫                 

                y  =  (ω+cµ+b(x
2
+y

2
))x+(dµ+a(x

2
+y

2
))y٫ 

which is expressed in polar coordinates as 

                r  =  (dµ+ar
2
)r٫                                                         (4.4.9) 

               θ  =  (ω+cµ+br
2
). 

= e
µt

 
     

(4.4.6) 

(4.4.7) 
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(Re λ(µ))׀µ=µo = d ≠0, 

. 

. 

Since the  r equation in (4.4.9) separates from θ, we see that there are 

periodic orbits of (4.4.8) which are circles r = const., obtained from 

the nonzero solutions of  r = 0 in ( 4.4.9) If a≠0 and d ≠ 0 these 

solutions lie along the parabola µ = - ar
2
/d. This implies that the 

surface of periodic orbits has a quadratic tangency with its tangent 

plane µ = 0 in R
2 
×

 
R. the content of the Hopf bifurcation theorem is 

that the qualitative properties of (4.4.8) near the origin remain 

unchanged if higher- order terms are added to the system: 

Theorem 4.4.2 (Hopf [1942]). Suppose that the system x = fµ(x), 

xεR
n
,µεR has an equilibrium (xo,µo)at which the following properties 

are satisfied : 

(H1) Dx fµo (xo) has a simple pair of pure imaginary eigevalues and 

no other eigenvalues with zero real parts. 

Then (H1) implies that there is a smooth curve of equilibria(x(µ),µ) 

with x(µ0) = x0. The eigenvalues λ(µ), λ(µ) of Dx fµo(x(µ)) which are 

imaginary at µ = µ0 vary smoothly with µ. If, moreover. 

 

         (H2)                        

 

Then there is a unique three- dimensional center manifold passing 

through (x0,µ0) in Rn
×R and a smooth system of coordinates 

preserving the planes µ = const) for which the Taylor expansion of 

degree 3 on the center manifold is given by (4.4.8). If a ≠0 , there is 

a surface of periodic solutions in the center manifold which has 

quadratic tangency with the eigenspace of λ(µo),λ(µo) agreeing to 

d 

dµ 
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second order with the paraboloid µ= - (a⁄d)(x
2
+y

2
). If a < 0, then 

these periodic solutions are stable limit cycles, while if a > 0 ,  the 

periodic solutions are repelling. 

This theorem can be proved by a direct application of the 

center manifold and normal form theorems given above (cf. Marsden 

and McCracken  [1976]). 
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. , (4.4.10) 

(4.4.11) 

 

 

For large systems of equations, computation of the nomral 

form(4.4.8) and the cubic coefficient a, which determines the 

stability, can be a substantial undertaking . 

In a two- dimensional system of the form  

 

 x           0         - ω         x               f(x,y)  

y           ω           0          y              g(x,y) 

With f(0) = g(0)= 0 and Df(0) = Dg(0) = 0, the normal form 

calculation which we sketch in the appendix to this section, yields 

     a   =           [fxxx + fxyy + gxxy + gyyy ] +           [fxy (fxx + fyy) 

              - gxy(gxx + gyy ) – (fxxgxx + fyy gyy], 

where fxy denotes (∂
2
ƒ⁄∂x∂y)(0٫0), etc. In applying this formula to 

systems of dimension greater than two, however, the reader should 

recall that the quadratic terms which play a role in the center 

manifold calculations can affect the value of a. One cannot find a by 

simply projecting the system of equations onto the eigenspace of 

±iω, but must approximate the center manifold at least to 

quadratic terms .  

4.5.Codimension One Bifurcations of Maps and 

Periodic Orbits 

In this section we consider the simplest bifurcations for periodic 

orbits. The strategy that we adopt involves computing Poincare' 

1 

16 
1 

16ω 
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return maps and then trying to repeat the results of Section 4.4 

for these discrete dynamical systems. There are some additional 

complications that introduce new subtleties to some of these 

problems. In practice, computations of the bifurcatins of 

periodic orbits from a defining system of equations are 

substantially more difficult than those for equilipria because one  

must first integrate the equations near the periodic orbit to find 

the poincare' return map before further analysis can proceed. 

Thuse, the result obtained here have been most frequently 

applied: 

(1) in comparison with numerical calculations; 

(2) directly to discrete dynamical systems defined by a mapping; 

or 

(3) in perturbations situations close to ones in which a system 

can be explicitly integrated. 

In view of these computational difficulties, in this section we 

shall focus upon the geometric aspects of these bifurcations. 

There are three ways in which a fixed point p of a discrete 

mapping f :Rn
 → Rn may be fail to be hyperbolic: D f (p) may 

have an eigenvalue +1, an eigenvalue – 1, or a pair of complex 

eigenvalue λ, λ with ׀ λ ׀   = 1.( If Df ( p) has an eigenvalue µ at 

the fixed point p, we say p has eigenvalue  µ.)  

The bifurcation theory for fixed points with eigenvalue 1 is 

completely analogous to the bifurcation theory for equilibria 

with eigenvalue 0. The generic one-parameter family has a   
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≈ 

tow-dimensional center manifold (including the parameter 

direction) on which it is topologically aquivalent to the      

saddle-node family defined by the map. 

                         fµ (x) = x + µ - x
2   

                           (4.5.1) 

The same considerations of constraint and symmetry as 

discussed in previously alter the generic picture, giving either 

transcritical or pitchfork bifurcations. 

Bifurcations with eigenvalue – 1 do not have an analogue 

for equilibria, while the theory for complex eigenvalues is more 

subtle than that of the Hopf bifurcation for flows. 

