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ABSTRACT

The aim of the research is to give algorithms for unconstrained optimization. We
present Conjugate Gradient, Damped Newton and Quasi Newton methods to
gather with the relevant theoretical background. The reader is assumed to be
familiar with algorithms for solving linear and none. Linear system of

equations,
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INTRODUCTION

In this search we shall discuss numerical methods for the solution of
the optimization problem. For a real function of several real variables
we want to find an argument vector which corresponds to a minimal

function Value

1.1Definition. The optimization problem:

Find x" = argmin, f(x), where f : R" —R. the function f is called the objective
function or cost function and x* is the minimizer.In some cases we want a
maximizer of a function. This is easily determined If we find a minimizer of
the function with opposite sign. Optimization plays an important role in
many branches of science and applications: Economics, operations research,

network analysis, optimal design of mechanical or electrical systems, to

)



mention but a few.

Example 1.1.

flx) =z — =" B

consider functions of one variable. the function has one,

unique minimizer, x*, see Figure (1.1.) ¥ ={=r—< )"

Figure 1.1: One minimizer.

1.2 INTRODUCTION

The function f(x) = 2 cos(x- x*) have infinitely many minimizers: x =x*+2p

where p is an integer; see Figure 1.2.

Figure 1.2: y = 2 cos (X — x*) many minimizers.
the function f(x) = 0.015(x —x*)2- 2 cos(x — x*)has a unique global minimizer, x*

besides that, it also has several so called local minimizers, each giving the
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minimal function value inside a certain region, see Figure 1.3.

\/\l/\/

Figure 1.3: y =U.015(z — 2%)* — 2cos(z — z°).

One global minimizer and many local minimizers.

The ideal situation for optimization computations is that the objective function
has a unique minimizer. We call this the global minimizer .In some cases the
objective function has several (or even infinitely many) minimizers. In such
problems it may be sufficient to find one of these minimizers. In many objective
functions from applications we have a global minimizer and several local
minimizers. It is very difficult to develop methods which can find the global
minimizer with certainty in this situation the methods described here can find a
local minimizer for the objective function. When a local minimizer has been
discovered, we do not know whether it is a global minimizer or one of the local
minimizers. We cannot even be sure that our optimization method will find the
local minimizer

1.3 INTRODUCTION

Closest to the starting point. In order to explore several local minimizers we
can try several runs with different starting points, or better still examine intermediate

results produced by a global minimizer. we end this section with an example meant to
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demonstrate that optimization methods based on too primitive ideas may be
dangerous.

Example 1.2.

We want the global minimizer of the function

F(x) = (w1 + 72 —2)* +100(x1 — a2)* .
The idea (which we should not use) is the following: “Make a series of
iterations. In each iteration keep one of the variables fixed and seeks a value of
the other variables so as to minimize the f-value”. In Figure 1.4 we show the level
curves or contours of f, i-e .curves consisting of positions with the same f-value.
we also show the first few iterations.

Figure 1.4: The Method of Alternating Variables fails t determine the minimizer

of quadratic

X0

a e >
After some iteration the steps begin to decrease rapidly in size. They can become
so small that they do not influence the x-values, because these are represented
with finite precision in the computer, and the progress stops completely. In many
cases this happens far away from the solution. We say that the iteration is caught

in (Stiefel’s cage.) the “method” is called the method of alternating variables and
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it is a classical example of a dangerous method, a method we must avoid.

1.1. Conditions for a Local Minimizer

A local minimizer for f is an argument vector giving the smallest function
Value inside a certain region, defined by X* is a local minimizer for
fFrRU=ROGEf(xx)  <f(X)  forlix*xll < ¢
most objective functions, especially those with several local minimizers,
contain local maximizers and other points which satisfy a necessary condition for
a local minimizer. The following theorems help us find such points and
distinguish the local minimizers from the irrelevant points. We assume that f has
continuous partial derivatives of second order.

e First order (Taylor expansion) for a function of several variables gives

usan approximation to the function value at a point x+h neighbouring X,

f(x+h)=f(x)+h'f'(x)+ th" £ (x)h + O(||h||*) (1.1)

Where f (X) is the (gradient) of f, a vector containing the first partial derivatives,

af .
—(x)
lf:".!'1 )

af .
—_— x.'
Orn

we only consider vectors h  with // h // so small that the last term in (1.3) is
negligible compared with the middle term. If the point x is a local minimizer it is

not possible to find an h so that F (x + h) < f(x) with // h // small enough. This
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together with (1.3) is the

Theorem 1.5. necessary condition for a local minimum.

If x* is a local minimizer for [ * B" = R. then f (x*) = 0
The local minimizers are among the points with f (x) = 0. they have a special
name.

Definition 1.5 Stationary point.

Iff'(xs) =0, thenxs issaidto be a (stationary point) for f. the stationary
points are the local maximizers, the local minimizers to distinguish between
them, we need one extra term in the Taylor expansion. Provided that f has

continuous third derivatives, then

flx+h) = f(x) +h'f'(x) + 3h" £ (x)h + O([h[*) (11

Where the Hessian f (x) of the function f is a matrix containing the second Partial

derivatives of f :

a2
f'(x) = —"r:'xﬁl
' dr; Oxj

Note that this is a symmetric matrix. For stationary point takes the

Form f(xs+h) = f(x,) + $h" £ (xs)h + O(|[h]*) .

If the second term is positive for all h we say that the matrix f ** (xs) is
(Positive definite) which also gives tools for checking definiteness). Further,

we can take //h// so small that the remainder term is negligible, and it follows that
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Xs IS a local minimizer

Theorem 1.1. sufficient condition for a local minimum.

Assume that x s is a stationary point and that f** (xs) is positive definite. Then x
sis a local minimizer. The Taylor expansion is also the basis of the proof of the
following corollary Assume that X s is a stationary point and that f "(X) is
Positive semi definite when x is in a neighbourhood of xs. then xs is a Local
minimizer. The local maximizers and “the rest”, which we call (saddle points),
can be characterized

Corollary 1. 2.

Assume that xs is a stationary point and that

£ (xs) #.D. Then

1) if £”(x;) is positive definite: see Theorem = (1 1)

2) iff"(xg) is positive semidefinite: X is a local minimizer or a saddle
point.

3) if f"(x;) is negative definite: X is a local maximizer.

4) if £"(x5) is negative semidefinite: X is a local maximizer or a
saddle point.

5) if f"(x;) is neither definite nor semidefinite: x; is a saddle point.

If f" (xs) =0, then we need higher order terms in the Taylor expansion in order to

find the local minimizers among the stationary points.

Example 1.3. We consider functions of two variables. Below we show the
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variation of the function value near a local minimizer (Figure 1.5(a)), a local
maximizer (Figure 1.5(b)) and a saddle point (Figure 1.5(c)). It is a characteristic
of a saddle point that there exists one line through (x s) , with the property that if
we follow the variation of the f-value along the line, this “looks like” a local
minimum, whereas there exists another line through(xs), “indicating” a local

maximizer.

al minimum b} maximum

Figure 1.5: With a 2-dimsurfacensional x we see as

z = f(x) near a stationary point

1.6. INTRODUCTION we see curves approximately like concentric ellipses

near a local maximizer or a local minimizer (Figurel.6(a)),whereas the saddle

points exhibit the “hyperbolaes” shown in (Figure 1.6(b)).

@) maximum or minfmum b) saddle point
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Figure 1.6: The contours of a function near a stationary point
Finally, the Taylor expansion (1.1) is also the basis for the following Theorem.

Theorem 1. 3. Second order necessary condition.

If x* is a local minimizer, then f "(x*) is positive semidefinite.
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2. DESCENT METHODS:

Introduction:

These are( iterative methods). They produce a series of vectors

X0.X1.X2...... (2.1(a) Which in most cases converges under certain mild



conditions? We want the series to converge towards x* a local minimizer for the
given objective function  f: R"—R. jo xk - x*fork — oo (2.1(h)

where x* is a local minimizer, the methods here are measures which enforce the

descending property
f(Xk+1) < f(xx) - 2.2)

This prevents convergence to a maximizer and also makes it less probable That
we get convergence to a saddle point, We talk about the ( global convergence)
properties of a method, i.e. convergence when the iteration starts in a position Xo,
which is not close to a local minimizer x* we want our method to produce
iterates that move steadily towards a neighbourhood. of x*.For instance, there
are methods (i.e. limit of a subseries) of (Xkx) is a stationary Point (Definition 1.6),
I.e. the gradients tend to zero
ffXe)— 0 for k— oo (2.3)

This does not exclude convergence to a saddle point or even a maximizer, but the
descending property (2.2) prevents this in practice. In this “global part” of the

iteration we are satisfied if the current errors do not increase except for the very

first steps. Letting {E*}denote the errors, F = Xk X

the requirement is ler+1ll < [lex|| for k> K.

In the final stages of the iteration where the Xk are close to x* we expect Faster
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convergence. The local convergence results tell us how quickly we Can get a
result which agrees with x* to a desired accuracy. Some methods have (linear

convergence):

llex+1|| < cillex| with0 < ¢y < 1and x closetox™. (2.4)
It is more desirable to have higher order of convergence, for instance quadratic

convergence (convergence of order 2):
llex+1|| < c2flek |:’ with 5 > 0 and x;, close to x* . (2.5)
Only a few of the methods used in the applications achieve quadratic final

Convergence On the other hand we want better than linear final convergence.

Many of the methods used in practice have (super linear convergence):

k1]

— 0 fork — 0. (2.6)
le||

This is better than linear convergence though (normally) not as good as Quadratic

convergence.

Example 2.1. Consider 2 iterative methods, one with linear and one with

quadratic convergence. At a given step they have both achieved the result with an

) llex|] < 0.0005. o= =1 .
accuracy of 3 decimals: They have 1 =2 = 37 in(2.4)

and (2.5)

Algorithm 2.1 Structure of descent methods

YY



begin

k:=0; x:=xqp; found := false {Starting point }
repeat
h4 := search_direction(x) {From x and downbhill }
if no such h exists
found := true {x is stationary}
else
Find “step length™ o { see below}
X 1= X + ahy {new position }
E:=k+1

found := update(found)
until found or k>k,, ..
end {... of descent algorithm }

flxi) = f(x*) < B2 |
Both conditions reflect the convergence Xk-------- x*. They cannot be used in

practice, however, because x* and f(x*) are not known. Instead we have to use

x|l < e
approximations to these conditions: ke =k || < &1 (2.7)

f (k)= f (xia1) < ez 28)
We must emphasize that even if (2.8) is fulfilled with small ¢ 1" and ¢ 2,: we

Cannot be sure that €kl ot F(xk)=F(X")is small. The other type of
convergence mentioned at the beginning of this chapter is f (Xk) —-0 for k-

— OO |

If"(xx)|| < ¢

This can be reflected in the stopping criterion 31(2.9)

Which is included in many implementations of descent methods? There is a
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good way of using the property of converging function values. The Taylor

expansion (1.1) of f at x* is
f(xp) = f(x*) + [xk—x*jTt"{x*j + %[Xg‘.—x*ij”(x*}[x;‘.—x*] .

f'(x*)=0and H* =f"(x")

Now, if x* is a local minimizer, then IS positive

semidefinite, This gives us
flxi) = F(x*) = 2(xp—x") T H* (xp—x7) ,
so the stopping criterion could be

1y, ol . . 1 . *
(X1 —Xk) Hp(xXpp1—xp) <24 with x = x7. (2.10)

Here x;—X" is approximated by x;.;—X; and H* is approximated by
HF: = f”(}(;‘.;l.

