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ABSTRACT 

The aim of the research is to give algorithms for unconstrained optimization. We 

present Conjugate Gradient, Damped Newton and Quasi Newton   methods  to 

gather  with the relevant theoretical background. The reader is assumed to be 

familiar with algorithms for solving linear and none. Linear system   of 

equations, 
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 خص المل

الهدف من  هذا البحث  هو عمل خوارزميات  لحل مسائل  الامثلية الغير مقيدة  لسهولة 

والانحدار  و نيوتن   فهمها واستخدامها وقد استخدمت  طرق الامثلية  مثل طرق التدرج 

 والمقارنة بينهما في سرعة التقارب والدقة وكما استخدمت الخوارزميات  لحل انظمه
  لمعادلات الخطية والغير خطية
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INTRODUCTION 

In this search we shall discuss numerical methods for the solution of 

the optimization problem. For a real function of several real variables 

we want to find an argument vector which corresponds to a minimal 

function   Value 

 

1.1Definition.    The optimization problem: 

 the function f is called the objective 

function or cost function and x* is the   minimizer.In some cases we want a 

maximizer of a function. This is easily determined If   we   find a minimizer of 

the function   with   opposite     sign. Optimization plays an important role in 

many branches of science and applications: Economics, operations research, 

network analysis, optimal design of   mechanical   or   electrical   systems,  to   
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mention   but   a few. 

Example 1.1.   

 consider functions of one variable. the function has one, 

unique minimizer, x*, see Figure (1.1.)      

 

.  

Figure 1.1:   One     minimizer. 

 

1.2 INTRODUCTION  

The function f(x) = 2 cos(x- x*) have infinitely many minimizers:  x =x*+2p 

where p is an integer; see Figure 1.2. 

 

Figure 1.2: y = 2 cos (x – x*) many minimizers. 

the function f(x) = 0.015(x –x*)2- 2 cos(x – x*)has a unique global minimizer, x*  

besides that, it also has several so called local minimizers, each  giving the 
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minimal function value inside a certain region, see Figure 1.3. 

 

Figure 1.3:                          

One global   minimizer   and many local minimizers. 

The ideal situation for optimization computations is that the objective function 

has a unique minimizer. We call this the global minimizer .In some cases the 

objective function has several (or even infinitely many) minimizers. In such 

problems it may be sufficient to find one of these minimizers. In many objective 

functions from applications we have a global minimizer and several local 

minimizers. It is very difficult to develop methods which can find the global 

minimizer with certainty in this situation the methods described here can find a 

local minimizer for the objective function. When a local minimizer has been 

discovered, we do not know whether it is a global minimizer or one of the local 

minimizers. We cannot even be sure that our optimization method will find the 

local minimizer 

1.3 INTRODUCTION 

Closest   to  the starting point. In order to explore several local minimizers we 

can try several runs with different starting points, or better still examine intermediate 

results produced by a global minimizer. we end this section with an example meant to 



 
14 

 

demonstrate that optimization methods based on too primitive ideas may be 

dangerous. 

Example  1.2. 

We want the global minimizer of the function 

 

The idea (which we should not use) is the following:  “Make a series of 

iterations. In each iteration keep one of the variables fixed and seeks a value of 

the other variables so as to minimize the f-value”. In Figure 1.4 we show the level 

curves or contours of f,  i-e .curves consisting of positions with the same f-value. 

we also show the first  few  iterations. 

Figure 1.4: The Method of Alternating Variables fails t determine the minimizer 

of quadratic 

a  

After some iteration the steps begin to decrease rapidly in size. They can become 

so small that they do not influence the x-values, because these are represented 

with finite precision in the computer, and the progress stops completely. In many 

cases this happens far away from the solution. We say that the iteration is caught 

in (Stiefel’s  cage.) the “method” is called the method of alternating variables and 
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it is a classical example of a dangerous method, a method we must avoid. 

1.1. Conditions for a Local Minimizer 

A local minimizer for f is an argument vector giving the smallest function 

Value inside a certain region, defined by X* is a local minimizer for  

 if f(x*)     ≤ f(x)      for//x*-x// ≤ ε   

most objective functions, especially those with several local minimizers, 

contain local maximizers and other points which satisfy a necessary condition for 

a local minimizer. The following theorems help us find such points and 

distinguish the local minimizers from the irrelevant points. We assume that f has 

continuous partial derivatives of second order.  

 First order (Taylor expansion) for a function of several variables gives 

usan approximation to the function value at a point x+h  neighbouring x, 

        (1.1) 

Where f (x) is the (gradient) of f, a vector containing the first partial derivatives, 

 

we only consider vectors h   with   // h // so small that the last term in (1.3) is 

negligible compared with the middle term. If the point x is a local minimizer it is 

not possible to find an h so that F (x + h) < f(x) with // h // small enough. This 
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together with (1.3) is the 

Theorem 1.5.  necessary  condition for a local minimum. 

If x* is a local minimizer for        then f (x*) = 0: 

The local minimizers are among the points with f (x) = 0.   they have a special 

name.                                     

Definition 1.5 Stationary point.  

If f ' (x s) = 0,    then x s   is said to be a (stationary point) for f. the stationary 

points are the local maximizers, the local minimizers to distinguish between 

them, we need one extra term in the Taylor expansion. Provided that f has 

continuous third derivatives, then 

     (1.1) 

Where the Hessian f (x) of the function f is a matrix containing the second Partial 

derivatives of f  : 

 

Note that this is a symmetric matrix. For stationary point takes the 

Form          

If the second term is positive for all h we say that the matrix f " (xs) is 

(Positive definite)  which   also gives tools for checking definiteness).  Further, 

we can take //h// so small that the remainder term is negligible, and it follows that 
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x s is a local minimizer 

Theorem 1.1.        sufficient   condition for a local minimum. 

Assume that x s is a stationary point and that f" (x s) is positive definite.  Then x 

sis a  local minimizer. The Taylor expansion is also the basis of the proof of the 

following corollary   Assume that x s is a stationary point and that f "(x) is 

Positive semi definite when x is in a neighbourhood of xs. then xs is a Local 

minimizer. The local maximizers and “the rest”, which we call (saddle points), 

can be characterized 

Corollary 1. 2. 

Assume that xs is a stationary point and that 

       (1.1)  

 

If f " (x s) =0, then we need higher order terms in the Taylor expansion in order to 

find the local minimizers among the stationary points.                                            

 

Example 1.3.  We consider functions of two variables. Below we show the 



 
18 

 

variation of the function value near a local minimizer (Figure 1.5(a)), a local 

maximizer (Figure 1.5(b)) and a saddle point (Figure 1.5(c)). It is a characteristic 

of a saddle point that there exists one line through (x s) , with the property that if 

we follow the variation of the f-value along the line, this “looks like” a local 

minimum, whereas there exists another  line through(x s), “indicating” a local 

maximizer. 

 

Figure 1.5: With a 2-dimsurfacensional x we see as 

z = f(x) near a stationary point 

 

1.6. INTRODUCTION     we see curves approximately like concentric ellipses 

near a local maximizer or a local minimizer (Figure1.6(a)),whereas the saddle 

points exhibit the “hyperbolaes” shown in (Figure 1.6(b)). 
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Figure 1.6: The contours of a function near a stationary point 

Finally, the Taylor expansion (1.1) is also the basis for the following Theorem. 

Theorem 1. 3. Second order necessary condition. 

If x* is a local minimizer, then f "(x*) is positive semidefinite. 
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2. DESCENT METHODS: 

Introduction:  

These are( iterative methods). They produce   a series of vectors                              

X0.X1.X2……(2.1(a)  Which in most cases converges under certain mild 
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conditions? We want the   series to converge towards x* a local minimizer for the 

given objective function      , i.e. xk → x* for k → ∞    (2.1(b) 

where x* is a local minimizer, the methods  here are measures which enforce the 

descending property 

                                               (2.2) 

This prevents convergence to a maximizer and also makes it less probable That 

we get convergence to a saddle point, We talk about the ( global convergence) 

properties of a method, i.e. convergence when the iteration starts in a position X0, 

which is not close to a local minimizer x* we want our method to produce 

iterates that move steadily towards  a neighbourhood. of x*.For instance, there 

are methods (i.e. limit of a subseries) of (Xk) is a stationary Point (Definition 1.6), 

i.e. the gradients tend to zero 

f' (Xk) →   0         for k→ ∞  (2.3) 

This does not exclude convergence to a saddle point or even a maximizer, but the 

descending property (2.2) prevents this in practice. In this “global part” of the 

iteration we are satisfied if the current errors do not increase except for the very 

first steps. Letting denote the errors,  

the requirement is  

In the final stages of the iteration where the Xk are close to x* we expect Faster 
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convergence. The local convergence results tell us how quickly we Can get a 

result which agrees with x* to a desired accuracy. Some methods have (linear 

convergence): 

 

It is more desirable to have higher order of convergence, for instance quadratic 

convergence (convergence of order 2): 

 

Only a few of the methods used in the applications achieve quadratic final 

Convergence On the other hand we want better than linear final convergence. 