Eigenvalues with – 1 are associated with flip bifurcations, also 

referred to as period doubling  or subharmonic bifurcations. 

Using a center manifold reduction, we restrict our attention to 

one-dimensional mappings fμ and assume that μ is a one-

dimensional parameter. If 0 is a fixed point of f μo : R → R with 

eigenvalue -1, then the Taylor expansion of f μo to degree 3 is  

f μo (x) = -x + a2 x
2
 + a3 x

3
 + R3 (x), with R3(x)=0 (│x

3
│).(4.5.2) 

The implicit function theorem guarantees that there will be a 

smooth curve (x(μ),μ) of fixed points in the plane passing 

through (0,μo), so, apart from a change of stability, we must look 

for changes in the dynamical behavior elsewhere. Composing 

ƒμo with itself, we find 

f 
2
μo(x) = -(-x + a2 x

2
 + a3 x

3
) + a2 (- x + a2 x

2
)
2 
+a3 (-x)

3
 +R3  

   

               =  x - (2a2
2
 + 2a3) x

3
 + R3.                 (3.5.3) 
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≠ 0 at (xo,μo); 

2
f∂ 

x
2

∂ 

3
f∂ 

x
3

∂ 

Since f
 2

μo has eigenvalue + 1, its fixed points need not vary 

smoothly  and we expect that there may be fixed points of f 
2

μ 

near (0,μo) which are not fixed points of fμ. Such points are 

evidently periodic orbits of period 2.  

Examining the Taylor series of f
2
μo(x), we see that the 

coefficient of the quadratic term is zero, and thus the bifurcation 

behavior has similarities with the pitchfork, the primary 

difference being that the new orbits which appear are not fixed 

points but have period 2. The ideas outlined above lead to the 

following result. 

Theorem4.5.1. Let fμ : R → R be a one-parameter family of 

mappings such that fμo has a fixed point xo with eigenvalue –1. 

Assume 

 

             ∂ f  ∂
2
f           ∂

2
 f            ∂ f  ∂

2
 f     ∂f          ∂

2
f   

 (F1)                    +2               =                 -    - 1  

            ∂μ  ∂x
2
       ∂ x ∂μ          ∂μ  ∂x

2
    ∂x     ∂

2
 x∂μ  

 

                                                              
2  

 (F2)                     a = ½               + ⅓               ≠  0 at (x0,μ0).    

 

Then there is a smooth curve of fixed point of fμ passing through 

(xo,μo) the stability of which change at (x0,μ0). There is also a 

mooth curve γ passing through (xo,μo) so that γ – {(xo,μo)}is a 

union of hyperbolic period 2 orbits. The curve γ has quadratic 

tangency with the line R × {μo}at (xo,μo). 
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f
2
μ (x) 

x 

μ  > 0 

μ  = 0 

μ  < 0 

μ  < 0 

μ  = 0 

μ  > 0 

x 

            Here the quantity (F1) is the μ-derivative of f along the 

curve of the fixed points. It plays the role of the nondegeneracy 

conditions SN2 and H2 in Theorems 4.4.1 and 4.4.2. In (F2) the 

sign of a determines the stability and direction of bifurcation of 

the orbit of period 2. If a is positive, the orbits are stable; if  a is 

negative they are unstable. We note that cubic terms (∂
3
f/∂x

3
) 

are necessary for the determination of a. 

         Figure (11) shows the bifurcation diagram for the family. 

f μ(x) = - ( 1 + μ ) x + x
3
.                              (4.5.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fμ (x) 

a)) 
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x 

Orbit of periode 2 

b)) 

c)) 

ƒ∂ 

∂ 

 

 

 

 

 

 

 

 μ 

 

 

 

Figure (11). The flip bifurcation for equation (4.5.4). (a) Graphs of  f 

μ (x); (b) graphs of f μ
2
(x); the bifurcation digram. 

 

As an example we consider the one-dimensional quadratic map  

                fμ : x         μ – x
2
                                  (4.5.5) 

 The upper branch of equilibria is given (for μ > - ¼ ) by        

 

                             x = -½ + √ ¼ + μ       .                      (4.5.6). 

 

Linearizing along that branch, we find  

                              

                               =  - 2x = 1 - √1 + 4 μ                 (4.5.7) 

                                x 

 

and evidently ∂f / ∂x = - 1 at μ = ¾ , and hence ( x0,μ0) = (½,¾) 

is a candidate for a flip bifurcation point. In this example it is 
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 2
f∂ 

x
2

∂ 

 3
f∂ 

x
3

∂ 

easy to check that conditions F1 and F2 of Theorem 4.5.1 are 

met and hence that a flip occurs. 

 The stability of the period two orbits in this example is 

determined by noting that the second and third derivatives of f  

at (x0,μ0) are, respectively 

 

                              (x0,μ0) = - 2  and           ≡ 0,                 (4.5.8) 

 

and hence that the quantity a of (F2) is positive: the flip is 

supercritical. 

We make one final remark about the relationship of return 

map P with eigen value -1 at a fixed point p, to continuous flow 

around the corresponding periodic orbit. The trajectories of p 

alternate from one side of p to the other along the direction of 

the eigenvector to – 1 (cf. section 3.4, table 3.4.1). This means 

that the tow-dimensional center manifold for the periodic orbit 

is twisted around the periodic orbit like Mobius band around its 

center line. The map P which glues the two ends of a strip 

together reverses orientation around p.. One cannot embed a 

Mobius strip in an orientable tow-dimensional manifold (such as 

the plane), so that the flip bifurcation cannot occur in such 

systems 5 . As we shall see, however, flip bifurcations can and 

do occur in flows of dimension ≥ 3. 