.2. Descent Directions

From the current position we wish to find a direction which brings us downbhill,
to descent direction. This means that if we take a small step in that direction we
get to a position with a smaller function value. The Taylor expansion (1.1) gives
us a first order approximation to the function value in a neighbouring point to x
in direction h:

f(x+ah) = f(x) + ah' f/(x) + O(a?), with a >0.
If a is not too large, then the First two terms will dominate over the |

f(x+ah)~ f(x)+ah'f'(x).
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The sign of the term ach' £7(x) decides whether we start of uphill or downhill.

In the space R™ we consider a hyper plane H through the current position and

orthogonal to f *(x), H={x+h|h f'(x)=0}.

This hyper plane divides the space in an “uphill” half space and a “downhill” half

space. The half space we want has the vector - f '(x) pointing into it. gives the

situation in1 R®.  Figure 2.1: R®.  “downhill” and an uphill divided into

. Figure 2.1
we now define a descent direction. this is a “downhill” direction, i-€, it IS
inside the “good” half space:

Definition 2.1. Descent direction.

h is a descent direction from x if 1" £7(>) < O - - A method based on
successive descent directions is a descent method. In Figure 2.1 we have a

descent direction h. We introduce the angle between hand -f'(x),



_ I =
= (h, —f'(x)) with cos@ = h £7(x)

thil - [[E7 Gl
We state a condition on this angle,
Definition 2.2 ( Absolute descent method)
. o \ _ A < T_ [
this is a method, where the search directions 'k satisfy 2 for all

k, with i > 0 independent of k the discussion above is concerned with the

geometry in1 R®. | and is easily seen to be valid also in R’ If the dimension n
is larger than 3, we call p the (“pseudo angle) between h and-f* (x)”. In this way
we can use this definition forall 7 = 2. | the restriction that * must be constant
in all the steps is necessary for the Global convergence result

Search Theorem 2.1

If £'(x)#0:And B is a symmetric, positive definite  Matrix, then
h; = —Bf'(x) and hy = -B 'f'(x)
Are descent directions.
Proof. A positive definite matrix B €R"™™ satisfies
u'Bu>0 foralueR” uo0.
If we take u=h1 and exploit the symmetry of B, we ge
hif'(x)=—f'(x) B'f'(x) = —f'(x)"Bf'(x) < 0.

With u=h2 we get
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h,f'(x)=h)(=Bhy) = —h!Bh, < 0.
Thus, the condition in Definition (2.1) is satisfied in both cases.

2.3. Descent Methods with Line Search

After having determined a descent direction, it must be decided how long
The step in this direction we shall introduce the idea of line search. and the

variation of the objective function f along the direction h from the current

p(a) = f(x+ah),

position X, With fixed x and h From the Taylor

expansion (1.1) it follows that.

w(a) = f(x)+ah f'(x) + éa-EhTf”[x}ll +0(a?),

o' (0) =h"f'(x).

Where

In Figure 2.2 we show an example of the variation of ¢(@) withhasa
descent direction. The descending condition .tells us that we have to Stop the

line search with a value as so that  @(as) < ©(0). have #(0) < 0. putthe

figure shows that there is a risk that, if a Is taken too large, then pla) > ¢(0).
'On the other hand, we must also guard against the step being so short that our

gain in function value diminishes. o
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N ¥=6(0) TR

Figure 2.2: Variation of the cost function along the search line.

To ensure that we get a useful decrease in the f-value, we stop the search with a

value a s which gives a '-value below that of the line* ¥ = AMa). in Figure 2.3

below. This line goes through the starting point and has a slope which is a

fraction of the slope of the starting tangent to the ¥~ curve

wlag) < AMag) , where

AMa)=(0)4+0-0'(0)-a with 0<0<0.5. (2.10)

The parameter e is normally small, e.g. 0.001 Condition (2.10)) is needed in
some convergence proofs. We also want to ensure that the a-value is not chosen
too small. In Figure 2.3 we indicate a requirement, ensuring that the local slope is

greater than the starting slope. More specific,
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acceptable points o

Figure 2 3: Acceptable points according to
Criteria (2.10) and (2.11). Descent methods with line search governed by
(2.10) and (2.11) are normally convergent. Fletcher has the proof of the following
theorem.

Theorem 2.2. Consider an absolute descent method following Algorithm 2.7

with search directions that satisfy Definition 2.13 and with line search controlled

by (2.10) and (2.11).

If f'(x) exists and is uniformly continuous on the level set {x | f(x) <
f(x0)}. then for k — oo:

either f'(x;) = 0 for some & ,
or f(x) — —oc,

or f'(x3) — 0.
A possible outcome is that the method finds a stationary point (xk with f

'(Xk)=0) and then it stops. Another possibility is that f(x) is not bounded from

below for x in the level set {X | f(x) < f(X0)}and the Method may converges

towards a stationary point. The method being a descent method often makes it
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converge towards a point which is not only a stationary point but also a local
minimizer. A line search as described above is often called a soft line search
because of its liberal stopping criteria, (2.10) and (2.11). In contrast to this we
talk about “Exact line search” when we seek (an approximation to) a local

(Yo = argmin x+tah) forfixed xand h .
€ E c:}[]f{ j (212)

A necessary condition on a is ¢'(ae) =0. We have ¢’'(a) = h' f’(x+ah)
and this shows that either f'(x+a.h)=0. which is a perfect result (we

have found a stationary point for f). or if f'{x+a.h) # 0. then ' () =0
15 equivalent to

f'(x+ach) Lh. (2.13)
this shows that the exact line search will stop at a point where the local gradient
is orthogonal to the search direction.

Example 2.4.

Orthogonality mentioned in (2.12). Figure 2.4: An exact line search stops at
y= X+ aeh,wherethe

Local gradient is orthogonal to the search direction

x1

Figure 2.4



2.4. Descent Methods with Trust Region

the methods in this research series of steps leading from the starting position to
the final result, and in Newton’s method of Chapter five, the directions of the
steps are determined by the properties of f(x) at the current position. Similar
considerations lead us to the trust region methods, where the iteration steps are
determined from the properties of a model of the objective function inside a
given region. The size of the region is modified during the iteration. The Taylor

expansion (1.3) provides us with a linear approximation to f near a given X:
f(x+h)~q(h) with g(h)= f(x)+h'f'(x). (2.14)
Likewise we can obtain a quadratic approximation to f from the Taylor expansion
f(x+h) ~gq(h)

with g(h) = f(x)+h™f’(x) + th"f"(x)h.
’ 2 ! (2.15)

In both case q (h) is a good approximation to f(x+h) only if //h// is sufficiently
small. These considerations lead us to determine the new iteration step as the

solution to the following model problem:

hy = argming p{g(h)}
where D ={h||h| € A}, A>0.

(2.16)
The region Vis called the trust region and q(h) We use h=hs and reject h,

if f(x+h) =z f(x). The gain in cost function value controls the size of the trust
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region for the next step: The gain is compared to the gain predicted by the

approximation function, and we introduce the gain facto

f(x) — f(x+h)
q(0) —q(h) ~

(2.17)
When r is small our approximation agrees poorly with f, and when it is Large the
agreement is good. Thus, we let the gain factor regulate the size of the trust
region for the next step (or the next attempt for this step when r <- 0 so that h is

rejected). These ideas are summarized in the following algorithm.

Algorithm 2.25. Descent method with trust region begin Given x0 and Ap

begin
E=0; x:=xq; A:=Aqy: found .= false
repeat

k := k+1; hg := Solution of model problem (2.16)

r := gain factos (2.17)
if r > 0.75 {very good step}
A:=2xA {larger trust region |
if » < 0.25 {poor step}
A:=A/3 {smaller trust region}
if >0 {reject step if r < 0}
X=X+ hy
Update found {stopping criteria, eg (2.8) and (2.9)}
until  found or k>k,, ..

end

Y



the numbers in the algorithm, 0.75, 2, 0.25 and P1=3 have been chosen from

practical experience. the method is not very sensitive to minor changes in these

values, but in the expressions & = Pi* Aand A := A /p2 the numbers P: and

P2 must be chosen so that the ¢-values cannot oscillate. There are versions of the

trust region method where “r<0.25” initiates an interpolation between X and x+h
based on known values of fand ', and “r>0.75" leads to an extrapolation along
the direction h, a line search actually.

2.5. Soft Line Search

Many researchers in optimization have proved their inventiveness by producing
new line search methods or modifications to known methods. What we present
here are useful combinations of ideas of different origin. the description is based
on Madsen (1984){1}. In the early days of optimization exact line search was
dominant. Now, soft line search is used more and more, and we rarely see new
methods presented which require exact line search. an advantage of soft line
search over exact line search is that it is the faster of the two. If the first guess on
the step length is a rough approximation to the minimizer in the given direction,
the line search will terminate immediately if some mild criteria are satisfied. The
result of exact line search is normally a good approximation to the result, and this

can make descent methods with exact line search find the local minimizer in less
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iteration than what is used by a descent method with soft line search. However,
the extra function evaluations spent in each line search often makes the descent
method with exact line search a loser. if we are at the start of the iteration with a
descent method, where x is far From the solution x*, it does not matter much that
the result of the soft line search is only a rough approximation to the result; this is
another point in favour of the soft line search the purpose of the algorithm is to
find a s, an acceptable argument for the function

elas) < Aexs) where

AMa)=p(0)+o-¢'(0)-a with 0<p<0.5 (2.18(a)

Olas) = B-¢"(0) witho< B<1. (2.18(b)

These two criteria express the demands that a s must be sufficiently small to give
a useful decrease in the objective function, and sufficiently large To ensure that
we have left the starting tangent of the curve = = s=l=) for & > 0., see of
Figure 2.3. The algorithm has two parts. First we find an interval [a; b] that
contain acceptable points, see figure 2.5. Figure 2.5: Interval [a. b] containing

acceptable points.
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2 acceptable poins b o
In the second part of the algorithm we successively reduce the interval: We find a
pointa in the strict interior of [a, b ]. If both conditions are satisfied by this a-
value, then we are finished (as =a) otherwise, the reduced interval is either [a, b]
.= [a, a] or [a, b] = [a, b], where the choice is made so that the reduced [a, b]
contains acceptable points. We have the following remarks to Algorithm 2.1
given below.

