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Abstract 

 

 

 

         Analytic continuation provides a way to extending the domain over 

which a complex function is defined. 

We can find an analytic continuation by finding Taylor series to the given 

function f0(z) =  
n 
which is convergence on │zz0│< R and its 

centre in z0  in c0 ∙ 

If z 1 satissfies│z1z0│< R we can write f0 in apower series 

f1(z).= n(zz1)
n            

bn =
 
fo

n
(z1)  n 

    Mondromy theorem is an important result a bout analytic continuation of 

a complex analytic function to a larger set . 

Analytic continuation has applications in many sciences , the study gives 

some  physical and  biological. 
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 يهخص انذراست

 

  ∙حىسيع حعريف انذانت نخكىٌ ححهيهيت عهً يُطمت اكبر  يًكُُا يٍ هًيانخحهالايخذاد 

ً ايخذاد ححهيهً بايجاد يخسهسهت حاياور نهذانت انًعطاة يًكٍ انحصىل عه


n=0(zz0)n (= f( z 

  C0فً   z 0انذي  يركزِ zz0│< R│0و انًخماربت عهً انمرص 

                                                                                 │ R0│>z1z0 ححمك   z1ارا كاَج 

(zz1)عهً شكم يخسهسهت لىي  f0  فبايكاَُا كخابت
n

 


n=0  bn =f1        b n= f 
n
(zn) n 

 ∙َظريت انًىَذريً َخيجت يهًت نلايخذاد انخحهيهً 

 

الايخذاد انخحهيهً نّ حطبيماث فً انعهىو الاخري حُاونج انذراست بعض حطبيماحّ فً انفيزياء 

 ∙وانبيىنىجيا 
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Introduction 

 

      The complex analysis has important roles in modern physics , and greats 

variety of problems in physics – both conceptual and technical can be 

explored by using it . from there the searcher chose the analytic continuation 

in complex analytic to be his research . 

The research consists of four chapters : 

        Chapter 1 speaks a bout complex analysis and it considered as a door to 

the rest of the following chapters , 

       Chapter 2 speaks a bout analytic continuation in analytic functions and 

consists of four sections , the first section is definition of analytic 

continuation , the second section is analytic functions defined of real 

variables , the third section is polar coordinates and the fourth section is 

analytic functions defined in terms of complex plane . 

       Chapter 3 speaks a bout analytic continuation of summation and analytic 

continuation a long a curve and it consists of four sections , the first section 

defines analytic continuation of sum , the second section is a bout the power 

series , section three is about analytic continuation a long a curve and section 

four is about Mondormy theorem which is an important result about analytic 

continuation of complex analytic function to a larger set . 

       Chapter 4 speaks about the applications of analytic continuation and its 

consists of four sections , section one is about the applications  in complex 

analytic functions , section two is about application of numerical analytic 

continuation in traction boundary value problems for the half plane , section 

three speaks about study of quantum mechanical relaxation process and 

section four speaks about fractal theory or geometry. 
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Research plan 
 

Title : On the complex Analysis : The Analytic continuation problems . 

The Research Method  
Scientific method  

Aims of the research  

1- Presenting the importance of analytic continuation for solving the 

problems in complex analysis . 

2- Presenting the applications of analytic continuation . 

Importance of the research  

The importance of this research comes from the importance of complex 

analysis and its applications . 

The Questions of the research  

Some times the express f0(z) . such as in infinite series or integration present 

and analytic function has meaning  

The main question is : 

Is there process for extending the definition of the analytic function to be 

analytic on wide region  

Consist of these question : 

1- Can we find a function f 1(z) analytic on a region G1 . for all values of z in 

G 0 ∩ G 1 and can we generalize that ? 

2- Is there any process to find analytic continuation by finding Taylor series 

to the function  

F0(z) = (z-z 0) 
n

 

 which is converges on │ z  z 0 │<  R 0 which its centere in the point  z 0 in 

G 0 

3- What is Mondormy theorem and what its importance  

4- What  is  applications  of  the analytic continuation 

Assumption of the research  

1. We can find a function f 1(z) analytic on a region G 1 intersect with G 0 

and it should be f 0(z) = f 1(z) for all values of z in G0∩G1 and we can 

generalize that to G 0 UG 1  

2- We can find analytic continuation by finding Taylor series . 

3- If y , ý are two separated arcs except the two ending point and it should 

not be found isolated points on or inside the closed curve  y -ý  then the two 

curves yield the same result at there common end point . 

4- Analytic continuation has an important applications 
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chapter 1 

 

 

 



Complex analysis : 

1-1 History 

Complex analysis is one of the classical branches in mathematics with its 

roots in the 19th century and some even before. Important names are Euler, 

Gauss, Riemann, Cauchy, Weierstrass, and many more in the 20th century. 

Traditionally, complex analysis, in particular the theory of conformal 

mappings, has many physical applications and is also used throughout 

analytic number theory. In modern times, it became very popular through a 

new boost of complex dynamics and the pictures of fractals produced by 

iterating holomorphic functions, the most popular being the Mandelbrot set. 

Another important application of complex analysis today is in string theory 

which  i s   a  conformal ly invar iant  quantum f ie ld  theory . 2       

1-2 definition : 

Complex analysis: traditionally known as the theory of functions of a 

complex variable, is the branch of mathematics investigating functions of 

complex numbers. It is useful in many branches of mathematics, including 

number theory and applied mathematics, and in physics. 