We now turn to bifurcations of a periodic orbit at which 

there are complex eigenvalues  λ,λ with |λ|  = 1. Analogy with 



 - 151 - 

the theory of Hop bifurcation suggests that orbits near the 

bifurcation will be present which encircle the fixed point. An 

individual orbit of a discrete mapping cannot fill an entire circle 

and the bifurcation structure is more complicated than that 

which can be deduced from a search for new periodic orbits. 

Indeed, there are flows near the bifurcation which have no new 

periodic orbits near the bifurcating one but have quasiperiodic 

orbits instead. A more subtle analysis is required to capture 

these. Before one reaches this portion of the analysis, however, 

there is another difficulty to contend with. 

Let us assume that we have a transformation f : R2
→R2

 so 

that the origin is a fixed point and Df(0) is the matrix which is 

rotation by the angle 2πθ: 

                                cos 2πθ – sin  2πθ                     (4.5.9) 

++sin 2πθ    cos 2πθ 

We want to perform normal form calculations which simplify 

the higher-order terms in the Taylor series of f by using 

nonlinear  coordinate transformation. As in the case of flows, 

the calculations are simplified if they are complexifed (cf. the 

Appendix to section 4.4). If we regard (x,y) as each being 

complex, then the egenvectors of Df (0)are 

 

    1                1 

           and              with 

                              - i                  i 
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1      k-1 

1-k-1 1-k-1 

Z
1
    Z

k-1
 Z

1
    Z

k-1
 

Z
1
    Z

k-1
 Z

1
    Z

k-1
 

  

eigenvalues e
2πiӨ

 and e
-2πiӨ

 and coordinates z and z, respectively 

Suppose we now want to alter the Taylor expansion at degee k 

by a real coordinate transformation of the form. 

 h (z,z) = id + terms of degree k. 

Since the z coordinate of the image of h is the complex 

conjugate of the z coordinate of the image of h, it suffices to 

compute the z coordinate of the image of the conjugated  

 

 

                      

ad  Df                          =  (e 2πi (21 – k)Ө - e 2πiӨ)                         ,  

                        0                                                     0 

                                                                                          ( 4.5.14) 

 

                         0                                                       0      

ad  Df                           =  (e 2πi (21 – k)Ө - e 
-2πiӨ)                         ,  

         

    

The zero eigenvalues of Ad Df  occur when (2l – k ) Ө ≡ ± Ө 

(mod1). If Ө is irrational, then this can happen only when k is 

odd and l = ( k ± 1) /2. the zero eigenvectors for these values  

                                      z                             0  

have the form (zz)
1    

           and  (z,z)
1
                .   

                                      0                              z 

Expressed in real terms these represent mappings of the form          

(x
2
 + y

2
)

1 

                                                                                a        - b 
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1 

0 

0 

1 

1 

0 

0 

1 
This 

g( x,y) where g is a linear  mapping with matrix                      

                                                                                b         a 

Ө is irrational, therefore, the normal forms of f  are analogues of 

the normal forms computed for the Hopf bifurcation for flows. 

However, if Ө is rational, then there are additional resonant 

terms witch come from other solutions of the equation (21 – k)Ө 

 

 ≡ ± Ө( mod 1). The denominator of Ө determines the lowest 

degree at witch these terms may appear. 

 We have already met the cases Ө = 0 ( saddle-node) and 

Ө= ½ (flip). 

 In addition, when Ө = ±⅓ or Ө = ±¼ , then there are 

resonant terms of degree 2, or 3, respectively in normal forms.  

 

When Ө = 0 ±⅓ these have the complex form z
2 
             and  z

2          

 

while if Ө = ± ¼ these have the form z
3  

          and  z
3
              

means that the bifurcation structures associated with fixed points 

that are third and fourth root of unity are special. Arnold [1977] 

and Takens [1974b] present analyses of these cases. If one 

assumes that λ is not a third or fourth root of unity, then it is 

possible to proceed with a general analyses of Hopf bifurcation 

for periodic orbits (secondary Hopf bifuceation), and we have: 

theorem 4.5.2. Let fμ : R
2
         R

2
 be  a  one-parameter family of 

mapping which has  a  smooth family of fixed points x(μ) at 

When 
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d 

dμ 

which the eigenvalues are complex conjugates λ (μ), λ(μ). 

Assume  

(SH1)               |λ(μ0)| = 1  but λ
j 
(μ0) ≠ 1   for  j  = 1, 2, 3, 4. 

 

(SH2)                          ( |λ(μ0)|)  = d  ≠ 0.   

Then there is   a  smooth change of coordinates h so that the 

expression of hfμ h
-1 in polar coordinate has the form  

hfμh
-1(r,Ө)=(r(1+d(μ-μ0)+ar

2
),Ө+c+br

2
)+higher-order terms.    

                (4.5.15) 

(Note:λ complex and (SH2) imply |arg(λ)| = c  and d  are 

nonzero.) If, in addition 

(SH3)                             a ≠ 0 

Then there is a two-dimensional surface ∑ (not necessarily 

infinitely differ-entiable) in R
2
 × R

2
 having quadratic tangency 

with the plane R
2
 × {μ0}. 

Which is invariant for f .I f ∑ ∩ ( R
2
 × { µ } ) is larger than apoint, 

then it is a simple closed curve. 