F(x)=0=¢(0)=0) ; 1isnot downhill, then

1- If x is a stationary point
we do nothing.

2- The initial choice b=1 is used because in many optimization methods ( e .g.
Newton’s method in Chapter 5) a=1 is a very good guess in the final steps of
the iteration. The upper bound a max must be supplied by the user. It acts as a
guard against an infinite loop if f is unbounded.

3- We are to the left of a minimum and update the left hand end of the Interval

Algorithm 2.3 soft line search



pegin

if ©'(0) > 0 {1°}
a:=10
else
k:i=0; v:=8%¢/(0);
a:=0; b:=min{l, mnaz} 122}
while ((b) < A(b)) and (¢'(b) < v)
and (b < apax) and (k < kpax)
k:=k+41; a=b {3°}
b := min{2b, a,yax } {4°}
a:=b {5°}
while ((¢(a) > A(a)) or (¢'(a) < 7)) and (k < kmax)
k:=k+1
Refine o and [a, b] {6°}
if p(a) > ¢(0) {7°}

a:=0
end

4. If a max is sufficiently large, then the series of b-valuesis 1. 2.4 8....
Corresponding to an ““ expansion factor” of 2. Other factors could be used.

5. Initialization for second part of the algorithm.

6. See Algorithm 2.4 below.

7. The algorithm may have stopped [a,b]normally, e.g. by exceeding the
permitted number k max of function evaluations. If the current value of a does
not decrease the objective function, then we return a=0, of 1. The refinement can
be made by the following Algorithm 2.5. the input is an interval [a, b] which we
know contains acceptable points, and the output is an a found by interpolation.
We want to be sure that the intervals have strictly decreasing widths, so we only

d=1(b— a).

accept the new a if itis inside [a + d, b-d] , where 10 The a
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splits [a; b] into two subintervals, and we also return the subinterval which must

contain acceptable points.

Algorithm (2,5) Refine

begin
D:=b-a; c:=(p(b)—¢(a)—Dx*¢'(a))/D?
ifc>0

a:=a-—'(a)/(2c)

a := min{max{a, a+0.1D}, b—0.1D}}
else

a:=(a+b)/2
if o(a) < A(a)

a.=Q
else
b:=a

end

We have the following remarks to Algorithm 2.28:

8% The second order polynomial

W(t) = p(a) + ¢'(a) - (t—a) + ¢ (t—a)?

(0°)

(10°)

satisfies Y¥(a) = p(a). ¥'(a) =¢'(a) and Y(b) = @(b). If ¢ > 0, then ¥

has a minimum, and we let o be the minimizer. Otherwise we take a

as the midpoint of [a, b].

9° Ensure that cv is in the middle 80% of the interval.

10° If p(av) is sufficiently small, then the right hand part of [a, b] contain

points that satisfy both of the constraints (2.26). Otherwise. [, b] is

sure to contain acceptable points.

Finally, we give the following remarks about the implementation of the

algorithm. the function and slope values are computed as

¢(a) = f(x+ah),  ¢'(a)=h"f'(x+ah).
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the computation of fand ' is the “expensive” part of the line search. Therefore,
the function and slope values should be stored in auxiliary variables for use in
acceptance criteria and elsewhere, and the implementation should return the
value of the objective function and its gradient to the calling programmer, is a
descent method. they will be useful as starting function value and for the starting
slope in the next line search (the next iteration).

2.7. Exact Line Search

The older methods for line search produce a value of a s which is sufficiently

close to the true result. o, ~ a. with
e = argmin_ -, @(a) .

The algorithm can be similar to the soft line search in Algorithm 2.27, except
that the refinement loop after remark 5° is changed to

while (|’ (ar)| > T = [¢'(0)])
and (b—a > =) and (k < k) (2.29)

Here, E and t indicate the level of errors tolerated; both should be small,
Positive numbers
Example 2..5

A “divine power” with a radar set follows the movements of
our wayward tourist. He has decided to continue in a given direction,
until his feet tell him that he starts to go uphill. The”divine power”

see that he stops where the given direction is tangent to a local contour.
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This is equivalent to the Orthogonality formulated

Figure 2.6. An exact line search stops at y = x+aeh, where the local gradient is

orthogonal to the search direction

Figure 2.7. An eract line search
stops at y = x+a.h, where the
local gradient is orthogonal to
the search direction.
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3:THE STEEPEST DESCENT METHOD

Introduction :




Which of the possible descent directions (see Definition 2.1)

Our first considerations will be based purely on local first order information.
Which descent direction gives us the greatest gain in function value relative to
the step length? Using the first order Taylor expansion (1.3) we get the Following

approximation (1)

f(x) = f(x+ah) _lle’(x}
c||h| - 'h|

= |f'(x)||cos# . (3.1)

In the last relation we have used the definition (2.12). We see that the relative
gain is greatest when the angle # = 0, ie when h = hyy. given by

hyg = —f'(x) . (3.2)
This search direction, the negative gradient direction, is called the direction of

steepest descent is a useful gain in fun. It give sction value if the step is so short

that the 3rd term in the Taylor expansion (O{ h][%)) Is insignificant. the
minimizer along the direction hsa. At the minimizer the higher order terms are
large enough to have changed the slope from its negative starting value to zero.
According to Theorem 2.2(a) descent method based on steepest descent and soft
or exact line search is convergent. If we make a method using hsd. and a version
of line search that ensures sufficiently short steps, then the global convergence
will manifest itself as a very robust global performance. The disadvantage is that
the method will have linear final convergence and this will often be exceedingly

slow. If we use exact line search together with steepest descent,
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Example 3.1.

We test a steepest descent method with exact line search on the function from
Example 1.2,
f(x) = (x1+x2-2)2 + 100(x1 - x2)2 :

Figure 3.1 gives contours of this function.

Figure 3.1: The Steepest Descent
Method fails to find the .
minimizer of a quadratic ‘

RS

The gradient 1s

2(x1 + 12 — 2) + 200(21 — 22)

f“*:lzul+xr—m—zmuq—xﬂ :

If the starting point 1s taken as xp = [3, 598/ QGQ]T__ then the first search direc-
tion 1s

l 3900,/202 }
].-.I.-';d = — G .

This is parallel to the x1-axis. The exact line search will stop at a point where the
gradient is orthogonal to this. Thus the next search direction will be parallel to
the Xo-axis, etc. The iteration steps will be exactly as in Example 1.2. The
iteration will stop far away from the solution because the steps become negligible
compared with the position, when represented in the computer with a finite

number of digits. this example shows how the final linear convergence of the
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steepest descent method can become so slow that it makes the method completely
useless when we are near the solution. We say that the iteration is caught in(
Stiefel’s cage).

The method is useful, however, when we are far from the solution. It performs a
little better if we ensure that the steps taken are small enough. In such a version
itis included in several modern hybrid methods, where there is a switch between
two methods, one with robust global performance and one with super linear (or
even quadratic) final convergence. Under these circumstances the method of
steepest descent does a very good job as the “global part” of the hybrid. asin

Section 5.2.
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4. CONJUGATE GRADIENT METHODS

Introduction:

. The conjugate gradient methods are simple and easy to implement, and
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generally they are superior to the steepest descent method, but Newton’s method
and its relatives (asin the next chapter) are usually even better. If, however, the
number n of variables is large, then the conjugate gradient methods may
outperform Newton-type methods. the reason is that the latter rely on matrix

operations, where as conjugate gradient methods only use vectors. Ignoring

sparsity, Newton’s method needs O(Ns) operations per iteration step, Quasi-

Newton methods need O(N-.), but the conjugate gradient methods only use O(n)

operations per iteration step. Similarly for storage: Newton-type methods require
an n*n matrix to be stored, while conjugate gradient methods only need a few
vectors. The basis for the methods presented in this chapter is the following
definition, and the relevance for our problems is indicated in Example 4.1.

Definition 4.1. Conjugate directions. A set of directions corresponding

to vectors [hy, ho,...............] issaid to be conjugate with respect to a symmetric

h! Ah; =0 forall i #j.

positive definite matrix A, if 4.2)

Example 4.1. In IR2 we want to find the minimizer of a quadratic

g(x) =a—+ b’ x + %:{TH:{ i 4.2)

where the matrix H is assumed to be positive definite. Figure 4.1 gives the

contours of such a polynomial.
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Figure 4.1: In the 2-dimensiona Icase, the second conjugate gradient
step determines the minimizer of a quadratic.
assume that our first step was in the direction hi, a descent direction. Now we
have reached position x after an exact line search. thus the direction ha is tangent
to the contour at x. This means that hi is orthogonal to the steepest descent
direction hsaatx,i.e  hihg=0:
h; ((—q'(x)) = hj (~b—Hx) =0.
Now, the minimizer satisfies Hx*+ b = 0, and inserting b from this we get
hiH(x* —x)=0 .

This shows that if we are at x after an exact line search along a descent direction,
h1, then the direction x*-x to the minimizer is conjugate to h: with respect to H.
We can further prove that the conjugate direction is a linear combination of the
search direction h: and the steepest descent direction, hsd, with positive

coefficient i.e, it is in the angle between h: and hsd. In the next sections we
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discuss conjugate gradient methods which can find the minimizer of a second
degree polynomial in n steps, where n is the dimension of the space.

4.1. Quadratic Models

An important tool for designing optimization methods is quadratic modelling.the
function fis approximated locally with a quadratic function q of the form
g(x)=a+b'x+ %X_HX :

Where H is a symmetric matrix which is usually required to be positive

definite. When the model ling is direct, we simply use the minimizer of g to
approximate x* and then repeat the process with a new approximation. This is the
basis of the Newton-type methods described in Chapter 5. For the conjugate
gradient methods, the model function) will be employed indirectly. A related
concept is that of quadratic termination, which is said to hold for methods that
find the exact minimum of the quadratic in a finite number of steps. The steepest
descent method does not have quadratic termination, but all the methods
discussed in this chapter and the next do. Quadratic termination has proved to be
an important idea and worth striving for in the design of optimization methods.
Because of the importance of quadratic models we now take a closer look at the
quadratic function It is not difficult to see that its gradient at x is given by

g'(x)=Hx+b 4.3)

And for all x the Hessian is
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q"(x) =H. (4.4)
If H is positive definite, then g has a unique minimizer, x* =-H b. If
n=2, then the contours of q are ellipses centered at x*. The shape and orientation
of the ellipses are determined by the eigenvalues and eigenvectors of H. For n=3
this generalizes to ellipsoids, and in higher dimensions we get (n-1)-dimensional
hyper-ellipsoids. It is of course possible to define quadratic functions with a non-
positive definite Hessian, but then there is no longer a unique minimizer.
Finally, a useful fact is derived in a simple way from multiplication by H maps
differences in x-values to differences in the corresponding gradients:

H(x-2) = q'(x)-q'(2) (4.5)

4.2. Structure of a Conjugate Gradient Method

let us have another look at Figure 3.1 where the slow convergence of the
steepest descent method is demonstrated. an idea for a possible cure is to
take a linear combination of the previous search direction and the current
steepest descent direction to get a direction toward the solution. this gives
a method of the following type

Algorithm 4.1 conjugate gradient method
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begin

X :=Xp; k:=0; found :=false; v:=0; hg:=0 {1°}
repeat
hprey = hegi heg := —17(x) + 7 * hprey
if £'(x) hee =0 {2°}
heg := —F'(x)
a := line_search(x, h¢g); x :=x+ ahg {3°}
Noi= {4°}
k:=k+1; found :=--- {5°}
until found or k > kyax
end

We have the following remarks:

1- Initialization.