Complex analysis is particularly concerned with the analytic functions of 

complex variables (or, more generally, meromorphic functions). Because the 

separable real and imaginary parts of any analytic function must satisfy 

Laplace's equation, complex analysis is widely applicable to two-

dimensional problems in physics.  3 
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1-3 Complex functions 

A complex function is a function in which the independent variable and the 

dependent variable are both complex numbers. More precisely, a complex 

function is a function whose domain Ω is a subset of the complex plane and 

whose range is also a subset of the complex plane. 

For any complex function, both the independent variable and the dependent 

variable may be separated into real and imaginary parts: 

     and  

 

where   and     are real-valued functions.  

In other words, the components of the function f(z), 

   and  

 

can be interpreted as real valued functions of the two real variables, x and y. 

The basic concepts of complex analysis are often introduced by extending 

the elementary real functions (e.g., exponentials, logarithms, and 

trigonometric functions) into the complex domain.  1 

1-4 Derivatives and the Cauchy–Riemann equations: 

Just as in real analysis, a complex function w = f(z) may have a derivative at 

a particular point in its domain Ω. In fact, the definition of the derivative 
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is analogous to the real case but with one very important difference. In real 

analysis, the limit can only be approached by moving along the one-

dimensional number line. In complex analysis, the limit can be approached 

from any direction in the two-dimensional complex plane, and for the 

derivative to exist, the limiting value must be the same no matter what the 

direction of approach of h to 0. 

(The claim that "in real analysis, the limit can only be approached by 

moving along the one dimensional number line" should not be confused with 

directional derivatives. It may be explained that in directional derivatives, 

one still moves along the one dimensional x line but it can be in "discrete" 

units; that is, if one follows the  y = x² curve, that does not mean that one is 

moving on the plane (instead of the one dimensional x line) but means that 

one is approaching in steps of discrete units.) 

If this limit, the derivative, exists for every point z in Ω, then f(z) is said to 

be differentiable on Ω. It can be shown that any differentiable f(z) is 

analytic. This is a much more powerful result than the analogous theorem 

that can be proved for real-valued functions of real numbers. In the calculus 

of real numbers, we can construct a function f(x) that has a first derivative 

everywhere, but for which the second derivative does not exist at one or 

more points in the function's domain. But in the complex plane, if a function 

f(z) is differentiable in a neighborhood it must also be infinitely 

differentiable in that neighborhood.6 

By applying the methods of vector calculus to compute the partial 

derivatives of the two real functions u(x, y) and v(x, y) into which f(z) can 

be decomposed, and by considering two paths leading to a point z in Ω, it 

can be shown that the existence of derivative implies 

3 
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Equating the real and imaginary parts of these two expressions we obtain the 

traditional formulation of the Cauchy–Riemann equations.  

or, in another common notation, 

 

By differentiating this system of two partial differential equations first with 

respect to x, and then with respect to y, we can easily show that 

or, in another common 

notation,  

In other words, the real and imaginary parts of a differentiable function of a 

complex variable are harmonic functions because they satisfy Laplace's 

equation  6 

1-5 Holomorphic functions: 

Holomorphic functions are complex functions defined on an open subset of 

the complex plane which are differentiable. Complex differentiability has 

much stronger consequences than usual (real) differentiability. For  instance, 

holomorphic functions are infinitely differentiable, a fact that is far from true 

for real differentiable functions. Most elementary functions, including the 

exponential function, the trigonometric functions, and all polynomial 

functions, are holomorphic. 
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One central tool in complex analysis is the line integral. The integral around 

a closed path of a function which is holomorphic everywhere inside the area 

bounded by the closed path is always zero; this is the Cauchy integral 

theorem. The values of a holomorphic function inside a disk can be 

computed by a certain path integral on the disk's boundary Path integrals in 

the complex plane are often used to determine complicated real integrals, 

and here the theory of residues among others is useful  If a function has a 

pole or singularity at some point, that is, at that point its values and have no 

finite value, then one can compute the function's residue at that pole, and 

these residues can be used to compute path integrals involving the function; 

this is the content of the powerful residue theorem. The remarkable behavior 

of holomorphic functions near essential singularities is described by Picard's 

Theorem. Functions which have only poles but no essential singularities are 

called meromorphic. Laurent series are similar to Taylor series but can be 

used to study the behavior of functions near singularities. 

A bounded function which is holomorphic in the entire complex plane must 

be constant; this is Liouville's theorem. It can be used to provide a natural 

and short proof for the fundamental theorem of algebra which states that the 

field of complex numbers is algebraically closed. 2 

An important property of holomorphic functions is that if a function is 

holomorphic throughout a simply connected domain then its values are fully 

determined by its values on any smaller subdomain. The function on the 

larger domain is said to be analytically continued from its values on the 

smaller domain. This allows the extension of the definition of functions such 

as the Riemann zeta function which are initially defined in terms of infinite 

sums that converge only on limited domains to almost the entire complex 

plane. Sometimes, as in the case of the natural logarithm, it is impossible to 

analytically continue a holomorphic function to a non-simply connected 
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domain in the complex plane but it is possible to extend it to a holomorphic 

function on a closely related surface known as a Riemann surface. 