As in the case of flows, the signs of the coefficients a and d 

determine the direction and stability of the bifurcating periodic 

orbits, c and b give asymptotic information on rotation numbers, 

as outlined below. 

Marsden and McCracken [1976] contains Lanford's exposition 

of Ruelle's proof of this theorem using the technique of graph 

transforms. The theorem states that (outside the strong 

resonance cases λ
3
 = 1 and λ

4
 = 1), something like the limit 
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(4.5.16) 

cycles of the Hopf theorem appear in the phase portrait of fµ. 

these are simple closed curves which bound the basin of 

attraction or repulsion of  a fixed point. Theorem 4.5.2 dose not 

however address the question of describing the dynamics within 

∑. In all of it's details, this is a difficult problem which involves 

the introduction of rotation numbers and consideration of subtle 

small divisor problem. 5 . Here we comment only that if b ≠0 in 

(4.5.15) then it can be proved that there will be a complicated 

pattern of periodic and quasiperidic dynamical behavior on ∑.To 

study this one must examine the global bifurcations of 

diffeomorphisms whose state space is the circle.  

A stability formula, giving an expression for the coefficient a in 

the normal form (4.5.15), can be derived in much the same way 

as for flows. For details see looss and Joseph [1981] or Wan 

[1978]. Assuming that the bifurcating system (restricted to the 

center manifold) is in the form 

 

 

x                cos(c)    - sin (c)         x            f  (x,y) 

                                            + 

             y                sin(c)       cos(c)         y              g (x,y) 

 

with eigenvalues λ,λ = e 
±ic

, on obtains 

 

                  (1 – 2λ) λ
2
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 a = - Re                     ξ11ξ20  -½ ׀ξ11׀
2
׀ξ02׀ – 

2
 + Re (λξ21), 

                      1 – λ 

where  

ξ20 = ⅛[(fxx – fyy + 2gxy) + i (gxx – gyy – 2fxy)], 

ξ11 = ¼[(fxx +fyy ) + i (gxx +gyy)], 

ξ02 = ⅛[(fxx – fyy – 2gxy) + i(gxx – gyy+2fxy)],  

 

and 

ξ21 =   1     [(fxxx + fxyy +gxxy + gyyy) + i(gxxx + gxyy – fxxy – fyyy)]. 

         16         (5.4.17) 

                                                

We end, as usual with an example. Consider the delayed logistic 

equation (Maynard-smith [1971], Pounder and Rogers [1980], 

Aronson et al.[1980,1982]): 

            Fμ:(x,y) → (y,µ)( 1 – x)).                        (4.5.18) 

This map has fixed points at 

 (x,y) = (0,0) and (x,y)= ((µ-1)/µ,( µ-1)/ µ. 

We can check that, for µ > 1, (0,0) is a saddle point. the matrix 

of the map linearized and the other non zero-fixed point is 

 

  

             µ - 1    µ - 1                  o         1 

   DF ,    =                          , (4.5.19) 

                                   µ         µ                    1 - µ     1 

 

wihich has eigenvalues  

                             λ1,2 = ½( 1+     5-4µ).            (4.4.20) 
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For µ > 5/4, these eigenvalues are complex conjugate and may 

be written  

             λ,λ = (µ - 1) e 
+ic

, where tan c =   4µ -5 . (4.5.21)  

 

It is now easy to check that hypotheses (SH1) and (SH2) of 

theorem 4.5.2 hold, since, at µ = 2, λ, λ = e 
+ iπ/3

 are sixth roots 

of unity, while  

                                    d 

    λ(μ)  μ=2 =1. 

                                   dμ 

To compute  a  from Equation (4.5.17), and hence check (SH3), 

we set  μ = 2 in (4.5.18) and apply the changes of coordinates  

(x , y) = (x - ½,y - ½), 

and  

               µ           -1/ 3    2/  3    x        x       0       1    u   (4.5.22) 

                υ               1        0       y   ;    y     3/2    ½     υ 

which translate the bifurcating equilibrium to the origin, and 

bring the linear part into normal form. Under these 

transformations (4.5.18) becomes 

 

            u            ½   -   √3/2      u           2uυ  + 2υ
2
    (4.5.23) 

             

            υ           √3/2      ½        υ                   0 

 

with eigenvalues λ,λ = ½ ± i(√3/2).the nonlinear terms are 

quadratic and we have the following  

                       fuu = 0, fuυ =  - 2,    fυυ = -4,         (4.5.24) 

 guu = 0,     guυ = 0,    gυυ = 0. 
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3 – 7 √ 

4 

We therefore obtain  

       ξ 20 = ⅛ [ 4 + 4i] = ½ + ½, 

                          ξ 11 = ¼[ -4 + 0i] = -1,             (4.5.25) 

                                  ξ 02 = ⅛ [ 4 – 4i]= ½ - ½, 

                                  ξ 21 = 0, 

 

 

and substitution into the formula for a yields  

   

                               a =              <0                                 (4.5.26)  

 

Since (d/dμ)(|λ(μ)|) μ=2 = d= 1 > 0, we deduce form (15) that the 

bifurcation is supercritical and hence that an attacting invariant 

closed curve exists, surrounding (x,y) = ( ½,½) for μ > 2 and 

 | μ - 2 | small.  