2- In most cases the vector heis downbhill. This is not guaranteed, e.g. if we use a
soft line search, so we use this modification to ensure that each step is downhill.
3- New iterate.

4- The formula for r is characteristic for the method. This is discussed in the
next sections.

5- We recommend to stop if one of the criteria

£'(x)]| < e1quador ||ahegllz < £a(s2 + [|x]]2) (4.7)
is satisfied, of (2.8) and (2.9).
in the next theorem we show that a method employing conjugate search
directions and exact line searches is very good for minimizing quadratics.
In Theorem 4.12 (in Section 4.3) we show that, if f is quadratic and the

line searches are exact, then a proper choice of r gives conjugate search
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Directions.

Theorem 4.1. Use Algorithm 4.6 with exact line search on a quadratic

like (4.2) with x in IRn, and with the iteration steps hi = xi — xi-1
Corresponding to conjugate directions. Then

1- The search directions heg are downhill.

2- The local gradient ' (xk) is orthogonal to hi... ha,.........,h.

3- The algorithm terminates after at most n steps.

Proof. We examine the inner product in Definition 2.11 and insert the expression

for hcg

f/(x) heg = —F'(x)"f"(x) +7F'(x)" hprey
= —[If'(x)[F =0 .
The second term in the first line is zero for any choice of ¥ since an Exact line
search terminates when the local gradient is orthogonal to the Search direction.

thus, heg is downhill (unless x is a stationary point, Where f* (x) = 0), and we

have proved 1. Next, the exact line searches guarantee that

h! f'(x;)=0, i=1,..., k (4.10)
and by means of (4.5) we see that for j < k.
hif/(xi) =hj (F/(x;) + £/(xx) — £/(x;))
=0+ ll}Hf}{k — X;)
= ll}H[llk +...4+h;1,)=0.

Here, we have exploited that the directions (hi) are conjugate with



respect to H, and we have proven 2 .Finally, H is non-singular, and it is easy to
show that this implies that a set of conjugate vectors is linearly independent.
Therefore {ha,....... , hn} span the entire IRn, and f* (X») must be zero., we remark

that if f '(Xx)=0 for some k -n, then the solution has been Found and Algorithm

4.6 stops. What remains is to find a clever way to determine C'x=1z The
approach used is to determine r in such a way that the resulting method will
work well for minimizing quadratic functions. Taylor’s formula shows that
smooth functions are locally well approximated by quadratics, and therefore the

method can be expected also to work well on more general functions.

4.3. The Fletcher—Reeves Method

The following formula for r was the first one to be suggested:

f/(x)"f"(x)

f 7 (Xpren ) £/ (Xpren)

(4.11)
Where X prev is the previous iterate. Algorithm 4.6 with this choice for r is
called the( Fletcher—Reeves method) after the people who invented it in 1964.

Theorem 4.2. Apply the Fletcher—Reeves method with exact line Search

To the quadratic function (4.2). If f* (Xk) #0 for k=1............. n,

Then the search directions hs, ......,h n are conjugate with respect to H.

Proof.



We shall use induction to show that for j =1, ........,x:

h,Hh; =0 foralli<j. . (B.1)

We use the notation
gi = f'(xi) and define the search directions by

'l'l,; = X;—X;

" Then (4.5) leads to
Hh, = g — 21, (BZ)

and Algorithm 4.6 and (4.11) combine to

e e e .—— _—————

Sr&r

g-.l-_-_lgr'—] ‘ : (B.3)

. e _
hyi1 = a4 (—g- +7-0 hy) with 5. =

and ar+1 found by exact line search. Finally, we remind the reader of (4.10) and
(4.9)

hyg, =0 and a7 hl,g =-g g . (B.4)
Now, we are ready for the induction: For j=1, (B.1) is trivially satisfied, there is
no hi vector with i<1.
Next, assume that (B.1) holds for all j =1, .........,k. Then it follows from the proof
of Theorem 4.8 that

g;l;hz- =0 for i=1,....k - (B.5)

If we insert (B.3), we see that this implies



T -1 T
0=g, (—gé—l +yic1eg_yhiq) = —gpgi

Thus, the gradients at the iterates are orthogonal,

crg; =0 fori=1,... . k—1. . (B.6)

Now, we will show that (B.1) also holds for j = k+1 :
aj i hi Hhpy =h[H (—gx + o 'hy)
= —g; Hh; + .o, 'h] Hh,
= —E; (2i —gi1) + '}';i-r:t'[.lhTHhk .

For i<k each term is

zero according to (B.1) for j let than and quake k and (B.5).

For i < k each term 1s zero according to (B.1) for j <k and (B.5).
For i = k also the term gl_.gg\._l = 0, and we get

I T 1T
ap  hiHhg o = —grge + 1o hy (2r — 2r1)

=—gige +7 (0+gi_1ge1) = 0.
In the first reformulation we use both relations in (B.4), and next we use the

definition of 7* in (B.3). Thus, we have shown that (B.1) also holds for j =k+1
and thereby finished the proof .B .According to Theorem 4.8 this implies that the
Fletcher—Reeves method With exact line search used on a quadratic will
terminate in at most n steps. Point 1 in Theorem 4.8 shows that a conjugate
gradient method with exact line search produces descent directions.

4.4. The Polak—Ribi ere method

An alternative formula for r is



. . Iy
(£7(x) — ' (xprer)) £7(x)

(4.13)

f .'[:_{Pm_] T fnlll Xprer }

Algorithm 4.6 with this choice of r is called the Polak—Ribi ere method. It dates

from 1971 (and again it is named after the inventors). For a quadratic (4.13) is

N P
equivalent to (4.11) (Because then I (Xeee) 1105 — ¢

Example 4.2. (Resetting).

A possibility that has been proposed is to reset the search direction h to the
steepest descent direction hsa in every nth iteration. the rationale behind this is
the n-step quadratic termination property. If we enter a Neighbourhood of the
solution where f behaves like a quadratic, resetting will ensure quick
convergence. Another apparent advantage of resetting is that it will guarantee
global convergence (by Theorem 2.18). However, practical experience has shown
that the profit of resetting is doubtful. In connection with this we remark that the
Polak—Ribi ere method has a kind of resetting built in. Should we encounter a
step with very little progress, so that[[X- Xprev]]is small compared with[[f*(Xprev)
[[f'(Xprev) 1] , then[[f'(X) — '( Xprev )]]will also be small and therefore r is small,
and heg ' hsd in this situation. Also, the modification before the line search in
Algorithm 4.6 may result in an occasional resetting. the method fails to
converge even with exact line search (see p 213 in Nocedal(1992)). The success

of the Polak—Ribi'ere formula is there fore not so easily explained by theory{1}.
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4.5. Convergence Properties

we saw that the search directions hcg of a conjugate gradient method are descent

directions and thus the p of (2. 2) satisfies u<s /2. There is no guarantee,

however, that the p of Definition 2.1will stay constant, and theorem 2.1 is
therefore not directly applicable .For many years it was believed that to guarantee
convergence of a conjugate gradient method it would be necessary to use a
complicated line search, and perhaps make some other changes to the method.
But in 1985 Al- Baali managed to prove global convergence using a traditional
soft line search. (2){1}

Theorem 4.3. Let the line search used in Algorithm 4.6 satisfy (2.10)

and (2.11) with parameter values Q<B<0.5. Then there is a ¢>0 Such that for all

k

f’[:-:]rhc_E < —c|f'(x) ﬁand
lim ||f'(x)||s = 0.
k—oc

:Let us finally remark on the rate of convergence. Crowder and Wolfe (1972)
show that conjugate gradient methods with exact line search have a linear
convergence rate, as defined in (2.4). This should be contrasted with the super
linear convergence rate that holds for Quasi-Newton methods and the quadratic
convergence rate that Newton’s method possesses (3)

Example 4.3.  (Rosen Brock's function,)
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F)=100(zg — )" + (1—x1)®, . | _ L
Is widely used for testing optimization

algorithms. Figure 4.2 shows level curves for this function (and illustrates, why it

Is sometimes called the “banana function”).

15

Figure 4.2: Contours of Rosen Brock's function.

the function has one minimizer xo = [-0. 0] T * = " {(marked by a + in the

figure) with f(x*)=0, and there is a “valley” with sloping bottom following the

T2

parabola “* ~ - Most optimization algorithms will try to follow this valley.
Thus, a considerable amount of iteration steps is needed, if we take Xo in the 2 ™
quadrant. Below we give the number of iteration steps and evaluations of f(x) and
f'(x) when applying Algorithm 4.6 on this function. In all cases we use the
starting point ‘X0 = [—+.2 1]".:

, and stopping criteria given by "=t =107". 22 = 107" (4 7)_In case of exact line

search we use ™ = 1077 = = 107710 (2 29) while we take 3= 10! 5 = 10~2



in Algorithm 2.1 for soft line search. xo=[-0.0] T

Method Line search | #1t. steps | # fct. evals
Fletcher—Reeves exact 118 1429
Fletcher—Reeves soft 249 628

Polak—Ribiere exact 24 266
Polak—Ribiére soft 45 130

Thus, in this case the Polak—Ribi ere method with soft line search performs best.

Below we give the iterates (of. Figure 4.2) and the values of f(Xx) and

f“ E)|aa- 1 1 i i
10 ote the logarithmic ordinate axis.

.1'1
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Figure 4.3: Polak—Ribiere method with soft line search
applied fo Rosenbrock’s function.
Top: iterates X;.. Bottom: f(xi) and ||f'(x:)|| .