Many of the methods used in practice have    (super linear convergence): 

 

This is better than linear convergence though (normally) not as good as Quadratic 

convergence. 

 

Example 2.1. Consider 2 iterative methods, one with linear and one with 

quadratic convergence. At a given step they have both achieved the result with an 

accuracy of 3 decimals:  They have     in (2.4) 

and (2.5) 

Algorithm 2.1 Structure of descent methods 
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Both conditions reflect the convergence xk--------x*. They cannot be used in 

practice, however, because x* and f(x*) are not known. Instead we have to use 

approximations to these conditions:                          (2.7) 

                                                  (2.8) 

We must emphasize that even if (2.8) is fulfilled with small ε1" and ε2,: we 

Cannot be sure that is small. The other type of 

convergence mentioned at the beginning  of  this chapter is       f (Xk) →-0 for k-

→ ∞ . 

This can be reflected in the stopping criterion   (2.9) 

Which  is included in many implementations of descent methods? There is a 
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good way of using the property of converging function values. The Taylor 

expansion (1.1) of f at x* is 

 

Now, if x* is a local minimizer, then is positive              

semidefinite, This gives us 

 

so the stopping criterion could be 

 

 

.2. Descent Directions 

From the current position we wish to find a direction which brings us downhill,    

to descent direction. This means that if we take a small step in that direction we 

get to a position with a smaller function value. The Taylor expansion (1.1) gives 

us a first order approximation to the function value in a neighbouring point to x 

in direction h: 

 

If a is not too large, then the   First   two terms will dominate over the l 
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The sign of the term   decides whether we start of uphill or downhill. 

In the space  we consider a hyper plane H through the current position and 

orthogonal to f '(x),                                                                                                                                              

This hyper plane divides the space in an “uphill” half space and a “downhill” half 

space. The half space we want has the vector - f '(x) pointing into it.  gives the 

situation in   Figure 2.1:   ―downhill‖ and an uphill  divided into 

 

 

.  Figure 2.1 

we now define a descent direction. this is a “downhill” direction, i-e, it is 

inside the “good” half space: 

Definition 2.1. Descent direction. 

h is a descent direction from x if      : A method based on 

successive descent directions is a descent method. In Figure 2.1 we have a 

descent  direction h. We introduce the angle between   h and    -f ' (x), 
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We state a condition on this angle, 

Definition 2.2  ( Absolute  descent  method) 

this is a method, where the search directions  satisfy     for all 

k, with µ > 0 independent of k the discussion above is concerned with the 

geometry in , and is easily seen  to be valid also in   If the dimension n 

is larger than 3, we call µ the (“pseudo angle) between h and-f' (x)”. In this way 

we can use  this definition  for all  . the restriction that ¹ must be constant 

in all the steps is necessary for the  Global   convergence  result 

Search Theorem 2.1 

If      And B is a symmetric, positive definite    Matrix, then 

 

Are   descent directions. 

Proof. A positive definite matrix    satisfies 

 

If we take u=h1 and exploit the symmetry of B, we ge 

 

With u=h2 we get 
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Thus, the condition in Definition (2.1) is satisfied in both cases. 

2.3. Descent Methods with Line Search 

After having determined a descent direction, it must be decided how long 

The step in this direction we shall introduce the idea   of line  search. and the 

variation of the objective function f along the direction   h from the current 

position x,        With fixed x and h From the Taylor 

expansion (1.1) it follows that. 

 

Where                            

In Figure 2.2 we show an example of the variation of     with h as a  

descent direction. The descending condition .tells us that we have to  Stop the 

line search with a value as so that      have      but the 

figure shows that there is a risk that, if a  Is taken too large, then    

'On the other hand,  we must also guard against the step being so short that our 

gain in function value diminishes.  



 
28 

 

 

Figure 2.2: Variation of the cost function along the search line. 

To ensure that we get a useful decrease in the f-value, we stop the search with a 

value a s which gives a '-value below that of the line in Figure 2.3 

below. This line goes through the starting point and has a slope which is a 

fraction of the slope of the starting tangent to the    curve 

 (2.10) 

The parameter e is normally small, e.g. 0.001  Condition (2.10)) is needed in 

some convergence proofs. We also want to ensure that the a-value is not chosen 

too small. In Figure 2.3 we indicate a requirement, ensuring that the local slope is 

greater than the starting slope. More specific, 
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Criteria   (2.10)  and (2.11). Descent methods with line search governed by 

(2.10) and (2.11) are normally convergent. Fletcher has the proof of the following 

theorem. 

Theorem 2.2. Consider an absolute descent method following Algorithm 2.7 

with search directions that satisfy Definition 2.13 and with line search controlled 

by (2.10) and (2.11). 

 

A possible outcome is that the method finds a stationary point   (xk with f 

'(Xk)=0) and then it stops. Another possibility is that f(x) is not bounded from 

below for x in the level set   and the Method may converges 

towards a stationary point. The method being a descent method often makes it 
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converge towards a point which is not only a stationary point but also a local 

minimizer.   A line search as  described above is often called a soft line search 

because of its liberal stopping  criteria, (2.10) and (2.11).   In contrast to this we 

talk about ―Exact line search‖ when we seek (an approximation to) a local 

 (2.12) 

 

                                                    (2.13) 

this shows that the exact line search will stop at a point where the local gradient 

is orthogonal to the search direction. 

Example 2.4. 

 Orthogonality mentioned in (2.12). Figure 2.4: An exact line search stops at 

y =   x +   a e h, where the 

Local gradient is orthogonal to the search direction 

x1  

                     Figure 2.4 
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2.4. Descent Methods with Trust Region 

the methods in this research series of steps leading from the starting   position to 

the  final result, and in Newton’s method of Chapter five, the directions of the 

steps are determined by the properties of f(x) at the current position. Similar 

considerations lead us to the trust region methods, where the iteration steps are 

determined from the properties of a model of the objective function inside a 

given region. The size of the region is modified during the iteration. The Taylor 

expansion (1.3) provides us with a linear approximation to f near a given x:  

                 (2.14) 

Likewise we can obtain a quadratic approximation to f from the Taylor expansion 

                     (2.15) 

In both case q (h) is a good approximation to f(x+h) only if //h// is sufficiently 

small. These considerations lead us to determine the new iteration step as the 

solution to the following model problem:    

                                                                              

(2.16)             

The region is called the trust region and q(h)   We use     and reject h, 

if f(x+h)   f(x). The gain in cost function value controls the size of the trust 
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region for the next step: The gain is compared to the gain predicted by the 

approximation function, and we introduce the gain facto    

                                (2.17) 

When r is small our approximation agrees poorly with f, and when it is Large the 

agreement is good. Thus, we let the gain factor regulate the size of the trust 

region for the next step (or the next attempt for this step when r <· 0 so that h is 

rejected).  These ideas are summarized in the following algorithm.  

 

Algorithm 2.25. Descent method with trust region  begin Given x0 and 0 

(2.16) 

                                                      (2.17) 
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the numbers in the algorithm, 0.75, 2, 0.25 and P1=3 have been chosen from   

practical experience. the method is not very sensitive to minor changes in these  

values, but in the expressions  := P1* and  := /p2 the numbers P1 and 

P2 must be chosen so that the ¢-values cannot oscillate. There are versions of the 

trust region method where “r<0.25” initiates an interpolation between x and x+h 

based on known values of f and f ', and “r>0.75” leads to an extrapolation along 

the direction h, a line search actually. 

2.5. Soft Line Search 

Many researchers in optimization have proved their inventiveness by producing 

new line search methods or modifications to known methods. What we present 

here are useful combinations of ideas of different origin. the description is based 

on Madsen (1984){1}. In the early days of optimization exact line search was 

dominant. Now, soft line search is used more and more, and we rarely see new 

methods presented which require exact line search. an advantage of soft line 

search over exact line search is that it is the faster of the two. If the first guess on 

the step length is a rough approximation to the minimizer in the given direction, 

the line search will terminate immediately if some mild criteria are satisfied. The 

result of exact line search is normally a good approximation to the result, and this 

can make descent methods with exact line search find the local minimizer in less 
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iteration than what is used by a descent method with soft line search. However, 

the extra function evaluations spent in each line search often makes the descent 

method with exact line search a loser. if we are at the start of the iteration with a 

descent method, where x is far From the solution x*, it does not matter much that 

the result of the soft line search is only a rough approximation to the result; this is 

another point in favour of the soft line search the purpose of the algorithm is to 

find a s, an acceptable argument for the function 

(2.18(a) 

                           (2.18(b) 

These two criteria express the demands that a s must be sufficiently small to give 

a useful decrease in the objective function, and sufficiently large To ensure that 

we have left the starting tangent of the curve       for , see of 

Figure 2.3. The algorithm has two parts. First we find an interval [a; b] that 

contain acceptable points, see figure 2.5. Figure 2.5: Interval [a. b] containing 

acceptable points. 
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In the second part of the algorithm we successively reduce the interval: We find a 

point a  in  the strict interior of [a , b ]. If both conditions are satisfied by this a-

value, then we are finished (as =a)   otherwise, the reduced interval is either [a, b] 

:= [a , a] or [a, b] = [a, b], where the choice is made so that the reduced [a, b] 

contains acceptable points. We have the following remarks to Algorithm 2.1 

given below. 