  4.6 A Nonlinear two-species oscillatory system 

bifurction and stability analysis 

In this section dealing with the nonlinear bifurcation a 

nanlysis of two-species oscillatory system consists of three 

parts. The first part deals with Hopf-bifurcation and limit cycle 

analysis of the homogeneous system. The second consists of 

trav-elling wave train solution and its linear stability analysis of 

the system in presence of diffusion. The last deals with an 

oscillatory chemical system as an illustrative example. 
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Introduction: periodicity is an inherent phenomenon in living 

systems, from the cell cycle, which governs the rate and timing 

of mitosis(cell division), to the diurnal cycle that result in sleep-

wake, to the ebb and flow of populations in their natural 

environment, life proceeds in a rhythmic and periodic style. 

Within the nature, several dynamical systems exhibit a large 

variely of oscillations. The spring-mass system, electrical 

circuits. Lotka-Volterra predation model system, and so forth , 

exhibit several types of periodic behaviour. There are some 

stable periodic behaviours which are not easily disrupted by a 

perturbation, deterministic or random. These types of situation 

lead us to believe that pattern is a ubiquitous part of the process 

of growth of biochemical and metabolic control systems and of 

ecological systems. 

 Reaction-diffusion processes play a significant role in the 

study of pattern formation in different biological and ecological 

system 6 .A large class of nonlinear parabolic partial differential 

equations are referred to as reaction-diffusion equations 6  . The 

systems governed by this type of equations are known as 

reaction-diffusion system. For example, if ui(x,t),i = 1,2, …, m 

represents the densities or concentration of  several interacting 

species or chemicals asch of which diffusing with diffusing with 

their own diffusion coefficients Di and interacting according to 

the vector source term f, then the system is governed by  6 , 

  u 
=  f + D  

2
u,  (4.6.1 

) 
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  t  

 Where D is a simple diagonal matrix of order m for the 

case of no cross diffusion. Equation (4.6.1) is referred to as a 

reaction–diffusion or an interacting population diffusion system 

6 . It is believed that rotating and spiral waves are possible 

solutions of reaction-diffusion equations in appropriate circum-

stances. Rotating spiral waves have been found by Winfree 6 for 

the Belousov-zhabotinskii reaction. Kuramoto and Yamada 6 

considered a two-species reaction- diffusion system exhibiting 

limit cycle behaviour. Cohen el al. 6 were the first to 

demonstrate that rotating spiral wave can be maintained by a 

reaction-diffusion mechanism alone. They found solutions for 

the  - ω system see   6  

  u         

  t 

   

  t 

 Where , ω are given functions of R = (u
2
 + 

2
)
1/2

. 

Stability of traveling waves can often quite difficult to 

demonstrate analytically. However, some stability results can be 

obtained, without long and complicated analysis , in the case of 

the wave train solutions of the – ω system 6 . Feroe 6      

investigated the systems for which this stability work is to 

develop a limit or not. 

= ω (R) u + (R) + 
 2
, 

= (R)u – ω (R)  +  
2
u, 

(4.6.2 ) 
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 The object of the present work is to develop a limit cycle 

solution of a general nonlinear two-species model system and 

then to obtain the criteria of the stability. In section 3, we have 

tried to find the traveling wave train solution of the above-

mentioned problem in presence of diffusive perturbation for 

both species. We have also performed the linear stability 

analysis for the traveling wave train solution. As an illustrative 

example, we have considered a nonlinear reaction-diffusion 

model equation which governs a certain chemical reaction 

system introduced by Dreitlein and Somes 6 for which the 

criterion of linear stability for traveling wave train solution have 

been tested. 

 A nonlinear system: Hopf-bifurcation and limit cycley. 

 We consider a nonlinear system of two interacting 

species(ecological or chemical) whose concentrations are 

denoted by x1(t) and x2(t) and is governed by the system of 

equations  6  . 

  dx1 

   dt 

  dx1 

   dt 

 where  is a scalar control parameter and ω, m, n are 

constants. This highly nonlinear planar model is a generalization 

of various types of nonlinear differential equations governing a 

variety of physical and chemical systems 6 . Evidently,         

=  γx1 – ωx2 + (mx1 – nx2)(x1
2
 + x2

2
), 

=  ωx1 – γx2 + (nx1 – mx2)(x1
2
 + x2

2
), 

4.6.3)) 
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(x1
*
, x2

*
) = (0,0) is the fixed point of (4.6.3) for all values of the 

con-trol parameter . Let the matrix A() be the linearized 

matrix of (4.6.3) about. the fixed point(x
*
1,x

*
2), that is, 

      γ -ω 

      ω  γ 

 where 

  x = x1, x2
 T

, F x,γ = F1,F2 
T
, 

  F1 = γx1 – ωx2 + (mx1-nx2)(x
2
1 +x

2
2), 

  F2 = ωx1 – x2 + (nx1-mx2)(x
2
1+x

2
2), 

 The eigenvalues of the corresponding Jacobian matrix(4.6.4) 

are  1 = γ – iω,  2 = γ + iω      (4.6.6).         

 From these eigenvalues, we note that (0,0) is a 

nonhyperbolic fixed point  6  of (4.6.3) when γ = 0, Further at 

(x1, x2,γ) = (0,0,0), 

  d1      d2 

  dγ       dγ 

 Hence, all the conditions required for a Hopf-bifurcation 

are satisfied 6 . Alternatively, the matrix A(0) has purely 

imaginary eigenvalues  iω (ω≠0), that is, the conditions  6 

  TrA(0) = 0,  det A(0) = ω
2
>0          (4.6.8 ) 

 are satisfied. Also the matrix B(γ), defined by 

  A(γ) = A(0) + γB(γ)            (4.6.9 ) 

 Is such that TrB(0) = 2 ≠ 0, so there must exist a periodic 

solution of (4.6.3) for y in some neighborhood of γ = 0 and x in 

A(γ) = ( xF(x,γ) (x*) = (4.6.4

) 

= 1, = 1, ( 4.6.7  ) 

(4.6.5) 



 - 162 - 

some neighborhood of x* with approximate period T = 2/ω for 

small γ  6 . We can now apply Hopf-bifurcation and limit cycle 

theorem 6 to find the periodic solution of the system of (4.6.3). 