4.6. Implementation

To implement a conjugate gradient algorithm in a computer program, some
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decisions must be made. Of course we need to choose a formula for r ; we
recommend the Polak—Ribi ere formula. We also need to specify the exactness of
the line search. For Newton-type methods it is usually recommended that the line
search be quite liberal, so for the line search in Algorithm 2.1 it is common to
choose the parameter values Q =0.01 and B =0.9. For conjugate gradient
methods experience dictates that a line search with stricter tolerances be used, say
Q =0.01 and B =0.1. In addition we have to specify the stopping criterion; (2.9) is
recommended .Since we do not have access to f "(X«), we cannot use (2.10). For
methods with a fast convergence rate, (2.8) may be quite satisfactory, but its use
for conjugate gradient methods must be discouraged because their final
convergence rate is only linear. Finally some remarks on the storage of vectors.

The Fletcher—Reeves method may be implemented using three n-vectors of

storage, x, g and h. if these contain x, f '(x) and h prev at the beginning of the

current iteration step, we may overwrite h  with hey and during the line search we

h x+ah,, h f'(x+ah,)

overwrite x wit and g wit ' Before overwriting the

gradient, we find I () £'(x) or yse in the denominator in (4.11) on the next
iteration. For the Polak—Ribi ere method we need acces to f '(x) and f *(Xprev)
simultaneously, and thus four vectors are required, say x, g, gnew and h

{1H2}

4.7. The CG Method for Linear Systems




We cannot part with conjugate gradient methods without mentioning that
they can of course be used to minimize the quadratic function (4.2) itself.
But by (4.3) this is equivalent to solving the positive definite linear system
Hx=-b : Let g denote the current gradient, (1)

g=g'(xX)=Hx+b;

and let u = Hheg. It is easily verified that the exact step length a may be

S— i
ug

o =

calculated directly, uhe and that x and g are updated by
X:=x+ahg, Q@g:=gtau:

The Fletcher—Reeves and the Polak—Ribi ere formulas are equivalent in this

o o
a5

setting, = SeecSaer thus, the method can be implemented using four n-

vectors, x, g, h, u. The method is called the conjugate gradient method for linear

systems. The method is specially useful when the matrix H is large and sparse.






5. NEWTON-TYPE METHODS:

Introduction :

we consider a class of methods for unconstrained optimization which are based
on Newton’s method. This class is called Quasi- Newton methods. In order to
explain these methods we first describe Newton’s method for unconstrained
optimization in detail. Newton’s method leads to another kind of methods known
as Damped Newton Methods, which will also be presented. Finally we get to the
Quasi-Newton methods. This class includes some of the best methods for solving

the unconstrained optimization problems.

5.1. Newton’s Method { 1}

Newton’s method forms the basis of all Quasi-Newton methods. It is widely used
for solving systems of non-linear equations, and until recently it was also widely
used for solving unconstrained optimization problems. As it will appear, the two

problems are closely related.
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Example 5.1.

In Example 1.2 we saw the method of alternating directions fail to find the
minimizer of a simple quadratic in two dimensions and in Example 3.1

we saw the steepest descent method fail on the same quadratic. In Chapter 4 we
saw that the conjugate gradient methods finds the minimizer of a quadratic in n
steps (n being the dimension of the space), in two steps in Example 4.1.
Newton’s method can find the minimizer of a quadratic in n-dimensional space in
one step. This follows from equation (5.2) below. Figure 5.1 gives the contours
of our 2-dimensional quadratic together with (an arbitrary) Xo. X1 and the

minimizer x* marked by *

i, Xp..

Figure 5.1: Newton's method finds
The minimizer of a quadratic in
The very first step

in order to derive Newton's method in the version used in optimization, we shall
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once again consider the truncated Taylor expansion of the cost function at the

] fix+h) =~ g(h),
current iterate X, : (5.1(a)

Where g(h) is the quadratic model of f in the vicinity of x,
g(h) = f(x)+h"f'(x)+ Lh'f"(x)h. (5.1(b)

The idea now is to minimize the model q at the current iterate. If f *(x) is Positive
definite, then g has a unique minimizer at a point where the gradient of g equals
zero, i.e. where

f'x)+f"(x)h=0 : (5.2)
Hence, in Newton’s method the new iteration step is obtained as the solution to
the system (5.2) as shown in the following algorithm.

Algorithm 5.1 Newton’s method

begin
X = Xo; (Initialisation)
repeat
Solve f"(x) hn = -f *(X) (find step)
X =X+ hn (... and next iterate)

until stopping criteria satisfied
end
Newton’s method is well defined as long as T (X) remains non-singular.

Also, if the Hessian is positive definite, then it follows from Theorem 2.1 that hn
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is downhill. Further, if f "(x) stays positive definite in all the steps and if the
starting point is sufficiently close to a minimizer, then the method usually
converges rapidly towards such a solution. more precisely the following theorem
holds.

Theorem 5.1 If an iterate x is sufficiently close to a local minimizer X* and f

"(x*) is positive definite, then Newton’s method is well defined in all the
following steps, and it converges quadratic cally towards x*

Example 5.2

. We shall use Newton’s method to find the minimizer of the following function

f(x)=0.5 %27 * (z7/6 + 1)

- 2 (5.5)
+xo * Arctan(z2) — 0.5 % In (25 + 1) .

We need the derivatives of first and second order for this function:
3 2
I, % I1;3+I1 L, " Il+1 D
fiix)= - f (x) = .
x) [ Arctan(z2) } ' x) 0 1/(1+ z3)
We can see in Figure 5.2 that in a region around the minimizer the function looks
very well-behaved and extremely simple to minimize.

b x,
251
Figure 5.2: Contours of the
function (3.5). The level _
curves are symmetric ey
across both axes. _9{; é; coo by

Table 5.1 gives results of the iterations with the starting point xh = [1,0.7]. Xo =

[-0. 0] T According to Theorem 5.4 we expect quadratic convergence. If the
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factor Cz in (2.5) is of the order of magnitude 1, then the column of *+ “would
show the number of correct digits doubled in each iteration step, and the f-values
and step lengths would be squared in each iteration step. the convergence is faster

than this; actually for any starting point xj = [u,v] with [v] <1 we will get

cubic convergence; see the end of the next example.

. T '

k X;, f 7] |

0 | [1.0000000000, 0.7000000000] | 8.11e-01 | 1.47e+00

1 | [0.3333333333, -0.2099816869] | 7.852-02 | 4.03e-01 | 1.132+00

2 | [0.0222222222, 0.0061189580] | 2.66e-04 | 2.31e-02 | 3.79e-01

3 | [0.0000073123, -0.0000001527] | 2.67e-11 | 7.31e-06 | 2.30e-02

4 | [0.0000000000, 0.0000000000] | 3.40e-32 | 2.61le-16 | 7.31e-06

5 | [0.0000000000, 0.0000000000]1 | 0.00e+00 | 0.00e+00 | 2.6le-16
Table 5.1: Newton s method on (5.5). xg = [1, 0.7]. |

Until now, everything said about Newton’s method is very promising: It

Is simple and if the conditions of Theorem 5.4 are satisfied, then the rate

of convergence is excellent. Nevertheless, due to a series of drawbacks the basic
version of the method is not suitable for a general purpose optimization
algorithm. The first and by far the most severe drawback is the method’s lack of
global convergence.

Example 5.3.

With the starting point xh = [1, 2] the Newton method behaves very badly:



k xk f I1£7] [T |

0 [1.0000000000, 2.0000000000] 1.99=+00 1.73e+00

1 [0.3333333333, -3.5357435890] 3.33e+00 1.34e+ 5.58e+00
2 [0.0222222222, 13.9509590869] 1.83e+01 1.50e+00 1.75e+01
3 [0.0000073123, -2.793441e+02] 4.3Z2e+02 1.57e+ 2.93e+02
= [0.0000000000, 1.220170e+05] 1.92e+05 1.57e+ 1.22e+05
5 [0.0000000000, -2.338600e+10] 3.67e+10 1.57e+ 2.34e+10

Table 5.2: Newton’s method on (5.5). x4 = [1, 2].

Xo =[-0. 0] T Clearly, the sequence of iterates moves rapidly away from the
solution (the firstComponent converges, but the second increases in size with
alternating sign) even though f"'(x) is positive definite for any Xz in Rz. The for

Arc tan (0+h) is

Arctan(0+h) =

The next point to discuss is that f *(x) may not be positive definite when x is far
from the solution. In this case the sequence may be heading towards a saddle
point or a maximizer since the iteration is identical to the one used for solving the
non-linear system of equations f '(x) =0. Any stationary point of f is a solution to

this system. Also, f "(x) may be ill-conditioned or singular so that the linear
system (5.2) cannot be solved without considerable errors in hn. Such ill-

conditioning may be detected by a well designed matrix factorization (e.g. a
Cholesky factorization )but it still leaves the question of what to do in case ill-
conditioning occurs. The final major drawback is of a more practical nature but

basically just as severe as the ones already discussed. Algorithm 5.3 requires the
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analytic second order derivatives. These may be difficult to determine even
though they are known to exist. Further, in case they can be obtained, users tend
to make erroneous implementations of the derivatives . Also, in large scale

 An(na1) .
=+ function

problems the calculation of the Hessian may be costly since
evaluations are needed. Below, we summarize the advantages and disadvantages
of Newton’s method discussed above. They are the key to the development of
more useful algorithms, since they point out properties to be retained and areas

where improvements and modifications are required.

{Table (5.3)} Advantages and disadvantages of Newton’s method for

unconstrained

optimization problems

1: Advantages

1- Quadratic ally convergent from a good starting point if f "(x*) is
Positive definite.
2- Simple and easy to implement.

2: Disadvantages

1- Not globally convergent for many problems.
2- May converge towards a maximum or saddle point of f.
3- The system of linear equations to be solved in each iteration may be ill-

conditioned or singular.
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4- Requires analytic second order derivatives of f. Table {5.3: }Pros and Cons

of Newton’s Method.