1- If x is a stationary point     or h is not downhill, then   

we do nothing. 

2- The initial choice b=1 is used because in many optimization methods ( e .g. 

Newton’s method in Chapter 5) a=1 is a very good guess in the final   steps   of   

the  iteration. The upper bound a max must be supplied by the user. It acts as a 

guard against an infinite loop if f is unbounded. 

 3- We are to the left of a minimum and update the left hand end of the Interval  

Algorithm  2.3   soft line search 
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4. If a max is sufficiently large, then the series of b-values is 1. 2. 4 8…. 

Corresponding to an “ expansion factor” of 2. Other factors could be used. 

5. Initialization for second part of the algorithm. 

6. See Algorithm 2.4 below. 

7. The algorithm may have stopped [a,b]normally, e.g. by exceeding the 

permitted number k max of function evaluations. If the current value of a does 

not decrease the objective function, then we return a=0, of 1.  The refinement can 

be made by the following Algorithm 2.5. the input is an interval [a, b] which we 

know contains acceptable points, and the output is an  a found by interpolation. 

We want to be sure that the intervals have strictly decreasing widths, so we only 

accept the new a  if it is inside [a + d, b-d] , where      The  a 
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splits [a; b] into two subintervals, and we also return the subinterval which must 

contain acceptable points. 

Algorithm (2,5) Refine 

 

We have the following remarks to Algorithm 2.28: 

 

Finally, we give the following remarks about the implementation of the 

algorithm. the function and slope values are computed as 

 



 
38 

 

 

the computation of f and f ' is the “expensive” part of the line search. Therefore, 

the function and slope values should be stored in auxiliary variables for use in 

acceptance criteria and elsewhere, and the implementation should return the 

value of the objective function and its gradient to the calling programmer, is a 

descent method. they will be useful as starting function value and for the starting 

slope in the next line search (the next iteration). 

2.7. Exact Line Search 

The older methods for line search produce a value of a s which is sufficiently 

 

Here,  E and  t  indicate the level of errors tolerated; both should be small, 

Positive numbers 

Example 2..5 

  A “divine power” with a radar set follows the movements of 

our wayward tourist. He has decided to continue in a given direction, 

until his feet tell him that he starts to go uphill. The”divine power”  

see that he stops where the given direction is tangent to a local contour. 
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This is equivalent to the Orthogonality formulated  

Figure 2.6. An exact line search stops at y = x+αeh, where the local gradient is 

orthogonal to the search direction 
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3:THE STEEPEST DESCENT METHOD 

Introduction : 
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 Which of the possible descent directions (see Definition 2.1) 

Our first considerations will be based purely on local first order information. 

Which descent direction gives us the greatest gain in function value relative to 

the step length? Using the first order Taylor expansion (1.3) we get the Following 

approximation   (1) 

 

This search direction, the negative gradient direction, is called the direction of 

steepest descent is a useful gain in fun. It give sction value if the step is so short 

that the 3rd term in the Taylor expansion     is insignificant. the 

minimizer along the direction hsd. At the minimizer the higher order terms are 

large enough to have changed the slope from its negative starting value to zero. 

According to Theorem 2.2(a) descent method based on steepest descent and soft 

or exact line search is convergent. If  we make a method using hsd. and a version 

of line search that ensures sufficiently short steps, then the global convergence 

will manifest itself as a very robust global performance. The disadvantage is that 

the method will have linear final convergence and this will often  be exceedingly 

slow. If we use exact line search together with steepest descent,  
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Example 3.1. 

We test a steepest descent method with exact line search on the   function from 

Example 1.2, 

f(x) = (x1+x2-2)2 + 100(x1 - x2)2 : 

Figure 3.1 gives contours of this function. 

 

This is parallel to the x1-axis. The exact line search will stop at a point where the 

gradient is orthogonal to this. Thus the next search direction will be parallel to 

the X2-axis, etc. The iteration steps will be exactly as in Example 1.2. The   

iteration will stop far away from the solution because the steps become negligible 

compared with the position, when represented in the computer with a finite 

number of digits.  this example shows how the final linear convergence of the 
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steepest descent method can become so slow that it makes the method completely 

useless when we are near the solution. We say that the iteration is caught in( 

Stiefel’s cage). 

The method is useful, however, when we are far from the solution. It performs a 

little better if we ensure that the steps taken are small enough. In  such a version 

it is included in several modern hybrid methods, where there is a switch between 

two methods, one with robust global performance and one with super linear (or 

even quadratic) final convergence. Under these circumstances the method of 

steepest descent does a very good job as the   “global part” of the hybrid. asin 

Section 5.2. 

 

 

 

 

 

 

 

 

 



 
44 

 

 

 

 

 

 

 

 

 

 

4. CONJUGATE GRADIENT  METHODS 

Introduction:  

. The conjugate gradient methods are simple and easy to implement, and 
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generally they are superior to the steepest descent method, but Newton’s method 

and its relatives (asin the next chapter) are usually even better. If, however, the 

number n of variables is large, then the conjugate gradient methods may 

outperform Newton-type methods. the reason is that the latter rely on matrix 

operations, where as conjugate gradient methods only use vectors. Ignoring 

sparsity, Newton’s method needs O(n3) operations per iteration step, Quasi-

Newton methods need O(n2), but the conjugate gradient methods only use O(n) 

operations per iteration step. Similarly for storage: Newton-type methods require 

an n*n matrix to be stored, while conjugate gradient methods only need a few 

vectors. The basis for the methods presented in this chapter is the following 

definition, and the relevance for our problems is indicated in Example 4.1. 

Definition 4.1. Conjugate directions. A set of directions corresponding 

to vectors [h1, h2,……………]  is said to be conjugate with respect to a symmetric 

positive definite matrix A, if     (4.1) 

Example 4.1. In IR2 we want to find the minimizer of a quadratic 

(4.2) 

where the matrix H is assumed to be positive definite. Figure 4.1 gives the 

contours of such a polynomial. 



 
46 

 

 

 

Figure 4.1: In the 2-dimensiona lcase, the second conjugate gradient 

step determines the minimizer of a quadratic. 

assume that our first step was in the direction h1, a descent direction. Now we 

have reached position x after an exact line search. thus the direction h1 is tangent 

to the contour at x. This means that h1 is orthogonal to the steepest descent 

direction hsd at x, i.e                 

 

Now, the minimizer satisfies Hx*+ b = 0, and inserting b from this we get 

 

This shows that if we are at x after an exact line search along a descent direction, 

h1, then the direction x*-x to the minimizer is conjugate to h1 with respect to H. 

We can further prove that the conjugate direction is a linear combination of the 

search direction h1 and the steepest descent direction, hsd, with positive 

coefficient i.e, it is in the angle between h1 and hsd. In the next sections we 
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discuss conjugate gradient methods which can find the minimizer of a second 

degree polynomial in n steps, where n is the dimension of the space. 

4.1. Quadratic Models 

An important tool for designing optimization methods is quadratic modelling.the 

function  f is approximated locally with a quadratic function q of the form 

                          

Where H is a symmetric matrix which is usually required to be positive 

definite. When the model ling is direct, we simply use the minimizer of q to 

approximate x* and then repeat the process with a new approximation. This is the 

basis of the Newton-type methods described in Chapter 5. For the conjugate 

gradient methods, the model function) will be employed indirectly. A related 

concept is that of quadratic termination, which is said to hold for methods that 

find the exact minimum of the quadratic in a finite number of steps. The steepest 

descent method does not have quadratic termination, but all the methods 

discussed in this chapter and the next do.  Quadratic termination has proved to be 

an important idea and worth striving for in the design of optimization methods. 

Because of the importance of quadratic models we now take a closer look at the 

quadratic function It is not difficult to see that its gradient at x is given by 

q'(x) = Hx + b                            (4.3) 

And for all x the Hessian is 
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q"(x) =H.                                    (4.4) 

If H is positive definite, then q has a unique minimizer, x* = -H  b. If 

n=2, then the contours of q are ellipses centered at x*. The shape and orientation 

of the ellipses are determined by the eigenvalues and eigenvectors of H. For n=3 

this generalizes to ellipsoids, and in higher dimensions we get (n-1)-dimensional 

hyper-ellipsoids. It is of course possible to define quadratic functions with a non-

positive definite Hessian, but then there is no longer a unique minimizer. 