All this refers to complex analysis in one variable. There is also a very rich 

theory of complex analysis in more than one complex dimension where the 

analytic properties such as power series expansion still remain true whereas 

most of the geometric properties of holomorphic functions in one complex 

dimension are no longer true. The Riemann mapping theorem about the 

conformal relationship of certain domains in the complex plane, which may 

be the most important result in the one-dimensional theory, fails 

dramatically in higher dimensions. It is also applied in many subjects 

through out engineering particularly in power engineering.   2                                                                                           
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Analytic function  

In this chapter we will study analytic function and how we can solve the 

problems of analytic function using analytic continuation    

2-1 Definition : 

In complex analysis a branch of mathematics analytic continuation is a 

technique to extend the domain of definition of a given analytic function 

analytic continuation often succeeds in defining further values of a function , 

for example in a new region where an infinite series representation in terms 

of which it is initially defined becomes divergent. [3]                                       

Suppose there is a function, f1(z) that is analytic in the domain D1 and 

another analytic function, f2 (z) that is analytic in the domain D2 .   

If  the  two  domains  overlap  and  f1(z)  =  f2(z)  in  the  overlap  region       

D1  D2,  then  f2(z)  is  called  an  analytic continuation of  f1(z).  This is an 

appropriate name since f2(z) continues the definition of  f1(z) outside of its 

originaldomain of definition D1.  We can define a function f(z) that is 

analytic in the union of thedomains D1  D2.  On the domain D1 we have 

f(z) = f 1(z)  and  f(z) = f2(z) on D2.  f1(z) and f2(z) are called function 

elements . There is an  analytic continuation even if the two domains only 

share an arc and not a two dimensional region. With more overlapping 

domains D3 , D4,...  we could perhaps extend f1(z) to more of the complex 

plane. Sometimes  it is impossible to extend a function beyond the boundary 

of a domain.  This is known as a natural boundarary 

      

Figure 2.1: 
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 if a function f1(z) is analytically continued to a domain Dn  along two 

diferent paths 
then the two analytic continuations are identical as long as the paths do not 

enclose a branch point of the function this is the uniqueness theorem of 

analytic continuation . 

     

Figure 2.2: 

Consider an analytic function f(z) defined in the domain D. Suppose that f(z) 

= 0 on the arc AB, Then f(z) = 0 in all of D Consider a point  on AB.  The 

Taylor series expansion of f(z) about the point z  =  converges in a circle C 

at  

  

Figure 2.3 

least up to the boundary of D.  The derivative of f(z) at the point z =  is  

 

If ∆z is in the direction of the arc, then f() vanishes as well as all higher 

derivatives, f"() = f "() = f"" () =…= 0. Thus we see that f(z) = 0 inside C. 

8 



By taking Taylor series expansions about points on AB or inside of C we see 

that f (z) = 0 in D . 

Result 2.1 Let f 1(z) and f2(z) be analytic functions defined in D.  If  f1(z)  =  

f2(z) for the points in a region or on an arc in D,  then  f1(z) = f2(z) for or all 

points in D.  

To prove Result 2.1.1, we define the analytic function  g(z)  =  f1(z)  f 2(z) 

Since g(z) vanishes in the region or on the arc,   then  g(z)  = 0  and hence  

f1(z) = f2(z) for all points in D.  

Result 2.2 Consider analytic functions f1(z) and f 2(z) defined on the domains 

D1  and  D 2  respectively.  Suppose that D1  D2 is a region or an arc and 

that f1(z)  =  f2(z) for all points  D1   D2.  Then the function  

 

 

i s analytic in D1   D2     ( 1)                                

 

2-2 Analytic  Functions  Defined  in  Terms  of  Real  Variables 

Result  2.3. An analytic function, u(x, y) + iv(x, y) can be written in terms 

of a function of a complex variable, f (z) = u(x, y) + iv(x, y)   1 

Example.2.2.1 

 

is an analytic function.  Express f (z) in terms of z. On the real line  ,  y = 0 , 

f (z) is 

 

 (Recall that cos(0) = cosh(0) = 1 and sin(0) = sinh(0) = 0) 
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The analytic continuation of f (z) into the complex plane is: 

  

Alternatively, for x = 0 we have  

 

The analytic continuation from the imaginary axis to the complex plane is 

                                

 

Example.2.2.2  

Consider  Find v such that f (z) = u + iv is 

analytic. From the Cauchy-Riemann equations 

 

 

Integrate the first equation with respect to y. 

 

F (x) is an arbitrary function of x.  Substitute this expression for v into the 

equation for ∂v/∂x 1  

 

Thus F '(x) = 0 and F (x) = c. 
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Example 2.2.3 

 Consider 

.   

Show that  

 

 

f '(z) is an analytic function.  On the real axis, z = x, f '(z) is  

 

Now f"(z = x) is defined on the real line.  An analytic continuation of       

f"(z = x) into the complex plane is 

 

Example 2.2.4.  