5.2. Damped Newton Methods:{1}

Although disadvantage 4 in Table 5.3 often makes it impossible to use any of the
modified versions of Newton’s method, Further, in case second order derivatives
are obtainable, modified Newton methods may be used successfully. Hence, for
the methods discussed in this subsection it is still assumed, that second order
analytic derivatives of f are available. The more efficient modified Newton
methods are constructed as either explicit or implicit hybrids between the original
Newton method and the method of steepest descent. The idea is that the
algorithm in some way should take advantage of the safe, global convergence
properties of the steepest descent method whenever Newton’s method gets into
trouble. On the other hand the quadratic convergence of Newton’s method should
be obtained when the iterates get close enough to x*, provided that the Hessian is

positive definite. The first modification that comes to mind is a Newton method
with line Search in which the Newton step == —[f"(x)]'f'(%) js used as a
search Direction. Such a method is obtained if the step x := x+ hn in Algorithm

5.3 is substituted by a := line search(x; hn); x := x + a ha: (5.6) This will work

fine as long as f "(x) is positive definite since in this case hn is a descent

1A



direction. The main difficulty thus arises when f (x) is not positive definite. The
Newton step can still be computed if f "(Xx) is non-singular, and one may search
along + hn where the sign is chosen in each iteration to ensure a descent
direction. However, this rather primitive approach is questionable since the
quadratic model g(h) will not even possess a unique minimum. A number of
methods have been proposed to overcome this problem. We Shall concentrate on
the so-called damped Newton methods, which are considered to be the most

successful in general. The framework for this class of methods is

Algorithm 5.2 Damped Newton step

Slove {f" (x)+ pl) han = -f'(X) (u=>0)

X:=x+xahdn (a>0)

Adjust u

Instead of finding the step as a stationary point of the quadratic (5.1b), the

step han is found as a stationary point of

gu(h) = glh)+ ._l},rrh] h

] 3.8
= _,Ir::x]—h]f’[x]+_—£h (f"(x)+ plh . ©8

(I is the identity matrix). f"(x) + p I is positive definite. Thus, if pis
sufficiently large, then hanis not only a stationary point, but Also a minimizer for

g W Further, Theorem 2.14 guarantees that han is a Descent direction for f at x.
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the term 5~ h penalizes large steps, an from the definition in Algorithm 5.7 we
see that if p is very large, then we get han =~ (-1/ p)f'(x)  (5.10),.

if the current x is far from the minimizer x*. On the other hand, if p is small,
then han ~ hn, the Newton step, which is good when we are close to x* (where f

"(x) is positive definite). Thus, by proper adjustment of the damping parameter
we have a method that combines the good qualities of the steepest descent
method in the global part of the iteration process with the fast ultimate

convergence of Newton’s method

Theorem 5.2. If the matrix f "(x)+ u | is positive definite, then han=argmin

IIhi1-11 [[han]] (q(n)) ,Where q is given by (5.1b)

Proof

_ 1,.3.T . -
In (5.8) we introduced the function % () = a(h) +gpuh h with =0,

where q is given by (5.1b). The gradient of

e = a +ph =g+ H+pDh, e g=(x), H = (x). According
to the assumption, the matrix H+ | is positive definite, and therefore the linear

system of equations q' i = 0 has a unique solution, which is the minimizer of

W . This solution is recognized as han. Now, let



hy = al‘glmnllhllﬂlhml {g(h)} .
Then g(hy) < g(hy) and hI:IhM < h-gnhdm so that
. (hy) = g(hy) + 1phihy < g(ha) + Sphiha = gu(ha) .

However, hg, 15 the umque minimizer of g, ., so hyg = han.

5.1)
In a proper trust region method we monitor the trust region radius a the theorem
shows that if we monitor the damping parameter instead, we can think of it as a
trust region method with the trust region radius given implicitly asD=// han//. In
Levenberg—Marquardt type methods p is updated in each iteration step.Given the
present value of the parameter, the Cholesky factorization of f "(x)+ p 1 is
employed to check for positive definiteness, and i is increased if the matrix is
not significantly positive definite. otherwise, the solution han is easily obtained
via the factorization. the direction given by han is sure to be downhill, and we get
the “trial point” X+hdn (corresponding to a=1 in Algorithm 5.1). As in a trust
region Method (see Section 2.4) we can investigate the value of the cost function
at the trial point, i.e. f(x+ han). If it is sufficiently below f(x), then the trial point is
chosen as the next iterate. Otherwise, x is still the current iterate (corresponding
to a=0 in Algorithm 5.1), and * is increased. It is not sufficient to check whether
f(x + han) < f(x). In order to prove convergence for the whole procedure one
needs to test whether the actual decrease in f-value is larger than some small

portion of the decrease predicted by the quadratic model (5.1b), i.e. if
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_ f(x) = f(x+h)
"T O ) T

(5.12)

i, iy typically § ~ 10—,
where %) Is a small positive number (typically ¢ )

We recognize
r as the gain factor, (2.24). It is also used to monitor/ i : If r is close to one, then
one may expect the model to be a good approximation to f in a neighbourhood of
X, which is large enough to include the trial point, and the influence of Newton’s
method should be increased by decreasing i . If, on the other hand, the actual
decrease of f is much smaller than expected, then p must be increased in order
to adjust the method more towards steepest descent. It is important to note that in
this case the length of hanis also reduced, cf (5.10).We could use an updating
strategy similar to the one employedin Algorithm if r>0:75 W = u/3

if r<0:25 p:=p*2 (5.13)
however, the discontinuous changes in L when r is close to 0.25 or 0.75 can

cause a “flutter” that slows down convergence. therefore, we recommend to use

the equally simple strategy given by

if >0

pi=psmax{i 1—(2r—1)°

=i (2= 1)7) -
[i=px2

(5.15

the two strategies are illustrated in Figure 5.3
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Figure 5.3:
Updating of p by (5.13) (dasheded line) and by (5.14) (full line).
The method is summarized in Algorithm 5.15 below. Similar to (4.7) we can use

the stopping criteria

IF'(x)[oe <1 or [[hanll2 < ea(22 + [|x]|2) - (5.16)

The simplicity of the original Newton method has disappeared in the attempt to
obtain global convergence, but this type of method does perform well in general.

Algorithm 5.3Levenberg—Marquardt type damped Newton method

begin

YY



X 1= Xp; M= jp; found = false; k:= 0; {Initialisation}

repeat
while f"(x)+pul not pos. def. {using ...}
L= 2u
Solve (" (x)+ul) hg = —1'(x) {... Cholesky}
Compute gain factor r by (5.12)
ifr >0 {f decreases}
X =X+ hg {new iterate}
po=pxmax{i 1—(2r —1)%} {...and p}
else
[oi= L * 2 {increase p but keep x}
k = k+1; Update found {see (5.16)}
until found or k > k..
. end

Example 5.4. Table 5.5 illustrates the performance of Algorithm 5.15 when

applied to the tricky function (5.5) with the poor starting point. We use po=1 and

-

£1 = 1075 g2 = 107 ¥ in (5.16).

I-l'|

Xo=[-0.0]T
The solution is found without problems, and the columns with f and [[f']] show
super linear convergence, as defined in

Example 5.5.

We have used Algorithm 5.15 on Rosen Brock's function from Example 4.3. We

use the same starting point, Xxo =[-0. 0] T Xo =[-1,.2. 1 ]T and with po =1,

o 10-10 o, — 1012~ ] ) ]
-1 = 52 , we found the solution after 29 iteration steps. The

Performance is illustrated below.
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the three circles in Figure 5.4a indicates points, where the iterations stalls, i.e. the

current x is not changed,

but p is updated. after passing the bottom of the

parabola, the damping parameter p is decreased in each step. as in the previous

example we achieve super linear final convergence.

5.3. Quasi—Newton Methods: {1}

The modifications discussed in the previous section make it possible to overcome

the first three of the main

5.3: the damped Newton

disadvantages of Newton’s method shown in Table

method is globally convergent,

[1l-conditioning may be avoided, and minima are rapidly located. However, no
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means of overcoming the fourth disadvantage has been considered. the user must
still supply formulas and implementations of the second derivatives of the cost
function. In Quasi—Newton methods (from Latin, quasi: nearly) the idea is to use
matrices which approximate the Hessian matrix or its inverse, instead of the
Hessian matrix or its inverse in Newton’s equation (5.2). The matrices are

normally named
B~f"(x) and D~f"(x)"". (5.17)

The matrices can be produced in many different ways ranging from very Simple
techniques to highly advanced schemes, where the approximation is built up and
adjusted dynamically on the basis of information about the first derivatives,
obtained during the iteration. These advanced Quasi—Newton methods, , are some
of the most powerful methods for solving unconstrained optimization problems.
Possibly the simplest and most straight-forward Quasi—Newton method is
Obtained if the elements of the Hessian matrix are approximated by finite
differences: In each coordinate direction, ei (i=1... n), a small increment 0; IS
added to the corresponding element of x and the gradient in this point is

calculated. the | th column of a matrix B is calculated as the difference

. . f'(z l;-'-:,' 1\|—i'r' "rliiz' . .
approximation T( .[1{__‘_{ &) (x))/ After this, the symmetric

o | ‘
B:=3;(B+B'") is formed. If the ©

matrix “are chosen appropriately, this

&



IS a good approximation to f "(x) and may be used in a damped Newton method.
however, ~ and n extra evaluations of the gradient guarantee that B is positive
(semi-)definite. In the advanced Quasi—Newton methods these extra gradient
evaluations are avoided. Instead we use updating formulas where the B or D
matrices (see 5.17) are determined from information about the iterates, X1, X2
...... and the g gradients of the cost function, f '(X1), f'(X2).... gathered during

the lteration steps. thus, in each iteration step the B (or D) matrix is changed So

i

(¥ e fvradwr £ (1 —1
that it finally converges towards (x7) (or respectively £ 7(x")™), x

being
the minimizer.

5.4. Quasi—Newton with Updating Formulas: {1}

short discussion on why approximations to the inverse Hessian are preferred
rather than approximations to the Hessian itself:

1. First, the computational lab our in the updating is the same no matter
which of the matrices we update.

2. Second, if we have an approximate inverse, then the search direction is
found simply by multiplying the approximation with the negative
gradient of f. this is an O(N2) process where is the solution of the linear
system with B as coefficient matrix is an O(Ns) process.

3. A third possibility is to use approximations to the Cholesky factor of

the Hessian matrix, determined at the start of the iteration and updated
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in the iteration. Using these, we can find the solution of the system
(5.2) in O (N2) operations. With updating formulas indicated that the
updating of an approximation to the inverse Hessian might become
unstable. , recent research indicates that this needs not be the case. A
classical Quasi—Newton method with updating always includes a line
search. Alternatively, updating formulas have been used in trust region
methods. Basically, these two different approaches (line search or trust
region) define two classes of methods. In this section we shall confine
ourselves to the line search approach. With these comments the
framework may be presented.

Framework 5.18. Iteration step in Quasi—Newton with updating

and line search. B (or D) is the current approximation to f "(x)(or f "'(x)-1)
Solve B hgn=-f '(X) (or compute hqn := -Df '(x))line search along hqgn giving
hgn := a hgn; Xnew = X + hgn

Update B to Bnew (or D to Drew) In the following we present the requirements to

the updating and the techniquesneeded.