Finally, a useful fact is derived in a simple way from   multiplication   by H maps 

differences in x-values to differences in the corresponding gradients: 

H(x - z) = q'(x)-q'(z)              (4.5) 

4.2. Structure of a Conjugate Gradient Method 

let us have another look at Figure 3.1 where the slow convergence of the 

steepest descent method is demonstrated. an idea for a possible cure is to 

take a linear combination of the previous search direction and the current 

steepest descent direction to get a direction   toward  the solution. this gives 

a method of the following type 

Algorithm 4.1 conjugate gradient method 
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We have the following remarks: 

1- Initialization. 

2- In most cases the vector hcg is downhill. This is not guaranteed, e.g. if we use a 

soft line search, so we use this modification to ensure that each step is downhill. 

3- New iterate. 

4- The formula for   r  is characteristic for the method. This is discussed in the 

next sections. 

5- We recommend to stop if one of the criteria 

 

is satisfied, of (2.8) and (2.9). 

in the next theorem we show that a method employing conjugate search 

directions and exact line searches is very good for minimizing quadratics. 

In Theorem 4.12 (in Section 4.3) we show that, if f   is quadratic and the 

line searches are exact, then a proper choice of  r  gives conjugate search 
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Directions. 

Theorem 4.1. Use Algorithm 4.6 with exact line search on a quadratic 

like (4.2) with x   in IRn, and with the iteration steps hi = xi – xi-1 

Corresponding  to conjugate directions. Then 

1- The search directions hcg are downhill. 

2- The local gradient f' (xk) is orthogonal to h1… h2,………,hk. 

3- The algorithm terminates after at most n steps. 

Proof. We examine the inner product in Definition 2.11 and insert the expression 

for hcg 

 

The second term in the first line is zero for any choice of  since an Exact  line 

search terminates when the local gradient is orthogonal to the Search direction. 

thus, hcg is  downhill (unless x is a stationary point, Where f' (x) = 0), and we 

have proved 1. Next, the exact line searches guarantee that 

                                                    

Here, we have exploited that the directions (hi) are conjugate with 
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respect to H, and we have proven 2 .Finally, H is non-singular, and it is easy to 

show that this implies that a set of conjugate vectors is linearly independent. 

Therefore {h1,……., hn} span the entire IRn, and f' (Xn) must be zero., we remark 

that if  f '(Xk)=0 for some k ·n, then the solution has been Found and Algorithm 

4.6 stops. What remains is to find a clever way to determine     The 

approach used is to determine   r  in such a way that the resulting method will 

work well for minimizing quadratic functions. Taylor’s formula shows that 

smooth functions are locally well approximated by quadratics, and therefore the 

method can be expected also to work well on more general functions. 

4.3. The Fletcher–Reeves Method 

The following formula for  r was the first one to be suggested: 

(4.11) 

Where X prev is the previous iterate. Algorithm 4.6 with this choice for r is 

called the( Fletcher–Reeves method)   after the people who invented it in 1964. 

Theorem 4.2. Apply the Fletcher–Reeves method with exact line Search 

To the quadratic function (4.2). If f' (Xk) 0 for k=1……….… n, 

Then the search directions h1,……,h n are conjugate with respect to H. 

Proof.  
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We shall use induction to show that for j =1,……..,n: 

: (B.1) 

We use the notation 

gi = f'(xi) and define the search directions by 

Then (4.5) leads to 

 (B.2) 

and Algorithm 4.6 and (4.11) combine to 

; (B.3) 

and ar+1 found by exact line search. Finally, we remind the reader of (4.10) and 

(4.9) 

: (B.4) 

Now, we are ready for the induction: For j=1, (B.1) is trivially satisfied, there is 

no hi vector with i<1. 

Next, assume that (B.1) holds for all j =1,………,k. Then it follows from the proof 

of Theorem 4.8 that 

: (B.5) 

If we insert (B.3), we see that this implies 
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Thus, the gradients at the iterates are orthogonal, 

: (B.6) 

Now, we will show that (B.1) also holds for j = k+1 : 

For i<k each term is 

zero according to (B.1) for j let than and quake k and (B.5). 

 

In the first reformulation we use both relations in (B.4), and next we use the 

definition of  in (B.3). Thus, we have shown that (B.1) also holds for j =k+1 

and thereby finished the proof .B .According to Theorem 4.8 this implies that the 

Fletcher–Reeves method With exact line search used on a quadratic will 

terminate in at most n steps. Point 1 in  Theorem 4.8 shows that a conjugate 

gradient method with exact line search produces descent directions. 

4.4. The Polak–Ribi`ere method 

An alternative formula for r is 
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Algorithm 4.6 with this choice of r  is called the Polak–Ribi`ere method. It dates 

from 1971 (and again it is named after the inventors). For a quadratic (4.13) is 

equivalent to (4.11)     (Because then = 0, 

Example 4.2. (Resetting). 

A possibility that has been proposed is to reset the search direction h to the 

steepest descent direction hsd  in every nth iteration. the rationale behind this is 

the n-step quadratic termination property. If we enter a Neighbourhood of the 

solution where f behaves like a quadratic, resetting will ensure quick 

convergence. Another apparent advantage of resetting is that it will guarantee 

global convergence (by Theorem 2.18). However, practical experience has shown 

that the profit of resetting is doubtful. In connection with this we remark that the 

Polak–Ribi`ere method has a kind of resetting built in. Should we encounter a 

step with very little progress, so that[[x- xprev]]is small compared with[[f'(xprev)  

[[f'(xprev) ]] , then[[f'(x) – f'( xprev )]]will also be small and therefore  r  is small, 

and hcg ' hsd in this situation. Also, the modification before the line search in 

Algorithm 4.6 may result in an occasional resetting.  the  method  fails to 

converge even with exact line search (see p 213 in Nocedal(1992)). The success 

of the Polak–Ribi`ere   formula is there fore not so easily explained by theory{1}. 
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4.5. Convergence Properties 

we saw that the search directions hcg of a conjugate gradient method are descent 

directions and thus the µ of (2. 2) satisfies µ<π/2. There is no guarantee, 

however, that the  µ of Definition 2.1will stay constant, and theorem 2.1 is 

therefore not directly applicable .For many years it was believed that to guarantee 

convergence of a conjugate gradient method it would be necessary to use a 

complicated line search, and perhaps make some other changes to the method. 

But in 1985 Al- Baali managed to prove global convergence using a traditional 

soft line search. (2){1} 

Theorem 4.3. Let the line search used in Algorithm 4.6 satisfy (2.10) 

and (2.11) with parameter values  Q<B<0.5. Then there is a c>0 Such that for all 

k 

 

:Let us finally remark on the rate of convergence. Crowder and Wolfe (1972) 

show that conjugate gradient methods with exact line search have a linear 

convergence rate, as defined in (2.4). This should be contrasted with the super 

linear convergence rate that holds for Quasi-Newton methods and the quadratic 

convergence rate that Newton’s method possesses (3)  

Example 4.3.       (Rosen Brock's function,) 
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is widely used for testing optimization 

algorithms. Figure 4.2 shows level curves for this function (and illustrates, why it 

is sometimes called the ―banana function‖). 

 

Figure 4.2: Contours of Rosen Brock's function. 

 

the function has one   minimizer x0 = [-0. 0 ] T (marked by a + in the 

figure) with f(x*)=0, and there is a “valley” with sloping bottom following the 

parabola . Most optimization algorithms will try to follow this valley. 

Thus, a considerable amount of iteration steps is needed, if we take X0 in the 2 
nd

 

quadrant. Below we give the number of iteration steps and evaluations of f(x) and 

f '(x) when applying Algorithm 4.6 on this function. In all cases we use the 

starting point  

, and stopping criteria given by "  (4.7). In case of exact line 

search we use   (2.29), while we take  
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in Algorithm 2.1 for soft line search. x0 = [-0. 0 ] T 

 

Thus, in this case the Polak–Ribi`ere method with soft line search performs best. 

Below we give the iterates (of. Figure 4.2) and the values of f(Xk) and  

note the logarithmic ordinate axis. 

 

4.6. Implementation 

To implement a conjugate gradient algorithm in a computer program, some 
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decisions must be made. Of course we need to choose a formula for r ; we 

recommend the Polak–Ribi`ere formula. We also need to specify the exactness of 

the line search. For Newton-type methods it is usually recommended that the line 

search be quite liberal, so for the line search in Algorithm 2.1 it is common to 

choose the parameter values Q =0.01 and B  =0.9. For conjugate gradient 

methods experience dictates that a line search with stricter tolerances be used, say 

Q =0.01 and B =0.1. In addition we have to specify the stopping criterion; (2.9) is 

recommended .Since we do not have access to  f ''(Xk), we cannot use (2.10). For 

methods with a fast convergence rate, (2.8) may be quite satisfactory, but its use 

for conjugate gradient methods must be discouraged because their final 

convergence rate is only linear. Finally some remarks on the storage of vectors. 