Again consider the problem of finding f(z) given that 

 

Now we can use the result of the previous example to do this problem 1 
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Integration yields the result  

                                                                               

Example  2.2.5 

 Find f (z) given that  

 

is an analytic function.  On the real line, f (z) is 

 

 

Now we know the definition of f(z) on the real line.  We would like to find 

an analytic continuation of f(z) into the complex plane.  An obvious choice 

for f(z) is 

 

Using trig identities we can write this as 

 

Example 2.2.6 

 Find f (z) given only that 

 

Recall that 
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Differentiating u(x, y), 

 

f '(z) is an analytic function.  On the real axis, f ' (z) is 

f '(z = x) = cos
2
 x – sin

2
 x 

Using trig identities we can write this as 

 

Now we find an analytic continuation of f '(z = x) into the complex plane 

 

Integration yields the result 

 

                                                                           

2.3       Polar  Coordinates  

Example. 2.3.7 

 

the real part of an analytic function? 

The laplacian in polar coordinates is  

 

We caclculate the partial derivative of u  

13 



 

 

From the above we see that  

 

Therefore u is harmonic and is the real part of same analytic function.[1] 

Example 2.3.8 

Find an analytice function f(z) whose real part is  

 

Let f (z) = u(r, θ) + iv(r, θ).  The Cauchy-Riemann equations are 

 

Using the partial derivatives in the above example, we obtain two partial 

differential equations for v(r, θ) 

 

Integrating the equation for σθ yields 

14 



 

where F (r) is a constant of integration 

substituting our expression for vr into the equation for  vr  yields  

θ cos θ + log r sin θ + sin θ + F '(r) = θ cos θ + sin θ + log r sin 

θ F'(r) = 0 

F (r) = const 

Thus we see that 

f (z) = u + iv  

= r (log r cos θ − θ sin θ) + ir (θ cos θ + log r sin θ) + const 

f (z) is an analytic function.  On the line θ = 0, f (z) is 

f (z = r) = r(log r) + ir(0) + const 

= r log r + const 

The analytic continuation into the complex plane is 

f (z) = z log z + const 

Example.2.3.9 

 Find the formula in polar coordinates that is analogous to 

 

We know that 

 

If f (z) = u(r, θ) + ıv(r, θ) then 

 

From the Cauchy-Riemann equations, we have vr= −uθ /r 

 

f '(z) is an analytic function.  On the line θ = 0, f (z) is 

15 



 

The analytic continuation of f '(z) into the complex plane is 

     [1]                                                           

 

 

Example.2.3.10  

 Find an analytic function f (z) whose real part is 

u(r, θ) = r (log r cos θ − θ sin θ) 

ur (r, θ) = (log r cos θ − θ sin θ) + cos θ 

 uθ (r, θ) = r (− log r sin θ − sin θ − θ cos θ) 

 

= log z + 1 

Integrating f 0(z) yields 

 

2.4 Analytic  Functions  Defined  in  Terms  of  Their  Real  or  

Imaginary  Parts 

Consider an analytic function: f(z) = u(x, y) + ıv(x, y). We differentiate this 

expression. 

 

We apply the Cauchy-Riemann equation vx = −uy  

 

Now consider the function of a complex variable  g (ς) : 
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This function is analytic where f() is analytic. To show this we first verify 

that the derivatives in the  and ψ  directions are equal 

 

 

Since these partial derivatives are equal and continuous, g(δ) is analytic. We 

evaluate the function g(δ) at  = −i x. (Substitute y = −ix ) 

 

We make a change of variables to solve for f'(x). 

 

If the expression is non-singular, then this defines the analytic function,f '(z), 

on the real axis. The analytic continuation to the complex plane is 

 

Note that  

We integrate the equation to obtain: 

 

We know that the real part of an analytic function determines that function 

to within an additive constant. Assuming that the above expression is non-

singular, we have found a formula for writing an analytic function in terms 

of its real part. With the same method, we can find how to write an analytic 

17 



function in terms of its imaginary part, v. We can also derive formulas if u 

and v are expressed in polar coordinates: 

 

Result 2.4 If f(z) = u(x, y) + ıv(x, y) is analytic and the expressions are non-

singular  

 

If f(z) = u(r, θ) + ıv(r, θ) is analytic and the expressions are non-singular, 

then  

                                  1 

Example 2.4.11 Consider the problem of finding f(z) given that  

 

 

Example 2.4.12 Consider  

 

We try to construct the analytic function from it’s real part using the 

Equation 
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We obtain a singular expression, so the method fails. 

Example 2.4.13: Again consider the logarithm, this time written in terms of 

polar coordinates (1) 

.  

We try to construct the analytic function from it’s real part using Equation 
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Analytic  Continuation  of  Sums: 

 This chapter is about analytic continuation of summation ,analytic 

continuation along a curve and statement of  Mondormy theorem which is 

an important result about analytic continuation of a complex analytic 

function to a larger  set    

3.1defenition:                                                                                                  

Consider the function  

 

The sum converges uniformly for D1 = │z│ 

Z  r < 1.  Since the derivative  also  converges  in  this  domain  the  

function  is  analytic  

 

 

Fig 3.1 

 

Now consider the function 

 

This function is analytic everywhere except the point z = 1. On the 

domain D1 (1) 

20 



 

Analytic continuation tells us that there is a function that is 

analytic on the union of the two domains .here the domain is the 

entire z plane except the point z = 1 and the function is: 

 

 

1 

  

3.2  Power series : 

 

A series of geometrically increasing numbers 

  

 

  

can be expressed in terms of just the second and the last number by noting 

that 

  

 

  

Solving for Sn gives 
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Now, if the magnitude of x is less than 1, the quantity x ⁿ+¹goes to zero as n 

increases, so we immediately have the sum of the infinite geometric series   

  