5.5. The Quasi—Newton Condition: {1}

An updating formula must satisfy the so-called Quasi—Newton condition,
which may be derived in several ways. The condition is also referred to as

the secant condition, because it is closely related to the secant method for
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non-linear equations with one unknown.
Let x and B be the current iterate and approximation to f "(x). Given these, the
first parts of the iteration step in Framework 5.18 can be performed yielding han
and hence xnew. The objective is to calculate B new by a correction of B. The
correction must contain some information about the second derivatives. Clearly,
this information is only approximate. It is based on the gradients of f at the two
points. Now, consider the Taylor expansion of f* around
X+ hgn:

f'(x) = f'(X+ hgn) - f"(X+ han) hgnt..............: (5.19)
We assume that we can neglect the higher order terms, and with the notation

y = f"(%new) - f'(X) ; (5.20)

Equation (5.19) leads to the relation, similar to (4.5),

y= f"(Xnew) han :

Therefore, we require that Brew should satisfy

Brew hgn =y : (5.21a)
This is the Quasi—Newton condition. The same arguments lead to the alternative
formulation of the Quasi—Newton condition, Drew Y = hgn: (5.21b)
The Quasi—Newton condition only supplies n conditions on the matrix Bnew (0Or
Dnew) but the matrix has n2 elements. Therefore additional conditions are needed

to get a well defined method. In the Quasi—Newton methods that we describe,
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the B (or D) matrix is updated in each iteration step. We produce Bnew (Or Dnew)
by adding a correction term to the present B (or D). Important requirements to the
updating are that it must be simple and fast to perform and yet effective. This can
be obtained with a recursive relation between successive approximations,
Brew = B +W,
Where W is a correction matrix. In most methods used in practice,W is
Bpew =B+ abh'

or a rank-two matrix

Bpew =B £ ab’ +uv' |
Where a; b; u; vin [RnHence W is an outer product of two vectors or a sum of
two such products. Often a=b and u=v; this is a simple way of ensuring that W is

symmetric.

5.6. Broyden’s Rank-One Formula:

Tradition calls for a presentation of the simplest of all updating formulas_which
was first described by Broyden (1965) [1]1t was not the first updating_Formula
but we present it here to illustrate some of the ideas and techniques_Used to

establish updating formulas.

T
First, consider rank-one updating of the matrix B : Bpew =B +ab . 1

vectors a; bzin IRn are chosen so that they satisfy the Quasi—NewtonCondition
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Biab Jheg=1v.
(5.21(a), ( ) = - (5.22a)

And — in an attempt to keep information already in B — Broyden demands

That for all v orthogonal to hgnwe get Bnew v = By, ie

b Vv =Bv forallv|v he —
(Bab’)v =By forallv[Vhg=0. oo

These conditions are satisfied if we take b = hgn and the vector a determinedby

AT e
(hgahgn)a =y — Bhga . thiese results in Broyden’s rank-one formula for

updating the approximation to the Hessian:

Bﬂﬁ'ﬂ.’ = B + (:‘r‘- — Bllqﬂ) ll;ﬂ .

=
hyyhgn . (5.23)

A formula for updating an approximation to the inverse Hessian may be

derived in the same way and we obtain

1 _
h, — Dv)yv' .
}FT}.-( qﬂ "' }"
(5.24

Dm—' == D T
Now, given some initial approximation Do (or Bo) (the choice of which shall), we
can use (5.23) or (5.24) to generate the sequence needed in the framework.
However, two important features of the Hessian (or its inverse) would then be

disregarded: We wish both matrices B and D to be symmetric and positive

definite. This is not the case for (5.23) and (5.24), and thus the use of Broyden’s
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formula may lead to steps which are not even downhill, and convergence towards
saddle points or maxima will often occur. Therefore, these formulas are never
used for unconstrained optimization. Broyden’s rank-one formula was developed
for solving systems of nonlinear equations. Further, the formulas have several

other applications, e.g. in methods for least squares and minimax optimization.

5.7. Symmetric Updating: {1}

£ (x)"?

Since IS symmetric, it is natural to require D to be so. If at the

Same time rank-one updating is required; the basic recursion must have the form

Dy =D +un . (5.25a)

The Quasi—Newton condition (5.21b) determines u uniquely: Substituting (5.25)

into (5.21b) and letting h denote hqgn yields

h=Dy4+uu'y <= h-—Dy=(uy)u.
[ (5.25b)

T

(b Do o y=u'y. .
u="7(h=Dy)\here? is the scalar | . .- by rescaling u

this shows that

we get the SR:1 formula (symmetric rank-one updating formula)

1
Dyew =D + — uu' with u=h — Dy .
uy . (5.26)

It may be shown that if h = Dy, then Drew = D is the only solution to the Problem

of finding a symmetric rank-one update which satisfies (5.21ab). If,
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T
y'u _ : : .
However.” . =0 while at the same time h #Dy, then there is no solution, and

the updating breaks down. Thus, in case the denominator becomes small we
simply set Dnew = D and avoid division by zero .The SR: formula has some
interesting properties. The most important is that a Quasi—Newton method
without line search based on SR1 will minimize a quadratic function with

positive definite Hessian in at most n+1 iteration steps, provided the search

T
N : : 'y ou : . N
directions are linearly independent and .~ . remains positive. Further, in this

I —1
case Drnew equals I (x) after n+1 steps. This important property is called

quadratic termination, of Section 4.1. The SR: formula has only been used very

T
o . . 'y ou : :
little in practice. this is due to the fact that .~ . may vanish, whereby numerical

instability is introduced or the updating breaks down. A similar derivation gives
the SR1 formula for approximations to

1
Bﬂﬂy = B T —— ‘-""'!r'rT

with v=y — Bh
(), h'v

And similar comments can be made.

5.8. Preserving Positive Definiteness{1}

Consider Newton’s equation (5.2) or a Quasi—Newton equation based on
(5.17). The step is determined by Gh=-f'(x);

where G =f "(x) (Newton) or — in the case of Quasi—Newton, G =B or
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T Ty—1
G=D . From Theorem 2.14 on page 14 it follows that h is a downbhill

Direction if G is positive definite, and this is a property worth striving for. If we
use D =1 (the identity matrix) in all the steps in the Quasi—Newton Framework
5.18, then the method of steepest decent appears. As discussed in Chapter three
this method has good global convergence properties, but the final convergence is
often very slow. If, on the other hand, the iterates are near the solution x*, a
Newton method (and also a Quasi—-Newton method with good Hessian
approximations) will give good performance, close to quadratic convergence.

Thus a good strategy for the updating would be to use D close to I in the initial

. I —1
E7(%)™ better and better

iteration step and then successively let D approximate
towards the final phase. this will make the iteration start like the steepest descent
and end up some where like Newton’s method. if, in addition, the updating

preserves positive definiteness for all coefficient matrices, all steps will be

downhill and a reasonable rate of convergence can be expected, since

. i —1
I (x) is positive (semi-)definite at a minimizer.

5.9. The DFP Formula{2}

— T —_—
Symmetric rank-two formula can be written as Dyew =D 4+ uu” +vv. ;

We insert this in the Quasi—Newton condition (5.21b) and get
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_ . T+ v v i . . .
h=Dy+uuy+vvy. With two updating terms there is no unique

determination of u and v, but Fletcher points out that an obvious choice is to try

u=oah.  v=05Dy. 1hen the Quasi-Newton condition will be

Ty Ay o
satisfied if W ¥ =1land Vv ¥ =—L.and this yields the formula

Definition 5.27. (DFP updating.)

1 1
Dyw = D+ —hh' — vy .
h'y vy v

where

h = Xgew —x, vy =1"(xaew) —£'(x), v =DY .This was the dominating
formula for more than a decade and it was found to work well in practice. In
general it is more efficient than the conjugate Gradient method (see Chapter
four). Traditionally it has been used in Quasi—Newton methods with exact line
search, but it may also be used with soft line search as we shall see in a moment.
A method like this has the following important properties:

())On gquadratic objective functions with positive definite Hessian:

- ff —1
a) it terminates in at most n iterations with Dnew = 7(x) ,

b) it generates conjugate directions,

C) it generates conjugate gradients if Do = I , Provided that the method uses exact

line search. On general functions:

A O



(i1) On general functions:

g T
d) it preserves positive definite D-matrices if "a ¥ =0

in all steps,

e) it gives super linear final convergence,

f) it gives global convergence for strictly convex objective functions provided
that the line searches are exact Here we have a method with super linear final

convergence (defined in (2.6)).Methods with this property are very useful

because they finish the iteration with fast convergence. Also, in this

|X* — Xpew|| < ||Ix* — x| for £ — o0,

case and [ [xX*-xnew]]<1

Implying that [[xnew—X]] can be used to estimate the distance from x to x*

Example 5.6.
_ il
Assume that D is positive definite. Then its Cholesky factor exists: D=cCC,
and for any non-zero in the IR we use Definition 5.1 to find
— - y 2 - '-Iﬂ
2 Doeaz — %' Dz 4 2 _h;l B |~z__Dy, _
h'y y' Dy
We introduce a=C 2. b=C" y and # = ~(a, b). cf (2.12). and get
- - ‘a' b)* (2" h)?
Z Dpewz = 2 ﬂ—l'b_l__l:; — "h_}l_

— ||a]|® (1 — cos® &) + W _
N [
if > D‘, then both terms on the right-hand side are non-negative. The first

f‘f?:D,i

term vanishes only i , ie when a and b are proportional, which implies

AT



that z and y are proportional, Z = Bywith © 7 Y- this case the second term
‘AT A2 T . .- . .
becomes Y 1)7/MY  \whichiis positive due to the basic assumption.

-
Hence, Z Daewz > U oy any non-zero z and Drew is positive definite. The

essential condition 1 ¥ = Uis called the curvature condition because it can be

expressed as
h'fiey > h'f". . (5 9g)
Notice, that if the line search slope condition (2.17) is satisfied then (5.28) is also

Tt A T/ — (e ol o
h'f"=¢"(0ng 1 foew =5 [ﬂ“*:"),where Ala)

satisfied since Is the line search

5.10. The BEGS Formulas

the final updating formulas are known as the BFGS formulas{2}

. They were discovered independently by Broyden, Fletcher, Goldfarb these
formulas are the most popular of all the updating formulas, as we saw with the
DFP formula, the BFGS formulas are difficult to derive directly from the
requirements. However, they arrive in a simple way through the concept of
duality, which will be discussed briefly here. Remember the Quasi—Newton
conditions (5.21): Brewh =y and Drew y =h (5.29)
These two equations have the same form, except that h and y are interchanged
and Biew is replaced by Dnew. This implies that any updating formula for B which

satisfies (5.21(a) can be transformed into an updating formula for D. Further, any

AY



formula for D has a dual formula for B which is found by the substitutionD — B
and h =y .Performing this operation on the DFP formula (5.27) yields the
following updating formula,

Definition (5.2). ( BFGS updating.)