The Fletcher–Reeves method may be implemented using three n-vectors of 

storage, x, g and h. if these contain x, f '(x) and h prev at the beginning of the 

current iteration step, we may overwrite h with hcg and during the line search we 

overwrite x with and g with   Before overwriting the 

gradient, we find   or use in the denominator in (4.11) on the next 

iteration. For the Polak–Ribi`ere method we need acces to f '(x) and f '(Xprev) 

simultaneously, and thus four vectors are required, say x, g, gnew and   h  

{1}{2} 

4.7. The CG Method for Linear Systems 
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We cannot part with conjugate gradient methods without mentioning that 

they can of course be used to minimize the quadratic function (4.2) itself. 

But by (4.3) this is equivalent to solving the positive definite linear system 

Hx = -b :  Let g denote the current gradient,   ( 1) 

g = q'(x) = Hx + b ; 

and let u = Hhcg. It is easily verified that the exact step length a may be 

calculated directly,          and that x and g are updated by 

x := x + a hcg,      g := g + a u : 

The Fletcher–Reeves and the Polak–Ribi`ere formulas are equivalent in this 

setting, thus, the method can be implemented using four n-

vectors, x, g, h, u. The method is called the conjugate gradient method for linear 

systems. The method is specially useful when the matrix H is large and sparse. 
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5. NEWTON-TYPE METHODS: 

Introduction : 

 we consider a class of methods for unconstrained optimization which are based 

on Newton’s method. This class is called Quasi- Newton methods. In order to 

explain these methods we first describe Newton’s method for unconstrained 

optimization in detail. Newton’s method leads to another kind of methods known 

as Damped Newton Methods, which will also be presented. Finally we get to the 

Quasi-Newton methods. This class includes some of the best methods for solving 

the unconstrained optimization problems. 

5.1. Newton’s Method {1} 

Newton’s method forms the basis of all Quasi-Newton methods. It is widely used 

for solving systems of non-linear equations, and until recently it was also widely 

used for solving unconstrained optimization problems. As it will appear, the two 

problems are closely related. 
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Example  5.1. 

In Example 1.2 we saw the method of alternating directions fail to   find the 

minimizer of a simple quadratic in two dimensions and in Example 3.1 

we saw the steepest descent method fail on the same quadratic. In Chapter 4 we 

saw that the conjugate gradient methods finds the minimizer of a quadratic in n 

steps (n being the dimension of the space), in two steps in Example 4.1.  

Newton’s method can find the minimizer of a quadratic in n-dimensional space in 

one step. This follows from equation (5.2) below.   Figure 5.1 gives the contours 

of our 2-dimensional quadratic together with (an arbitrary) X0. X1 and the 

minimizer x* marked by * 

 

 

Figure 5.1: Newton’s method finds 

The minimizer of a quadratic in 

The very first step 

in order to derive Newton’s method in the version used in optimization, we shall 
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once again consider the truncated Taylor expansion of the cost function at the 

current iterate x,                                     (5.1(a)                            

Where q(h) is the quadratic model of f in the vicinity of x, 

                                           (5.1(b) 

The idea now is to minimize the model q at the current iterate. If f ''(x) is Positive 

definite, then q has a unique minimizer at a point where the gradient of q equals 

zero, i.e. where 

f '(x) + f ''(x)h = 0                                : (5.2) 

Hence, in Newton’s method the new iteration step is obtained as the solution   to 

the system (5.2) as shown in the following algorithm. 

Algorithm 5.1 Newton’s method 

begin 

X := X0;                                                              (Initialisation) 

repeat 

Solve f ''(x) hn = -f '(x)                                     (find step) 

       x := x + hn                                                       (. . . and next iterate) 

until stopping criteria satisfied 

end 

Newton’s method is well defined as long as f '' (x) remains non-singular. 

Also, if the Hessian is positive definite, then it follows from Theorem 2.1 that hn 
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is downhill. Further, if f ''(x) stays positive definite in all the steps and if the 

starting point is sufficiently close to a minimizer, then the method usually 

converges rapidly towards such a solution. more precisely the following theorem 

holds. 

Theorem  5.1 If an iterate x is sufficiently close to a local minimizer X* and f 

''(x*) is positive definite, then Newton’s method is well defined in all the 

following steps, and it converges quadratic cally towards x* 

Example 5.2 

. We shall use Newton’s method to find the minimizer of the following function 

 

Table 5.1 gives results of the iterations with the starting point  = [1, 0.7]. x0 = 

[-0. 0 ] T According to Theorem 5.4 we expect quadratic convergence. If the 
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factor C2 in (2.5) is of the order of magnitude 1, then the column of  would 

show the number of correct digits doubled in each iteration step, and the f-values 

and step lengths would be squared in each iteration step. the convergence is faster 

than this; actually for any starting point  = [u ,v]  with   [v]  < 1 we will get 

cubic convergence; see the end of the next example. 

 

Until now, everything said about Newton’s method is very promising: It 

Is simple and if the conditions of Theorem 5.4 are satisfied, then the rate 

of convergence is excellent. Nevertheless, due to a series of drawbacks the basic 

version of the method is not suitable for a general purpose optimization 

algorithm. The first and by far the most severe drawback is the method’s lack of 

global convergence. 

Example 5.3. 

With the starting point  = [1, 2] the Newton method behaves very badly: 
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x0 = [-0. 0 ] T Clearly, the sequence of iterates moves rapidly away from the 

solution (the firstComponent converges, but the second increases in size with 

alternating sign) even though f''(x) is positive definite for any X2 in R2. The    for 

Arc tan (0+h) is 

 

The next point to discuss is that f ''(x) may not be positive definite when x is far 

from the solution. In this case the sequence may be heading towards a saddle 

point or a maximizer since the iteration is identical to the one used for solving the 

non-linear system of equations f '(x) =0. Any stationary point of f is a solution to 

this system. Also, f ''(x) may be ill-conditioned or singular so that the linear 

system (5.2) cannot be solved without considerable errors in hn. Such ill-

conditioning may be detected by a well designed matrix factorization (e.g. a 

Cholesky factorization )but it still leaves the question of what to do in case ill-

conditioning occurs. The final major drawback is of a more practical nature but 

basically just as severe as the ones already discussed. Algorithm 5.3 requires the 
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analytic second order derivatives. These may be difficult to determine even 

though they are known to exist. Further, in case they can be obtained, users tend 

to make erroneous implementations of the derivatives  . Also, in large scale 

problems the calculation of the Hessian may be costly since   function 

evaluations are needed. Below, we summarize the advantages and disadvantages 

of Newton’s method discussed above. They are the key to the development of 

more useful algorithms, since they point out properties to be retained and areas 

where improvements and modifications are required. 

{Table (5.3)} Advantages and disadvantages of Newton’s method for 

unconstrained 

optimization problems 

1: Advantages 

1- Quadratic ally convergent from a good starting point if f ''(x*) is 

Positive definite. 

2- Simple and easy to implement. 

2:  Disadvantages 

1- Not globally convergent for many problems. 

2- May converge towards a maximum or saddle point of f. 

3- The system of linear equations to be solved in each  iteration may be ill-

conditioned or singular. 
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4- Requires analytic second order derivatives of f.    Table {5.3: }Pros and Cons 

of Newton’s Method. 

5.2. Damped Newton Methods:{1} 

Although disadvantage 4 in Table 5.3 often makes it impossible to use any of the 

modified versions of Newton’s method,  Further, in case second order derivatives 

are obtainable, modified Newton methods may be used successfully. Hence, for 

the methods discussed in this subsection it is still assumed, that second order 

analytic derivatives of f are available. The more efficient modified Newton 

methods are constructed as either explicit or implicit hybrids between the original 

Newton method and the method of steepest descent. The idea is that the 

algorithm in some way should take advantage of the safe, global convergence 

properties of the steepest descent method whenever Newton’s method gets into 

trouble. On the other hand the quadratic convergence of Newton’s method should 

be obtained when the  iterates get close enough to x*, provided that the Hessian is 

positive definite. The first modification that comes to mind is a Newton method 

with line Search in which the Newton step  is used as a 

search Direction.  Such a method is obtained if the step x := x+ hn in Algorithm 

5.3 is substituted by a := line search(x; hn); x := x + a hn: (5.6) This will work 

fine as long as f ''(x) is positive definite since in this case hn is a descent 
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direction. The main difficulty thus arises when f ''(x) is not positive definite. The 

Newton step can still be computed if f ''(x) is non-singular, and one may search 

along ± hn where the sign is chosen in each iteration to ensure a descent 

direction. However, this rather primitive approach is questionable since the 

quadratic model q(h) will not even possess a unique minimum. A number of 

methods have been proposed to overcome this problem. We Shall concentrate on 

the so-called damped Newton methods, which are considered to be the most 

successful in  general. The framework for this class of methods is 

 

Algorithm 5.2 Damped Newton step 

Slove {f'' (x)+ µI) hdn =  -f '(x)                                 (µ>0) 

X:= x + x a hdn     (a > 0)  

Adjust µ 

Instead of finding the step as a stationary point of the quadratic (5.1b), the 

step hdn is found as a stationary point of 

 