 

  

Archimedes evaluated the area enclosed by a parabola and a straight line 

essentially by determining the sum of such a series. This is perhaps the first 

example of a function being associated with the sum of an infinite number 

of terms. To illustrate, if we set x equal to 1/2, this equation gives 

  

 

  

There is, of course, a very significant difference between equations (1) and 

(2), because the former is valid for any value of x, whereas the latter clearly 

is not… at least not in the usual sense of finite arithmetical quantities. For 

example, if we set x equal to 2 in equation (2) we get 

  

 

  

which is surely not a valid arithmetic equality in the usual sense, because the 

that the correspondence between a function and an infinite series such as (2) 

may hold good only over a limited range of the variable. Generally 

speaking, an analytic function f(z) can be expanded into a power series 

about any complex value of the variable z by means of Taylor’s expansion, 

which can be written as 
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but the series will converge on the function only over a circular region of the 

complex plane centered on the point z0 and extending to the nearest pole of 

the function (i.e., a point where the function goes to infinity). For example, 

the function f(z) = 1/(1 z) discussed previously has a pole at z = 1, so the 

disk of convergence of the power series for this function about the origin      

(z    =  0) has a radius of 1. Hence the series given by (2) converges 

unconditionally only for values of x with magnitude less than . 4 

 

The analytic function f(z) = 1/(1  z) can also be expanded into a power 

series about any other point (where the function and its derivatives are well 

behaved). The derivatives of f(z) are 

  

 

  

and so on. Inserting these into the expression for Taylor’s series we get 

  

 

  

Hence the power series for this function about the point z0 = 2 is 
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Each of the power series obtained in this way is convergent only on the 

circular region of the complex plane centered on z0 and extending to the 

nearest pole of the function. For example, since the function f(z) = 

1/(1 z0 = 2 is convergent 

only in the shaded region shown in the figure below(3.2) 

  

 

Fig 3.2 

So far we’ve discussed only the particular function f(z) = 1/(1 

we’ve simply shown how this known analytic function is equal to certain 

power series in certain regions of the complex plane. However, in some 

circumstances we may be given a power series having no explicit closed-

form expression for the analytic function it represents (in its region of 

convergence). In such cases we can often still determine the values of the 

“underlying” analytic function for arguments outside the region of 

convergence of the given power series by a technique called analytic 

continuation. 

  

To illustrate with a simple example, suppose we are given the power series.  
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and suppose we don’t know the closed-form expression for the analytic 

function represented by this series. As noted above, the series converges for 

values of z with magnitudes less than 1, but it diverges for values of z with 

magnitudes greater than 1. Nevertheless, by the process of analytic 

continuation we can determine the value of this function at any complex 

value of z. To do this, consider again the region of convergence for the 

given power series as shown below. 

 

 

Fig 3.3 

Since the known power series equals the function within its radius of 

convergence, we can evaluate f(z) and its derivatives at any point in that 

region. Therefore, we can choose a point such as z0 shown in the figure 

above33, and determine the power series expression for f(z 0 + z), which 

will be convergent within a circular region centered on z 0 and extending to 

the nearest pole. Thus we can now evaluate the function at values that lie 

outside the region of convergence of the original power series. 

  

Once we have determine the power series for f(z0 + z) we can repeat the 

process by selecting a point z1 inside the region of convergence and 

determining the power series for f(z1 + z), which will be convergent in a 

circular region centered on z 1 and extending to the nearest pole (which is at 
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z = 1 in this example). This is illustrated in the figure below. 4 

  

. 

Fig 3.4 

Continuing in this way, we can analytically extend the function throughout 

the entire complex plane, except where the function is singular, i.e., at the 

poles of the function.  4 

  

In general, given a power series of the form 

  

 

  

where the aj are complex coefficients and α 

express the same function as a power series centered on a nearby complex 

number β  

  

 

  

where the bj are complex coefficients. In order for these two power series to 

be equal for arbitrary values of z in this region, we must equate the 

coefficients of powers of z, so we must have 
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In matrix form these conditions can be written as 

  

 

  

Multiplying through by the inverse of the right-hand coefficient matrix, this 

gives 

  

 

  

Where =  – . Naturally this is equivalent to applying Taylor’s 

expansion. Now, it might seem as if this precludes any extension of the 

domain of the original power series. For example, suppose the original 

function was the power series for 1/(1 – z) about the point  = 0, so the 

power series coefficients a0, a1, … would all equal 1. According to the 

above matrix equation the coefficient b0 for the power series about the point 

  would be simply 
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which of course converges only over the same region as the original power 

series. Also, it’s of no help to split up the series transformation into smaller 

steps, because the compositions of the coefficient matrix are given by 

  

 

  

Thus the net effect of splitting  into n segments of size /n and applying the 

individual transformation n times is evidently identical to the effect of 

performing the transformation in a single step. From this we might conclude 

that it’s impossible to analytically continue the power series 1 + z + z²+ … 

to any point such as 3i/2 with magnitude greater than 1. However, it actually 

is possible to analytically continue the geometric series, but only because of 

conditional convergence. 