1 T 1
Byew = B4 — vy — — uu' .
Hew hy Y3 h™u

Where h = Xoew — X,

y =f'(Xnew) - f'(X), u=Bh:
This updating formula has much better performance than the DFP formula; for
an excellent explanation why this is the case. If we make the dual operation on
the BFGS update we return to the DFP updating, as expected. The BFGS formula

produces B which converges to f "(x*) and the DFP formula produces D which

converges to £”(x*)~". . Alternatively, we can find another set of matrices
[D]which has the same convergence, although it is different from the D-matrices

produced by DFP. The BFGS formula is a rank two update, and there are

—1.
formulas which give the corresponding update for B~
(5.3)Definition ( BEGS updating for D)
Dpey = D+ #khh'" — ko (hv! +vh') |
Where h = Xnew— X, Y =T"(Xnew) - f'(X); (5.31)
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V:Dy 2T llT}' !

Ky = a1+ H-:*{}’T'*"}':}'

The BFGS formulas are always used together with a soft line search and

as discussed above the procedure should be initiated with the full Quasi—
Newton step in each iteration step, ie the initial a in Algorithm 2.27 should be

one. Experiments show that it should be implemented with a very loose line

 1n—4
0 =10"gnd B=0.0.

search; typical values for the parameters in (2.26) are
The properties a) — f) of the DFP formula also hold for the BFGS formulas.
Moreover, Powell has proved a better convergence result for the latter formulas
namely that they will also converge with a soft line search on convex problems.
Unfortunately, convergence towards a stationary point has not been proved for
neither the DFP nor the BFGS formulas on general nonlinear functions — no

matter which type of line search. Still, BFGS with soft line search is known as

the method which never fails to come out with a stationary point.

5.11. Quadratic Termination

We indicated above that there is a close relationship between the DFP update and
the BFGS-updates. Still, their performances are different with the DFP update
performing poorly with soft line search. Broyden suggested to combine the two

sets of formulas: {1}
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Definition Broyden’s one parameter family.

Doew = D +0Wppp + (1-0)Wares , (5 39)

where' 0 = @ = land Worpand WBFGS are the updating terms in definitions
(5.3) respectively. The parameter % can be adjusted during the iteration, for
details. He remarks that = =0, pure BFGS updating is often the best. We want to
state a result for the entire Broyden family, a result which consequently is true
for both DFP and BFGS. The result is concerned with quadratic termination:
5.12Remark

The Broyden one parameter updating formula gives quadratic termination for all

values of 7 ( 0o < 1provided that Do is positive definite .this implies that

a Quasi—Newton method with exact line search determines the minimizer of a
positive definite quadratic after no more than n iteration steps (n being the
dimension of the space). The basis of all the updating formulas in this chapter is
the Quasi—Newton conditions (5.21(a)—(b). this corresponds to a linear
interpolation in the gradient of the cost function. If the cost function is quadratic,
then its gradient is linear in X, and so is its approximation. When the Quasi—
Newton condition has been enforced in n steps, the two linear functions agree in
n+1 positions in IR, and consequently the two functions are identical. Iterate no.
n+1, xnew, makes the gradient of the approximation equal to zero, and so it also

makes the gradient of the cost function equal to zero; it solves the problem. the

9.



proviso that the quadratic and Do must be positive definite, ensures that Xnew IS not
only a stationary point, but also a minimizer.

5.13. Implementation of a Quasi—Newton Method{1} discuss some details of

the implementation and end by giving the Quasi—Newton algorithm with the
different parts assembled. Based on the discussion in the previous sections we
have chosen a BFGS updating formula the an update of the inverse hessian , but
even though D in theory stays positive definite, the rounding errors may cause ill
conditioning and even indefiniteness. For professional codes updating of a
factorization of the Hessian is recommended such that the effect of rounding
errors can be treated properly. In the present context a less advanced remedy is
described which is to omit the updating if the curvature condition does not hold,
since in this case Dnew would not be positive definite. Actually, Dennis and

Schnabel recommend that the updating is skipped if

T.. 1/2 .
ll ¥y i =M |h'||2 |:'i"||2 1 ’(533)

where "M is the machine precision. We shall assume the availability of a soft line
search such as Algorithm 2.3. It is important to notice that all the function
evaluations take place during the line search. hence, the values of fand f ' at the
new point are received from the line search subprogram. In the next iteration step
these values are returned to the subprogram such that f and f * for a =0 are ready

for the next search. Sometimes the gradient needs not be calculated as often as f.
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In a production code the line search should only calculate f respectively f'
whenever they are needed. As regards the initial approximation to the inverse
Hessian, Do, it is traditionally recommended to use Do = 1, the identity matrix.
this Do is, of course, positive definite and the first step will be in the steepest
descent direction. Finally, we outline an algorithm for a Quasi—Newton method.
Actually, the curvature condition needs not be tested because it is incorporated in

the soft line search as s

Algorithm 5.34. Quasi—Newton method with BFGS—updating

begin

ay



_r

x

=xXg; D:=Dy: k:=0: nv:=0 {Initialisation

while ||[f'(x)|| > cand k < k. and nv < nvg.

hgn : =D (—f'(x)) {Quasi—-Newton equation

[av, dv] := soft_line_search(x, hgy) {Algorithm 2.27

nv = nv + dv {No. of function evaluations

Xpew Z—X—ﬂlln k= k+

if 11 f'(Xpew) > 11 £7(x) {Condition (5.28)
Update D {using 5.30

X != Xpew

end
Example 5.7.

We consider Rosen Brock's function from Examples 4.3 and 5.5. We have tried

different updating formulas and line search methods. The line search parameters

were chosen as in Example 4.3. With the starting point xo=[-1.2. 1] T,

Xo=1[0. 0] T the following numbers of iteration steps and evaluations of f(x) and

f'(x) are needed to satisfy the stopping criterion [ [f' (X) ] ] < 10-1. The results are

as expected: BFGS combined with soft line search needs the smallest number of

function evaluations to find the solution.
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Update by | Line search | #if. steps | #fct. evals
DPF exact 23 205
DPF soft 31 a3

BFGS exact 23 276
BFGS soft 20 68

Below we give the iterates (cf Figures 4.2, 4.3 and 5.4) and the values of f(xz)
and ||f'(xx )|~ As with the Damped Newton Method we have superlinear final
CONVETgence.

Xy .
e
~ ’ . /z
S o o g "’IK. 3 R
' ' e » -"":_,/ A
—-12 ’“:]*‘ TS A x
R T VN R—
: : H 9o g @ ; v :
i ; ; i9g 0 YW
L s Sl e A SR O St
| | | ne
1e-10 2 7 ,,‘?Uv_
= IIfl i i i i
1e-15 : - : - -
0 3 10 15 20 23 30

Figure 5.5: BFGS with soft line search, applied to
Rosenbrock’s fumction.
Top: iterates ..  Bottom: f(xi) and ||f'{xe)]|=.

XO0the number of iteration steps is about the same as in Example 5.5, while the

number of function evaluations is almost four times as big. Note, however, that

with Algorithm 5.34 each evaluation involves f(x) and f (x), while each

evaluation in the Damped Newton Method also involves the Hessian f "(x). For

many problems this is not available. If it is, it may be costly: we need to compute

1/2(n(n+1) elements in the symmetric matrix f "(x), while f '(x) has n elements
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5.14 Symmetric,( Positive Definite Matrices){1}

A matrix A in (R)n*n is symmetric if A= _A, ie if aj =ai for all i; j.
Definition (514).The symmetric matrix A in (R)nn IS
positive definite if x Ax>0 forall x€ER", x£0,
positive semidefinite 1if x' A x =0 forall x€R", x#0.
Theorem A.2. A €R""" be symmetric and let A = LU, where L 15 a unit

lower triangular matrix and U 1s an upper triangular matrix. Then
1° (Allug; >0, i=1,..., n) <= (A is positive definite) .

If A 1s positive definite, then
2° The LU-factorization 1s numerically stable.

3° U =DL" with D = diag(u;;).
4° A = CC', the Cholesky factorization. C €R™*™ is a lower triangular
matrix.
Proof unit lower triangular matrix L is characterized by lii = lgpg 4i; = 0
for j>i. Note, that the LU-factorization A = LU is made without pivoting (which,
by the way, could destroy the symmetry). Also note that points (3—4) give the

following relation between the LU- and the Cholesky- factorization

LU= T—cc’
A=LL LDL CC (A.3a)

. 1/2 1/2 . —
C=LD"", D7 = diag(/wii) . . (A3b)

The Cholesky factorization with test for positive definiteness can be implemented

as follows



(5.5)Algorithm . (Cholesky factorization.)

begin
k:=0; posdet = true {Initialisation }
while posdef and k < n
k= k+1
d = apr — 3725 (cxs)?
ifd >0 _ {test for pos. def}
crr = Vd {diagonal element}
fori:=k+1,..., 1 {subdiagonal elements }
Cik 1= (fia > rleijen ) [ Crk
d £ £ag5=1 “igtks
else
posdef := false
end
The solution to the Ax=Db

can be computed via the Cholesky factorization: Inserting & = cc’

we see that the system splits into Cz =b and C'x =1z
The two triangular systems are solved by forward- and back-
substitution, respective

Algorithm.(5.6) (Cholesky solve.)

begin
for £ := 1 n—I1.n
Zg = (bk — ,_.?:11 E*m;?) [ Cik
for k:=n.n—1...., 1

a1



end

The “cost” of this algorithm is O (n2) operations.

Example(5.4) :-

A=LDL TO illustrate this factorization consider the positive definite matrix
A=14 -0.20 A
-02 15 -0.3
0.1 -0.3 1.5
Then A can be represented as LDL where
L= 1 0 0
-0.1429 1 0

0.0714  -0.1942 1

O
1

1.4000 0 0
0.0714  -0.1942 1
0 0 1.7374
The second factorization is obtained easily from the first since D has positive
diagonal entries we can write
D=D'D'
Where D' is a' diagonal matrix with d =d if then define

L=LD

v



Then L' is also a lower triangular matrix and

A=L"L

EXAMPLE(S.5) :-

A=L L

D=1.1832 0 0

0 1.2130 O
0 0 1.3181]
L=LD= 1.1832 0 0
-0.1690 12130 O
0.0845 -0.2355 131
So that
A=LL = 1832 0 0
0.1690 12130 O

0.0845 -0.2355 1.3181

Note (5.2)

1.1832

1.2130

0

-0.1690 0.08450,

-0.2355

0

0

1.3181

AA



Theorem 1.6. 1st and 2nd order Taylor expansions.

If f: R" — R has continuous partial derivatives of second order,
then
fla+h) = f(z)+h"Vf(x)+O(|h[?) .

If f has continuous partial derivatives of third order, then
flx+h) = f(z) +h"V f(x)+5h" V2 f(z)h+O(|h]?) .
Vi(x+h) = V(@) +V flx)h+n, |n|=0(h|?*).
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