 ( I is the identity matrix).  f ''(x) + µ I is positive definite. Thus, if µ is 

sufficiently large, then hdn is not only a stationary point, but Also a minimizer for 

q µ Further, Theorem 2.14 guarantees that hdn is a Descent direction for f at x.  
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the term  penalizes large steps, an from the definition in Algorithm 5.7 we 

see that if  µ  is very large, then we get hdn ≃ (-1/ µ)f '(x)      (5.10),.                                    

if the current x is far from the minimizer x*. On the other hand, if µ  is small, 

then hdn ≃ hn, the Newton step, which is good when we are close to x* (where f 

''(x) is positive definite). Thus, by proper adjustment of the damping parameter µ   

we   have a method that combines the good qualities of the steepest descent 

method in the global part of the iteration process with the fast ultimate 

convergence of Newton’s method  

Theorem 5.2. If the matrix f ''(x)+ µ I is positive definite, then  hdn = argmin  

//h//·// [[hdn]] (q(h)) ,Where q is given by (5.1b)  

Proof  

In (5.8) we introduced the function    

where q is given by (5.1b). The gradient of                             

Where   g = f'(x), H = f''(x). According 

to the assumption, the matrix H+ µ I is positive definite, and therefore the linear 

system of equations q' µ = 0 has a unique solution, which is the minimizer of   q 

µ . This solution is recognized as  hdn.  Now, let 
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5.1) 

In a proper trust region method we monitor the trust region radius a  the  theorem 

shows that if we monitor the damping parameter instead, we can think of it as a 

trust region method with the trust region radius given implicitly asD= // hdn //.  In 

Levenberg–Marquardt type methods µ is updated in each iteration step.Given the 

present value of the parameter, the Cholesky factorization of f ''(x)+  µ I is 

employed to check for positive definiteness, and  µ  is increased  if the matrix is 

not significantly positive definite. otherwise, the solution hdn is easily obtained 

via the factorization. the direction given by hdn is sure to be downhill, and we get 

the “trial point” x+hdn (corresponding to a=1 in Algorithm 5.1). As in a trust 

region Method (see Section 2.4) we can investigate the value of the cost function 

at the trial point, i.e. f(x+ hdn). If it is sufficiently below f(x), then the trial point is 

chosen as the next iterate. Otherwise, x is still the current iterate (corresponding 

to a=0 in Algorithm 5.1), and ¹ is increased. It is not sufficient to check whether  

f(x + hdn) < f(x). In order to prove convergence for the whole procedure one 

needs to test whether the actual decrease in f-value is larger than some small 

portion of the decrease predicted by the quadratic model (5.1b), i.e. if 
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where  is a small positive number We recognize 

r as the gain factor, (2.24). It is also used to monitor/ µ : If r  is close to one, then 

one may expect the model to be a good approximation to f in a neighbourhood of 

x, which is large enough to include the trial point, and the influence of Newton’s 

method should be increased by decreasing µ  . If, on the other hand, the actual 

decrease of f is much smaller than expected, then   µ   must be increased in order 

to adjust the method more towards steepest descent. It is important to note that in 

this case the length of hdn is also reduced, cf (5.10).We could use an updating 

strategy similar to the one employedin Algorithm     if   r > 0:75       µ  :=  µ /3 

             if   r < 0:25      µ  :=  µ* 2                                      (5.13) 

however, the discontinuous changes in µ when r is close to 0.25 or 0.75 can 

cause a “flutter” that slows down convergence. therefore, we recommend to  use 

the equally simple strategy given by 

(5.15 

the two strategies are illustrated in Figure 5.3  
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Figure 5.3:  

Updating of µ by (5.13) (dasheded  line)   and by (5.14) (full line). 

The method is summarized in Algorithm 5.15 below. Similar to (4.7) we can use 

the stopping criteria 

 

The simplicity of the original Newton method has disappeared in the attempt to 

obtain global convergence, but this type of method does perform well in general. 

Algorithm 5.3Levenberg–Marquardt type damped Newton method 

begin 
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 :                 

Example 5.4. Table 5.5 illustrates the performance of Algorithm 5.15 when 

applied to the tricky function (5.5) with the poor starting point. We use µ 0= 1 and      

 x0 = [-0. 0 ] T 

The solution is found without problems, and the columns with f and [[f']] show 

super linear convergence, as defined in 

Example 5.5. 

We have used Algorithm 5.15 on Rosen Brock's function from Example 4.3. We 

use the same starting point, x0 = [-0. 0 ] T X0 = [-1,.2. 1 ]T and with µ 0 = 1,  

, we found the solution after 29 iteration steps. The    

Performance is illustrated below. 
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the three circles in Figure 5.4a indicates points, where the iterations stalls, i.e. the 

current x is not changed, but µ   is updated. after passing the bottom of the 

parabola, the damping parameter µ  is decreased in each step. as in the previous 

example we achieve super linear final convergence. 

5.3. Quasi–Newton Methods: {1} 

The modifications discussed in the previous section make it possible to overcome 

the first three of the main disadvantages of   Newton’s  method shown  in Table 

5.3: the damped Newton method is globally convergent, 

Ill-conditioning may be avoided, and minima are rapidly located. However, no 
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means of overcoming the fourth disadvantage has been considered. the user must 

still supply formulas and implementations of the second derivatives of the cost 

function. In Quasi–Newton methods (from Latin, quasi: nearly) the idea is to use 

matrices which approximate the Hessian matrix or its inverse, instead of the 

Hessian matrix or its inverse in Newton’s equation  (5.2). The matrices are   

normally named 

 

The matrices can be produced in many different ways ranging from very Simple 

techniques to highly advanced schemes, where the approximation is built up and 

adjusted dynamically on the basis of information about the first derivatives, 

obtained during the iteration. These advanced Quasi–Newton methods, , are some 

of the most powerful methods for solving unconstrained optimization problems. 

Possibly the simplest and most straight-forward Quasi–Newton method is  

Obtained if the elements of the Hessian matrix are approximated by finite 

differences: In each coordinate direction, ei (i=1… n), a small increment   is 

added to the corresponding element of x and the gradient in this point is 

calculated. the I th column of a matrix B is calculated as the difference 

approximation  After this, the symmetric 

matrix  is   formed. If   the are chosen appropriately, this 



 
77 

 

is a good approximation to f ''(x) and may be used in a damped Newton method. 

however, ` and  n extra evaluations of the gradient guarantee that  B is positive 

(semi-)definite. In the advanced Quasi–Newton methods these extra gradient 

evaluations are avoided. Instead we use updating formulas where the B or D 

matrices (see 5.17) are determined from information about the iterates, X1, X2 

…… and the g gradients of the cost function, f '(X1), f '(X2)…. gathered during 

the  Iteration  steps. thus, in each iteration step the B (or D) matrix is changed  So 

that it finally converges towards being 

the minimizer.  

5.4. Quasi–Newton with Updating Formulas: {1} 

short discussion on why approximations to the inverse Hessian are preferred 

rather than approximations to the Hessian itself:  

1. First, the computational lab our in the updating is the same no matter 

which of the matrices we update.  

2. Second, if we have an approximate inverse, then the search direction is 

found simply by multiplying the approximation with the negative 

gradient of f. this is an O(N2) process where is the solution of the linear 

system with B as coefficient matrix is an O(N3) process.  

3. A third possibility is to use approximations to the Cholesky factor of 

the Hessian matrix, determined at the start of the iteration and updated 
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in the iteration.  Using these, we can find the solution of the system 

(5.2) in O (N2) operations. With updating formulas indicated that the 

updating of an approximation to the inverse Hessian might become 

unstable. , recent research indicates that this needs not be the case. A 

classical Quasi–Newton method with updating always includes a line 

search. Alternatively, updating formulas have been used in trust region 

methods. Basically, these two different approaches (line search or trust 

region) define two classes of methods. In this section we shall confine 

ourselves to the line search approach. With these comments the 

framework may be presented. 

Framework 5.18. Iteration step in Quasi–Newton with updating 

and line search. B (or D) is the current approximation to f ''(x)(or f ''(x)-1) 

Solve B hqn= -f '(x) (or compute hqn := -Df '(x))line search along   hqn giving 

 hqn := a hqn; xnew = x + hqn 

Update B to Bnew (or D to Dnew) In the following we present the requirements to 

the updating and the techniquesneeded. 

5.5. The Quasi–Newton Condition: {1} 

An updating formula must satisfy the so-called Quasi–Newton condition, 

which may be derived in several ways. The condition is also referred to as 

the secant condition, because it is closely related to the secant method for 
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non-linear equations with one unknown. 