  

This is most easily explained with an example. Beginning with the power 

series 

  

 

  

centered on the origin, we can certainly express this as a power series 

centered on the complex number ε = 3i/4, because the power series f(z) and 
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it derivatives are all convergent at this point (since it is inside the unit circle 

of convergence). By equation (3) with a0 = a1 = a2 = … = 1, the coefficients 

of 

  

 

  

Are
 

 

  

The absolute values of these coefficients are bn = (4/5
n+1

Now if we take 

these as the a
 
n values and apply the same transformation again, shifting the 

center of the power series by another ε= 3i/4, so that the resulting series is 

centered on 3i/2, we find that the zeroth coefficient given by equation (3) is 

  

 

  

in agreement with the analytic expression for the function. This series 

clearly converges, because each term has geometrically decreasing 

magnitude. Similarly we can compute the higher order coefficients for the 

power series centered on the point 3i/2, which is well outside the radius of 
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convergence of the original geometric series centered on the origin. But how 

can this be? We’ve essentially just multiplied the unit column vector by the 

coefficient vector for   twice, which we now gives the divergent result   4 

  

 

  

To examine this more closely, let us expand the quantities in the square 

brackets in the preceding expression for b0. This gives 

  

 

  

Each individual row is convergent, and moreover the rows converge on 

geometrically decreasing values, so the sum of the sums of the rows is also 

convergent. However, if we sum the individual values by diagonals we get 
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Thus the terms for b0 are divergent if we sum them diagonally, but they are 

convergent if we sum them by rows. In other words, the series is 

conditionally convergent, which is to say, the sum of the series – and even 

whether it sums to a finite value at all – depends on the order in which we 

sum the terms. The same applies to the series for the other coefficients.  

  

Since the terms of a conditionally convergent series can be re-arranged to 

give any value we choose, one might wonder if analytic continuation – 

which is based so fundamentally on conditional convergence – really gives a 

unique result. The answer is yes, but only because we carefully stipulate the 

procedure for transforming the power series coefficients in such a way as to 

cause the sums to be evaluated “by rows” and not in any other way. This 

procedure is justified mainly by the fact that it gives results that agree with 

the explicit analytic functions in cases when those functions are known.  

  

To show that we can also continue the geometric series to points on the 

other side of the singularity using this procedure, consider again the initial 

power series (4), and this time suppose we determine the sequence of series 

centered on points located along the unit circle centered on the point z = 1 as 

indicated in the figure 35 . 4 
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Fig 3.5 

Thus, letting  = e
i we wish to carry out successive shifts of the power series 

center by the increments 

  

 

  

and so on. Applying equation (3) with  = 1 to perform the first of these 

transformations we get the sequence of coefficients (4) 

  

 

  

Now if we call these the αj coefficients, and perform the next transformation 

using equation (3) with  = 2, we get 

  

 

  

Each of these sums is clearly convergent, because || = 1 and |1| < 1. 
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Continuing in this way, the nth power series in this sequence is 

  

 

  

where n = (1 – e
ni) is the nth point around the circle. This can also be 

written in the form  

  

 

  

These examples demonstrate that equation (3) can be used consistently to 

give the analytic continuations of power series, although in cases where the 

sums cannot be explicitly identified by closed-form expressions there is a 

problem of sensitivity to the precision of the initial conditions and the 

subsequent computations. At each stage we need to evaluate infinite series, 

and the higher order coefficients tend to require more and more terms before 

they converge, and there are infinitely many coefficients to evaluate. If we 

limit our calculations to (say) just the first 1000 coefficients, the effect of 

the unspecified coefficients will propagate to c0 in about 1000 steps. Smaller 

incremental steps require fewer terms for convergence of each sum, but they 

also require more transformations to reach any given point, and this 

necessitates carrying a larger number of coefficients. So, in practice, the 

pure numerical transformation of series using equation (3) often leads to 

difficulties. It’s also worth noting that many power series possess a “natural 

boundary”, i.e., the region of convergence is enclosed by a continuous locus 

of points at which the function is singular or not well-behaved in some other 
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sense (e.g., not differentiable), and this prevents analytic continuation of the 

series. Nevertheless, it’s interesting that an analytic function can, at least 

formally, be represented by a field of infinite-dimensional complex vectors, 

and that the process of analytic continuation can be represented by non-

associative matrix multiplication. The failure of associativity is due to the 

fact that the convergence of the conditionally convergent series depends on 

the order in which we add the terms, and this depends on the order in which 

the matrix multiplications are performed.[4] 

  

Incidentally, in each when analytically continuing the geometric series f(z) = 

1 + z + z²+ z³+ … by the procedure described above, we could have noted 

that the transformed functions centered on the point z 0 are expressible in the 

form 

 

This is a simple functional equation, and it can be applied recursively to 

give the analytic continuation of the function to all points on the complex 

plane (except for the pole at z = 1). For any z we can choose a value of z  0 

that is close enough to z so that the absolute value of (z z0 )/(1–z0) is less 

than 1 and hence the function f of that value converges. Of course, to apply 

the above equation we must also be able to evaluate f(z0), even if the 

magnitude of z0 exceeds 1, but we can do this by applying the formula 

again. For example, if we wish to evaluate f(3i) we could use the power 

series centered on z1 = 7i/4, which requires us to evaluate f(7i/4), and this 

can be done using the power series centered on z 0 = 3i/4. Thus we can write 
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The argument of each of the right-hand functions has magnitude less than 1, 

so they can each be evaluated using the original geometric series to give 

f(3i) = 0.1 + 0.3i, which naturally agrees with the value 1/(13i). In general, 

to evaluate f(zn) for any arbitrary value of zn, we could split up a path from 

the origin to zn into n small increments Δz and then multiply together the 

values of  f ( Δz /(1z)) to give the overall result. If we take the natural log 

of both sides, the expression could be written in the form 

  