Following Murray  6  and without going into the details of 

calculation, we can show that the periodic solution of (4.6.3) is 

given by 

 

        x1  γ (1+ω2)1/2  cos(ωt+α) 

        x2        2m        sin(ωt+α) 

 where α = arctan (b2/b1) is some arbitrary phase angle. 

From (4.6.10), we see that the amplitude of oscillations depends 

on the parameters γ, ω, and m. For the existence of the limit 

cycle, the amplitude should be positive and this requires γ and m 

to be of opposite sign  6  . Now we consieder the stability of the 

limit cycle (4.6.10). For this we calculate the Lyapunov – 

number ζ for system (4.6.3). 

 Following Perko  6 , we can calculate the Lyapunov-

number ζ for system (4.6.3) about the stationary state x* as 

   12 

    ω 

 If ζ ≠ 0 , the fixed point (0,0) is a weak focus of 

multiplicity one. The weak focus will be stable or unstable 

according to whether ζ < 0, or ζ > 0 , that is, according to 

whether ω m < 0 or ω m > 0. Hopf-bifurcation occurs at the 

critical value γ= 0. if ζ < 0 or ω m <0, the Hopf-bifurcation is 

X(γ,t) 

= 

= - +0(γ), (4.6.10) 

σ = m. (4.6.11) 
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supercritical and, on the other hand, if ζ > 0 or ω m > 0, the 

Hopf-bifurcation is subcritical. 

Nonlinear reaction-diffusion system: traveling wave trains 

and linear stability analysis: 

 We consider the behaviour of the system governed by 

(4.6.3) in presence of diffusion. We try to find the wave train 

solutions for the reaction-diffusion system give by 

  x1                
2
x1 

  t                                                           x
2 

  x1                    2
x1  

  t                                x
2 

 For our purpose here, we consider the system with the 

same rate of diffusion for both species and then it is scaled into 

a new space variable by using the transformation x   x /   D  , 

where D is the same rate of diffusion for both species. We have 

shown in the previous section that γ is a bifurcation parameter 

and when it passes through the value zero, Hopf-bifurcation 

takes place. We assume the traveling wave train solution of 

system(4.6.12) in the form 

   x1(x,t) 

   x2 (x,t)  

 With ζ (>0) being the frequency of the wave train, the 

wave number, and v a periodic function of z with period 2. 

Then the wavelength is ω = 2/k and the wave propagates with 

the speed c = ζ/k. Substitution of (4.6.13) into(4.6.12) results in 

a system of ordinary differential equations for v given by  

 γx1 – ωx2 + (mx1 – nx2)(x
2

1 + x
2
2) +  = 

      

 ωx1 – γ x2 + (nx1 – mx2)(x
2
1 + x

2
2) +  = 

     

 V(x,t) = 

  

= V(z), where z = σt - kx (4.6.13) 

(4.6.12) 
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  K'2V˝2 – ζV'+ f (V) = 0,         (4.6.14 ) 

 where prime denotes the differentiation of V with respect 

to the independent variable z. We want to find ζ and k so that 

the last equation has a 2-periodic solution for v. We can 

rewrite system (4.6.12) as follows: 

     x1      () () x1  
2
    x1 

  t  x2     -() ()   x2  x
2
  x2 

 Where 

 
2
 = x2

2
 + x2

2
,  () = γ + mr

2
, (r) = -(ω+nr

2
). 

 Now changing the system of equations (4.6.15) into polar 

(r,θ) form, we can write it as follows: 

  r  

  t 

  θ    1      

  t                 r
2
   x 

 As we are looking for the traveling wave train solutions of 

the type (4.6.13) in polar form, so we substitute 

  r = α,   = ζt – kx  

 Into (4.6.17) to get the necessary and sufficient condition 

for the existence of traveling wave solution. These conditions 

are obtained after substitution of (4.6.18) into (4.6.17) as 

  ζ = (α),   k
2
 = (α) 

 Considering α as a parameter, the one-parameter, the one-

parameter family of traveling wave train solutions of (4.6.15) is 

given by   

train solutions of (4.6.15) is give by  

(  4.6.15 ) 

(4.6.16 ) 

=  r  (r) + r xx – rθ2
x 

(4.6.17 ) 

(4.6.18) 

(4.6.19 ) 

+ = 

=  (r) +            (r
2θx). 
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x1 = α cos  (α)t-x 
1/2

(α)   , x2 = α sin  (α)t -x 
1/2

(α)             

          

with wave speed 

  ζ      (α) 

  k    λ
1/2

(α) 

 Such traveling wave trains are of importance, for example, 

to the target patterns or circular waves generated by the pace-

maker nuclei in the Belousov-Zhabotinski reactions  6  .         