Let x and B be the current iterate and approximation to f ''(x). Given these, the 

first parts of the iteration step in Framework 5.18 can be performed yielding   hqn 

and hence xnew. The objective is to calculate B new by a correction of   B. The 

correction must contain some information about the second derivatives. Clearly, 

this information is only approximate. It is based on the gradients of f at the two 

points. Now, consider the Taylor expansion of f' around 

X+ hqn: 

f '(x) = f '(X+ hqn) - f ''(X+ hqn) hqn+………….: (5.19) 

We assume that we can neglect the higher order terms, and with the notation 

y = f '(xnew) - f '(x)                ; (5.20) 

Equation (5.19) leads to the relation, similar to (4.5), 

y≃   f ''(xnew) hqn : 

Therefore, we require that Bnew should satisfy 

Bnew hqn = y : (5.21a) 

This is the Quasi–Newton condition. The same arguments lead to the alternative 

formulation of the Quasi–Newton condition,         Dnew y = hqn: (5.21b) 

The Quasi–Newton condition only supplies n conditions on the matrix Bnew (or 

Dnew) but the matrix has n2 elements. Therefore additional conditions are needed 

to get a well defined method.  In the Quasi–Newton methods that we describe, 
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the B (or D) matrix is updated in each iteration step. We produce Bnew (or Dnew) 

by adding a correction term to the present B (or D). Important requirements to the 

updating are that it must be simple and fast to perform and yet effective. This can 

be obtained with a recursive relation between successive approximations, 

Bnew = B +W; 

Where W is a correction matrix. In most methods used in practice,W is  

  

Where a; b; u; v in   IRn. Hence W is an outer product of two vectors or a sum of 

two such products. Often a=b and u=v; this is a simple way of ensuring that W is 

symmetric. 

5.6. Broyden’s Rank-One Formula:  

Tradition calls for a presentation of the simplest of all updating formulas which 

was first described by Broyden (1965) [1]It was not the first updating Formula 

but we present it here to illustrate some of the ideas and techniques  Used to 

establish updating formulas. 

First, consider rank-one updating of the matrix B : The 

vectors a; b2 in IRn are chosen so that they satisfy the Quasi–NewtonCondition 
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(5.21(a), ; (5.22a) 

And – in an attempt to keep information already in B – Broyden demands 

That for all v orthogonal to hqn we get Bnew v = Bv, ie 

                                      

(5.22b) 

These conditions are satisfied if we take b = hqn and the vector a determinedby 

 thiese results in Broyden’s rank-one formula for 

updating the approximation to the Hessian: 

: (5.23) 

A formula for updating an approximation to the inverse Hessian may be 

derived in the same way and we obtain 

                                 (5.24 

Now, given some initial approximation D0 (or B0) (the choice of which shall), we 

can use (5.23) or (5.24) to generate the sequence needed in the framework. 

However, two important features of the Hessian (or its inverse) would then be 

disregarded: We wish both matrices B and D to be symmetric and positive 

definite. This is not the case for (5.23) and (5.24), and thus the use of Broyden’s 
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formula may lead to steps which are not even downhill, and convergence towards 

saddle points or maxima will often occur. Therefore, these formulas are never 

used for unconstrained optimization. Broyden’s rank-one formula was developed 

for solving systems of nonlinear equations. Further, the formulas have several 

other applications, e.g. in methods for least squares and minimax optimization. 

5.7. Symmetric Updating: {1} 

Since is symmetric, it is natural to require D to be so. If at the 

Same time rank-one updating is required; the basic recursion must have the form 

(5.25a) 

The Quasi–Newton condition (5.21b) determines u uniquely: Substituting (5.25) 

into (5.21b) and letting h denote hqn yields 

             (5.25b) 

this shows that where is the scalar by rescaling u 

we get the SR1 formula (symmetric rank-one updating formula) 

: (5.26) 

It may be shown that if h = Dy, then Dnew = D is the only solution to the Problem 

of finding a symmetric rank-one update which satisfies (5.21ab). If, 
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However =0 while at the same time h Dy, then there is no solution,  and 

the updating breaks down. Thus, in case the denominator becomes small we 

simply set Dnew = D and avoid division by zero .The SR1 formula has some 

interesting properties. The most important is that a Quasi–Newton method 

without line search based on SR1 will minimize a quadratic function with 

positive definite Hessian in at most n+1 iteration steps, provided the search 

directions are linearly independent and  remains positive. Further, in this 

case Dnew equals after n+1 steps. This important property is called 

quadratic termination, of Section 4.1. The SR1 formula has only been used very 

little in practice. this is due to the fact that may vanish, whereby numerical 

instability is introduced or the updating breaks down. A similar derivation gives 

the SR1 formula for approximations to 

f''(x),  

And similar comments can be made. 

5.8. Preserving Positive Definiteness{1} 

Consider Newton’s equation (5.2) or a Quasi–Newton equation based on 

(5.17). The step is determined by                      Gh = -f '(x) ; 

where G = f ''(x) (Newton) or – in the case of Quasi–Newton, G = B or 



 
84 

 

. From Theorem 2.14 on page 14 it follows that h is a downhill 

Direction if G is positive definite, and this is a property worth striving for. If we 

use D = I (the identity matrix) in all the steps in the Quasi–Newton Framework 

5.18, then the method of steepest decent appears. As discussed in Chapter three 

this method has good global convergence properties, but the final convergence is 

often very slow. If, on the other hand, the  iterates are near the solution x*, a 

Newton method (and also a Quasi–Newton method with good Hessian 

approximations) will give good performance, close to quadratic convergence. 

Thus a good strategy for the updating would be to use D close to I in the initial 

iteration step and then successively let D approximate better and better 

towards the final phase. this will make the iteration start like the steepest descent 

and end up some where like Newton’s method. if, in addition, the updating 

preserves positive definiteness for all coefficient matrices, all steps will be 

downhill and a reasonable rate of convergence can be expected, since 

is positive (semi-)definite at a minimizer. 

5.9. The DFP Formula{2} 

Symmetric rank-two formula can be written as : 

We insert this in the Quasi–Newton condition (5.21b) and get 
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With two updating terms there is no unique 

determination of u and v, but Fletcher points out that an obvious choice is to try 

Then the Quasi–Newton condition will be 

satisfied if and and this yields the formula 

Definition  5.27. (DFP updating.) 

                  

where 

This was the dominating 

formula for more than a decade and it was found to work well in practice. In 

general it is more efficient than the conjugate Gradient method (see Chapter 

four). Traditionally it has been used in Quasi–Newton methods with exact line 

search, but it may also be used with soft line search as we shall see in a moment. 

A method like this has the following important properties: 

(i)On quadratic objective functions with positive definite Hessian: 

a) it terminates in at most n iterations with Dnew = , 

b) it generates conjugate directions, 

c) it generates conjugate gradients if D0 = I , Provided that the method uses exact 

line search.  On general functions: 
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(ii) On general functions: 

d) it preserves positive definite D-matrices if in all steps, 

e) it gives super linear final convergence, 

f) it gives global convergence for strictly convex objective functions provided 

that the line searches are exact Here we have a method with super linear final 

convergence (defined in (2.6)).Methods with this property are very useful 

because they finish the iteration with fast convergence. Also, in this 

case and  [ [x*-xnew ]]<1 

Implying that [[xnew –x]] can be used to estimate the distance from x to x* 

Example 5.6. 

Assume that D is positive definite. Then its Cholesky factor exists:  

and for any non-zero  in the IRn we use Definition 5.1 to find 

 

If , then both terms on the right-hand side are non-negative. The first 

term vanishes only if , ie when a and b are proportional, which implies 
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that z and y are proportional, with In this case the second term   

becomes       which is positive due to the basic assumption. 

Hence,  for any non-zero z and Dnew is positive definite. The 

essential condition is called the curvature condition because it can be 

expressed as 

: (5.28) 

Notice, that if the line search slope condition (2.17) is satisfied then (5.28)  is also 

satisfied since and ), where is the line search 

5.10. The BFGS Formulas 

the final updating formulas are known as the BFGS formulas{2} 

. They were discovered independently by Broyden, Fletcher, Goldfarb these 

formulas are the most popular of all the updating formulas, as we saw with the 

DFP formula, the BFGS formulas are difficult to derive directly from the 

requirements. However, they arrive in a simple way through the concept of 

duality, which will be discussed briefly here. Remember the Quasi–Newton 

conditions (5.21):              Bnewh = y    and               Dnew y = h            (5.29) 

These two equations have the same form, except that h and y are interchanged 

and Bnew is replaced by Dnew. This implies that any updating formula for B which 

satisfies (5.21(a) can be transformed into an updating formula for D. Further, any 
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formula for D has a dual formula for B which is found by the substitutionD B 

and h  y .Performing this operation on the DFP formula (5.27) yields the 

following updating formula, 

Definition (5.2).     (  BFGS updating.) 