 

  

In the limit as the increments become arbitrarily small we can replace Δz 

with dz and integrate the right hand side. In this limiting case only the first-

order term of the geometric series is significant, so we have 

  

 

  

Therefore the integral of the right hand side reduces to 

  

 

  

from which it follows  that 
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Another important aspect of analytic continuation is the fact that the 

continuation of a given power series to some point outside the original 

region of convergence can lead to different values depending on the path 

taken. This phenomenon didn’t arise in our previous examples, because the 

analytic function 1/(1 -valued over the entire complex plain, 

but some functions are found to be multi-valued when analytically 

continued. To illustrate, consider the power series  [4] 

  

 

  

which of course equals ln(z) within the region of convergence. This series is 

centered about the point z = 1, and at z = 0 it yields the negative of the 

harmonic series, which diverges, so the function is singular at z = 0. Now 

suppose we analytically continue this power series to a sequence of power 

series centered on points on the unit circle around the origin, i.e., the 

sequence of points e
i

, e
2i

, e
3i

, …for some constant angle θ Noting that the 

nth derivative of ln(z) is 

  

 

  

we see that the power series centered on the point ę iθ
 is given by the Taylor 

series expansion 
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Repeating this calculation for each successive point, we find 

  

 

  

This converges provided |ze
ni

| < 1. For n = 2k we have fn(z) = (2i)k + 

f(z),, so each time we circle the singularity at the origin the value of the 

function increases by 2πi. This is consistent with the fact that the natural log 

function (i.e., the inverse of the exponential function) of any given complex 

number has infinitely many values, separated by 2πi. 

  

Notice that, in this case, “functional equation” is simply 

  

 

  

which can be used in a way analogous to how the functional equation for the 

geometric series was used to analytically continue the power series to all 

non-singular points. In this regard, it’s interesting to recall that the matrix 

formulation given by equation (3) is entirely generic, and applies to all 
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power series, represented as infinite dimensional vectors, so whether or not 

a certain power series continues to a single-valued function (like the 

geometric series), a multi-valued function (like the series for the natural 

log), or can’t be continued at all, depends entirely on the initial “vector”.4 

3.2 Analytic continuation along a curve 

The definition of analytic continuation along a curve is a bit technical, but 

the basic idea is that one starts with an analytic function defined around a 

point, and one extends that function along a curve via analytic functions 

defined on small overlapping disks covering that curve. 

Formally, consider a curve (a continuous function) Let f be 

an analytic function defined on an open disk U centered at γ(0). An analytic 

continuation of the pair (f,U) along γ is a collection of pairs (f t,Ut) for 

such that 

F0 = f  and U0 = U  

For each  Ut is an open disk centered at γ(t) and is an 

analytic function  

For each there exists such that for all with 

one has that (which implies that Ut and Ut' have a 

non-empty intersection) and the functions ft and ft' coincide on the 

intersection   [5]                                                                             

3.3 Properties of analytic continuation along a curve 

Analytic continuation along a curve is essentially unique, in the sense that 

given two analytic continuations (ft,Ut) and (gt,Vt) of (f,U) along 
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γ, the functions f1 and g1 coincide on   Informally, this says that any 

two analytic continuations of (f,U) along γ will end up with the same values 

in a neighborhood of γ(1). 

If the curve γ is closed (that is, γ(0) = γ(1)), one need not have f 0 equal f 1 in 

a neighborhood of γ(0). For example, if one starts at a point (a,0) with a > 0 

and the complex logarithm defined in a neighborhood of this point, and one 

lets γ be the circle of radius a centered at the origin (traveled 

counterclockwise from (a,0)), then by doing an analytic continuation along 

this curve one will end up with a value of the logarithm at (a,0) which is 2πi 

plus the original value. 5 

 

 

 

fig 3.6 

                                                                                                                                                                                                                                                                  

3.4 Monodrom theorem                                      

     In mathematics, more precisely in complex analysis, the monodromy 

theorem is an important result about analytic continuation of a complex-

analytic function to a larger set. The idea is that one can extend a complex-

analytic function along curves starting in the original domain of the function 

and ending in the larger set. A potential problem of this analytic continuation 

along a curve strategy is there are usually many curves which end up at the 

same point in the larger set. The monodromy theorem gives sufficient 

conditions for analytic continuation to give the same value at a given point 
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regardless of the curve used to get there, so that the resulting extended 

analytic function is well-defined and single-valued. 

 

Fig 3.7 

As noticed earlier, two analytic continuations along the same curve yield the 

same result at the curve's endpoint. However, given two different curves 

branching out from the same point around which an analytic function is 

defined, with the curves reconnecting at the end, it is not true in general that 

the analytic continuations of that function along the two curves will yield the 

same value at their common endpoint. 

Indeed, one can consider, as in the previous section, the complex logarithm 

defined in a neighborhood of a point (a,0) and the circle centered at the 

origin and radius a. Then, it is possible to travel from (a,0) to ( − a,0) in two 

ways, counterclockwise, on the upper half-plane arc of this circle, and 

clockwise, on the lower half-plane arc. The values of the logarithm at ( − 

a,0) obtained by analytic continuation along these two arcs will differ by 2πi. 