 After finding the traveling wave solution of the λ -  

system described by (4.6.15), we now perform the linear 

stability analysis of the wave train solution. The simplicity of 

the plane wave solutions in the polar forms (4.6.17), (4.6.18), 

(4.6.19), and (4.6.20) gives us the opportunity to do the linear 

stability analysis. For this linear stability analysis, we consider 

the perturbations described by 

  r = α + p(x.t),   θ = ζt – kx+(x,t),       (4.6.22) 

where |p| , || << 1. Substituting this relation into (4.6.17) and 

then linearizing, we get the following equations in terms of the 

perturbation variables p and  as 

  p                
2
p 

  t           x      x
2
            (4.6.23) 

            2K   P    
2
 

  t                            x     x
2
 

 The conditions satisfied by k and ζ under which the 

solutions of (4.6.23) is to be determined tend to zero as t 

approaches infinity. As coefficients involved with the system of 

c  = 

=  2mP+2K    + 

= -2np - 

(4.6.20) 

  = (4.6.21) 

+ 
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equations (4.6.23) are constants, we can assume the solution of 

the system in the Fourier form 

  p po 

   o 

where s is the growth rate of perturbation, q is the perturbation 

wave number, and po and o are constants. The stability of the 

linearized system demands that Re(s)<0. Substituting(4.6.24) 

into (4.6.23), we get. 

  s + q2  - 2m
2
 -2ikq po     0 

      q      o    0 

       
 As we are searching for nontrivial solution, then we are 

not interested in the solution po, o = 0, so we must have the 

determinant value of the 2× 2 matrix involved with (4.6.25) 

equal to zero , which is a quadratic equation in s. If we denote 

the roots of the quadratic equation by s1 and s2, then expressions 

for the roots are given by. 

       s1, s2 = - q
2
 + 

2
m  (m

2


4 
+ 4k

2
q

2-
2iknq

2
)
1/2

        (4.6.26) 

 Depending upon the parameters of the system which are 

nivolved in (4.6.26), the real parts of both s1 and s2 or of either 

s1 or s2 may be positive, and then the plane wave solutions will 

be linearly unstable. As and q are perturbation from the plane 

wave solutions (4.6.18), then the perturbation wave number q = 

0 leads to the fast that s1 = 2
2
m and s2 = 0. The later 

corresponds to the neutral stability or instability depending upon 

the condition satisfied by m, and is given by m < 0 m or m . 0, 

= exp(st+iqx),     (4.6.24) 

2n + 2ik 

k 

=     (4.6.25) 
s +q2 



 - 167 - 

respectively. For positive perturbation in wave number, that is , 

q>0, the maximum real parts of the roots come from s1 and this 

leads to the necessary and sufficient condition for linear 

stability, namely, Re(s1) <0. From (4.6.26), after some 

calculations involving complex variable algebra, we find that 

        1 

        2 

   + ((m
2
)
2
 + 4k

2
q

2
)
2
 + 4(knq

2
)

2
 
1/2

 .
 
       (4 .6.27) 

From the above relation, we get 

  Re(s1(0)) = 
2
m + |

2
m|,             (4.6.28) 

         dRe s1  4k
2
(1+n

2
/m

2
)            (4.6.29) 

    dq
2
   q=0             2

2
 |m| 

 Relation (4.6.28 ) states that Re s1(0) = 2
2
m for m > 0 

and Re s1(0) = 0 for m < 0. Thus for small enough q
2
, Re s1(q) < 

0 if and only if the last derivative (dRes1/dq
2
)q=0 < 0. For m < 0, 

the relation (4.6.29) gives the condition as 

               n2 

      m
2
 

whereas, for m > 0, Re s1 (0) > 0 and consequently the traveling 

wave train solution of system (4.6.15) unstable. 

Travelling wave in an oscillatory chemical system linear 

stability analysis: 

 We now consider a model chemical reaction as an 

illustrative example of the general nonlinear system whose 

different characteristic features we have discussed in the 

Re(s1(q)) = -q
2
 + 

2
m+ (m

2
)
2
 + 4k

2
q

2
 

= -1 + 

4k
2
  ( 1 + ) + 2

2
m  0, 

 (4.6.30 ) 
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previous section. This model for oscillatory chemical kinetic 

system was discussed and analyzed by Dreitlein and somes 6  . 

Here we analyze traveling wave solution and stability. The 

model is described by the system of nonlinear equation as 

follows: 

  x1      
2
x1 

   t     x
2
 

  x1      
2
x2 

   t      x
2
 

 Comparing this equation with (4.6.12), we find that            

γ = E, ω = -2,m = -1, and n = 0. The system of equations     

(4.6.31) can be written as a λ- ω model system as follows: 

      x1     λ(r)     μ(r) x1 
2
 x1 

  t   x2   -μ(r)      λ(r)  x2     x
2
    x2   , 

where  

  r
2
 = x2

2
 + x 2

2
,    λ(r) = E – r

2
,   μ(r) = 2,  (4.6.33)       

 Now r = ro =   is an isolated zero of  and, 

consequently, λ′(ro) = - 2  < 0 ,  (ro) = -2  0 . This leads to 

the conclusion that the spatially homogeneous system has a limit 

cycle solution 6  . Changing the variables from (  ) to the 

polar variable (r, θ) and using (4.6.17) the system of equations 

(4.6.31) becomes. 