 

Where          h = Xnew – x, 

              y = f '(Xnew) - f '(x), u = Bh : 

This updating formula has much better performance than the DFP formula;  for 

an excellent explanation why this is the case. If we make the dual operation on 

the BFGS update we return to the DFP updating, as expected. The BFGS formula 

produces B which converges to f ''(x*) and the DFP formula produces D which 

converges to . Alternatively, we can find another set of matrices 

[D]which has the same convergence, although it is different from the D-matrices 

produced by DFP. The BFGS formula is a rank two update, and there are 

formulas which give the corresponding update for  

(5.3)Definition ( BFGS updating for D) 

 

 

Where                         h = xnew – x,   y = f '(xnew) - f '(x);                  (5.31) 
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v = Dy                  

The BFGS formulas are always used together with a soft line search and 

as discussed above the procedure should be initiated with the full Quasi– 

Newton step in each iteration step, ie the initial a in Algorithm 2.27 should be 

one. Experiments show that it should be implemented with a very loose line 

search; typical values for the parameters in (2.26) are and   B= 0.9. 

The properties a) – f) of the DFP formula also hold for the BFGS formulas. 

Moreover, Powell has proved a better convergence result for the latter formulas 

namely that they will also converge with a soft line search on convex problems. 

Unfortunately, convergence towards a stationary point has not  been proved for 

neither the DFP nor the BFGS formulas on general nonlinear functions – no 

matter which type of line search. Still, BFGS with soft line search is known as 

the method which never fails to come out with a stationary point. 

5.11. Quadratic Termination 

We indicated above that there is a close relationship between the DFP update and 

the BFGS-updates. Still, their performances are different with the DFP update 

performing poorly with soft line search. Broyden   suggested to combine the two 

sets of formulas: {1} 
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Definition  Broyden’s one parameter family. 

(5.32) 

where and WDFP and WBFGS are the updating terms in definitions 

( 5.3)  respectively. The parameter ¾ can be adjusted during the iteration,  for  

details. He remarks that π =0, pure BFGS updating is often the best. We want to 

state a result for the entire  Broyden  family, a result which consequently is true 

for both DFP and BFGS. The result is concerned with quadratic termination: 

5.12Remark  

The Broyden one parameter updating formula gives quadratic termination for all 

values of   ( provided that D0 is positive definite .this implies that 

a Quasi–Newton method with exact line search determines the minimizer of a 

positive definite quadratic after no more than n iteration steps (n being the 

dimension of the space). The basis of all the updating formulas in this chapter is 

the Quasi–Newton conditions (5.21(a)–(b). this corresponds to a linear 

interpolation in the gradient of the cost function. If the cost function is quadratic, 

then its gradient is linear in X, and so is its approximation. When the Quasi–

Newton condition has been enforced in n steps, the two linear functions agree in 

n+1 positions in IRn, and consequently the two functions are identical. Iterate no. 

n+1, xnew, makes the gradient of the approximation equal to zero, and so it also 

makes the gradient of the cost function equal to zero; it solves the problem. the 
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proviso that the quadratic and D0 must be positive definite, ensures that xnew is not 

only a stationary point, but also a minimizer. 

5.13. Implementation of a Quasi–Newton Method{1} discuss some details of 

the implementation and end by giving the Quasi–Newton algorithm with the 

different parts assembled. Based on the discussion in the previous sections we 

have chosen a BFGS updating formula the  an update of the inverse hessian , but 

even though D in theory stays positive definite, the rounding errors may cause ill 

conditioning and even indefiniteness. For professional codes updating of a 

factorization of the Hessian is recommended such that the effect of rounding 

errors can be treated properly. In the present context a less advanced remedy is 

described  which is to omit the updating if the curvature condition does not hold, 

since in this case Dnew would not be positive definite. Actually, Dennis and 

Schnabel recommend that the updating is skipped if   

; (5.33) 

where "M is the machine precision. We shall assume the availability of a soft line 

search such as Algorithm 2.3. It is important to notice that all the function 

evaluations take place during the line search. hence,  the values of f and f ' at the 

new point are received from the line search subprogram. In the next iteration step 

these values are returned to the subprogram such that f and f ' for a =0 are ready 

for the next search. Sometimes the gradient needs not be calculated as often as f.  
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In a production code the line search should only calculate f respectively f ' 

whenever they are needed. As regards the initial approximation to the inverse 

Hessian, D0, it is traditionally recommended to use D0 = I, the identity matrix. 

this D0 is, of course, positive definite and the first step will be in the steepest 

descent direction. Finally, we outline an algorithm for a Quasi–Newton method. 

Actually, the curvature condition needs not be tested because it is incorporated in 

the soft line search as s 

 

 

 

 

 

 

Algorithm  5.34. Quasi–Newton method with BFGS–updating 

begin 
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Example   5.7.  

We consider Rosen Brock's function from Examples 4.3 and 5.5. We have tried 

different updating formulas and line search methods. The line search parameters 

were chosen as in Example 4.3.  With the starting point x0 = [-1.2. 1 ] T,  

x0 = [0. 0 ] T the following numbers of iteration steps and evaluations of f(x) and 

f '(x) are needed to satisfy the stopping criterion [ [f' (x) ] ] < 10−10. The results are 

as expected: BFGS  combined with soft line search needs the smallest number of 

function evaluations to find the solution. 
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X0the number of iteration steps is about the same as in Example 5.5, while the 

number of function evaluations is almost four times as big. Note, however, that 

with Algorithm 5.34 each evaluation involves f(x) and f (x), while each 

evaluation in the Damped Newton Method also involves the Hessian f ''(x).  For 

many problems this is not available. If it is, it may be costly: we need to compute 

1/2(n(n+1) elements in the symmetric matrix f ''(x), while f '(x) has n elements 

only.  
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5.14 Symmetric,( Positive Definite Matrices){1} 

A matrix A in (R)n*n is symmetric if A= _A, ie if aij =aji for all i; j. 

Definition (514).The symmetric matrix A in (R)n*n is 

 

  

Proof   unit lower triangular matrix L is characterized by  and  

for j>i. Note, that the LU-factorization A = LU is made without pivoting (which, 

by the way, could destroy the symmetry). Also note that points (3—4) give the 

following relation between the LU- and the Cholesky- factorization 

(A.3a) 

: (A.3b) 

The Cholesky factorization with test for positive definiteness can be implemented 

as follows 

 



 
96 

 

(5.5)Algorithm . (Cholesky factorization.) 

begin 

  

end 

The solution to the                              Ax = b 

can be computed via the Cholesky factorization: Inserting  

we see that the system splits into  Cz = b and  

The two triangular systems are solved by forward- and back-

substitution, respective 

Algorithm.(5.6) (Cholesky solve.) 

begin 
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end 

The “cost” of this algorithm is O (n2) operations. 

 

Example(5.4) :-   

A=LDL  TO illustrate this factorization consider the positive definite matrix  

             A= 1.4       -0.20         .1 

                  ,-0.2      1.5           -0.3   

                  ,0.1          -0.3        1.5 

Then A can be represented as  LDL   where  

L=     1                0                0  

         -0.1429      1                  0 

       0.0714      -0.1942          1                                                           

D=       1.4000          0                0 

            0.0714      -0.1942          1  

                0              0          1.7374                    

The second   factorization is obtained easily from the first since D has positive 

diagonal   entries we can write   

D=D' D' 

Where D' is a' diagonal   matrix   with    d  = d      if then define  

 L=LD'  
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Then L' is also a lower triangular matrix and  

A= L' L'  

EXAMPLE(5.5) :- 

 A=L L   

D= 1.1832         0             0   

 0           1.2130       0                                          

          0             0          1.3181] 

L=LD=  1.1832           0              0   

            -0.1690         1.2130       0                         

              0.0845        -0.2355    1.31 

 So that      

A=LL   =   1.832        0             0                                  1.1832    -0.1690 0.08450,   

                  0.1690     1.2130      0              *                   1.2130     -0.2355         0 

                 0.0845    -0.2355    1.3181                              0                  0     1.3181                                             

 

 

Note  (5.2) 
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x*                                          التضغير………………………(  ) 

 (  )………………………         أخطاء شائعة                   

 (   ).………………………                                  اتجاه 

H                                       حدث التناقص……………………(   ) 

ية زاو                                                ………………………(   ) 

 M                                زاوية مستقلة     ……………………….(   ) 

N                                          بعد الخطاء……………………..(    ) 

 (   )………………………     منحني                                   

e.B                                       متغير     …………………………(   ) 

 (   )..………………………متجه المنطقة                                        

 (   )..……………………متغيرات الخطاء                             

 .(   )……………………أنجاة التدرج                                        

 (   )……………………البحث الخطي                                        

 X                                      بعد البحث الدقيق……………….(   ) 

 (  )…………………اتجاه الهبوط الأحق                                  

 (   )..……………اتجاه الهبوط  السابق                               
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Q.B                                          معيار التوقف………………(    ) 

 (   ).……………طول الخطوة                                            

I                                                 محددة الوحدة…………….(  ) 

 (    )……………أصل الاتجاه                                         

.  (   )..…………معايير التوقف                                        

W                                       منتج خارجي لمتجهين………….(     ) 

 (   ).………         موثر أو عددية                          

 (    )..………دقة الجهاز                                               

 (   ).…………معكوس هسه                                

DFP                           Davidon  Fletcher  Powel……….(    ). 

 

 

 

 

 