   = r (E – r
2
) +  – r (  

= EX1 + 2 X
 2

 –X1(X
2

1 +X
2

2) 

= - 2X1 + EX2 – X2(X 
2
1+X

2
2)+ 

     (4.6.32) + = 

4.6.31)) 
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   = 2 +   – r(                      (4.6.34) 

 As ro =  >0 and  (   )  < 0, then the asymptotically 

stable limit cycle solution of kinetic system is given by 

 r =  , θ=  θo +2t,     (4.6.35) 

where  is some arbitrary phase. Next, we look for travelling 

wave solution of the form (4.6.14) of the system governed by 

the system of differential equation (4.6.31). Substituting             

r =   in (4.6.34), we can obtain the necessary and 

sufficient conditions for the solution of the above- mentioned 

type. The conditions are 

           ,     (4.6.36) 

 The one- parameter family of travelling wave train 

solutions of (4.6.34) or, equivalently, for (4.6.31), is given by 

x
1
 = cos [2t – x(E - )  ],    x2 = sin[2t – x(E -  )  ], 

          (4.6.37) 

with  as the convenient parameter. As the parameter  

approaches the value r  =   , the wave number of the plane 

waves tends to zero and this indicates the existence of travelling 

plane wave train solutions near the limit cycle. The system 

governed by (4.6.31) has a steady state at (0, 0) which is stable 

for E > 0 and unstable for E < 0. Note that E = E  = 0 is the 

bifurcation value of the system.At the critical value Ec = 0, the 

eigenvalues of the linearized system about the steady state are  
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 2i. This satisfies the requirements of Hopf- bifurcation that 

we have discussed.  

 Our next task is to investigate the linear stability of the 

wave train solution that we have discussed for system        

(4.6.12). In a similar manner as that we have adopted before, we 

will deal with the polar form (4.6.34) and the perturbations will 

be the form 

 r =       (4.6.38) 

where |  Substituting this relation into (4.6.34) and 

linearizing, we get  

         =      + ,              (4.6.39) 

          =    + , 

   The coefficients involved in the linearlized system ( 4.6.39)        

are all constants and this situation enable us to take the solution 

of this system in the form 

   =      (4.6.40) 

 where are constants and q, s play the same role as 

that involved in (4.6.24). Substituting (4.6.40) into the system of 

equations (4.6.39), we get relations of the form (4.6.25) as 

follows 

  s + q
2
+2α

2
    -2ikαq    po          0 

                        2ik q         s+q2    фo          0     (4.6.41) 

                               α 

= 
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 As we are interested in the nontrivial solution of the system 

(4.6.41), then we must have the determinant value of the 

coefficient matrix involved in (4.6.41) equal to zero. This 

determinant value of the above- mentioned matrix equal to zero 

gives a quadratic equation for the variables s. The stability of the 

linearized system requires that the roots of the quadratic 

equation in s have negative real parts. If we denote the two roots 

of the quadratic equation by s , s , then the expressions for them 

can be given as follows (using the expression ( 4.6.26): 

  S1,S2=q
2
-α

2
 ±  α 

4
+4k

2
q

2
  1/2  (4.6.39) 

     From the above relation we get s (0), s (0) = -   . Thus, 

for vanishingly small perturbation in the wave number, the 

linearlized system exhibits a neutral stability. Now, for small 

perturbation, both roots s and s  will be negative if and only if 

  2k
2
-α

2
 < 0      (4.6.43) 

    This is the condition for stability of the linearized system and 

it is independent of the parameter E involved with system 

(4.6.31). 

Conclusion: 

 The bifurcation theory plays a significant role in the 

behavior of nonlinear systems. The bifurcating behavior for a 

nonlinear system is a self-developed phenomena for the 

deterministic system  6  . The first problem in this section is the 

study of an interacting homogeneous population system 

governed by the nonlinear system of differential 
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equations(4.6.3). The Hopf-bifurcation analysis of the system 

leads to an unstable or a stable limit cycle according to whether 

the system leads to an unstable or a stable limit cycle according 

to whether the bifurcation parameter is negative or positive. The 

limit cycle solution (4.6.10) of the nonlinear system (4.6.3) 

shows uninteresting characteristic that the existence of the limit 

cycle solution depends upon the sign of the parameter  and m 

involved with the system. The existence of limit cycle solution 

of system(4.6.3) demands m < 0. However, when m = 0, 

although the conditions for Hopf-bifurcation are satisfied, there 

are no periodic orbits in the vicinity of the bifurcation point. 

 The next problem is concerned with the study of traveling 

wave train solution of the diffusive nonlinear dynamic system 

and the linear stability criteria of this wave train solution. 

Equation (4.6.20) represents the one- parameter family of wave 

train solution for system (4.6.12), where  is the arbitrary 

parameter. If r = ro is an isolated zero of λ(r) , (given by 

(4.6.16)), then the limiting approach ro     gives the small 

amplitude travlling wave train solution near the limit cycle 

arising from Hopf-bifurcation. Kopell and Howard 6  showed 

how to do this in general. Feroe  6  has discussed the difficulties 

in the stability of traveling wave solution for excitable FHN 

waves. However, we are able to find this criteria for system 

(4.6.12) given by (4.6.30) without long and complicated 

calculations due to the simplicity of traveling wave train   6   . 
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 As an illustrative example, we have considered the 

chemical reaction-diffusion model introduced by Dreitlein and 

Somes 6 .The traveling wave train solution of the model 

system(4.6.31)given by (4.6.37) is quite similar to the result  

introduced by Dreitlin and Somes. condition (4.6.43) is the 

linear stability condition of the wave train solution(4.6.37) and it 

should be noted that (4.6.43) does not contain the parameter E 

of the model system (4.6.31). The stability condition (4,6.43) 

may be derived from (4.6.30) by substituting the values of m 

and n for the model system (4.6.31). 
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