If, however, one can continuously deform one of the curves into another 

while keeping the starting points and ending points fixed, and analytic 

continuation is possible on each of the intermediate curves, then the analytic 

continuations along the two curves will yield the same results at their 
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common endpoint. This is called the monodromy theorem and its statement 

is precise made below  

Let U be an open disk in the complex plane centered at a point P and 

be a complex-analytic function. Let Q be another point in the 

complex plane. If there exists a family of curves with 

such that γs(0) = P and γs(1) = Q for all the function 

is continuous, and for each it 

is possible to do an analytic continuation of f along γs, then the analytic 

continuations of f along γ0 and γ1 will yield the same values at Q.  

The monodromy theorem makes it possible to extend an analytic function to 

a larger set via curves connecting a point in the original domain of the 

function to points in the larger set. The theorem below which states that is 

also called the monodromy theorem. 

Let U be an open disk in the complex plane centered at a point P and 

be a complex-analytic function. If W is an open simply-

connected set containing U, and it is possible to perform an analytic 

continuation of f on any curve contained in W which starts at P, then f admits 

a direct analytic continuation to W, meaning that there exists a complex-analytic 

function whose restriction to U is f.  5 

Example :  

      In the process of analytic continuation, a function that is an analytic 

function F(z) in some open subset E of the  disk D given by 

0 < |z| < 1  

may be continued back into E, but with different values. For example if 

we take 
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F(z) = log z  

and E to be defined by 

Re(z) > 0  

then analytic continuation anti-clockwise round the circle 

|z| = 0.5  

will result in the return, not to F(z) but 

F(z)+2πi.  

In this case the Monodromy group is infinite and the covering space is 

the universal cover of the punctured complex plane. This cover can be 

visualized to ρ > 0. The covering map is a vertical projection, in a 

sense collapsing the spiral in the obvious way to get a punctured 

plane. 
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Applications  

Complex analysis has an important applications in modern physics, and a 

great variety of problems in physics--both conceptual and technical--can be 

explored by using it.also in biology 

4.1 Applications in complex functions : 

Acommon way to define functions in complex analysis proceeds by first 

specifying the function on a small domain only, and then extending it by 

analytic continuation. In practice, this continuation is often done by first 

establishing some functional equation on the small domain and then using 

this equation to extend the domain. Examples are the Riemann zeta function 

and the gamma function. 

The concept of a universal cover was first developed to define a natural 

domain for the analytic continuation of an analytic function. The idea of 

finding the maximal analytic continuation of a function in turn led to the 

development of the idea of Riemann surfaces     3 
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4-2 Solving Half-Plane Problems Using Analytic Continuation: 

Some of the most interesting boundary value problems in linear elasticity 

have been solved using the idea of analytic continuation, which reduces 

many boundary value problems to a so-called Hilbert problem, with a known 

solution. Examples include the displacement and traction boundary value 

problem for the half-plane and the disk; contact problems (both for half-

spaces and disks); crack problems (including cracks on the interfaces 

between dissimilar solids); and problems involving dislocations interacting 

with boundaries.. 

The Continuation Theorem 

 

4-1 

Suppose that and  are analytic functions in regions  and 

.Suppose that the two regions intersect in a domain R and there exists an 

infinite sequence  of discrete points in R with at least one limit point on 

which 
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Then the function 

 

is analytic in the union of  and  . The function is said to be the 

analytic continuation  of into  ; similarly,  is the analytic 

continuation of  in . 

For our purposes, we will be considering regions that intersect along a line 

L, and along L. In this case is analytic in  

The idea of analytic continuation provides a powerful tool for solving half-

plane problems, and can also be used to solve problems involving regions 

with circular boundaries. We will illustrate the technique by using it to solve 

half-plane problems here. 

  

The method of stress continuation for a half-plane 

For this problem, we will attempt to determine the fields inside a half-space 

subjected to a prescribed distribution of traction on its surface, as shown in 

the picture. 

Suppose that the region of interest is the upper half-plane, which we will 

refer to as R+. 
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4-2 

The problem will be solved using analytic continuation.   [5]  

Here is the basic idea. In the usual formulation, we need to find two complex 

potentials,  

and . However, when we solve a half-plane problem, the potentials in R- 

(the lower half-plane) are arbitrary – we can choose the potentials in R- in 

any way we like, without changing the stress and displacement fields in R+. 

This observation allows us to find an analytic continuation of  in R- (i.e. 

we find a function that is analytic in both R+ and R-), and then using the 

definition of  in R- to replace  in R+. Then, instead of having to find two 

analytic functions in R+, we need to find one potential  that is analytic in 

both R+ and R-, and satisfies certain boundary conditions on the real line. 

For example, we will show that the following representation will generate 

displacement and stress fields in R+ with the surface of the half-space free 

of tractions. Let  be analytic in both R+ and R-, and set 
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You can check that the surface is free from traction by letting the imaginary 

part of z approach zero (from above) in the expressions listed above. 

The precise way we define  in R- is arbitrary. We usually look for a 

definition that will make the resulting boundary conditions as simple as 

possible.  

There is a systematic approach you can follow to devise an appropriate 

continuation, however, which we will illustrate for the case of a traction 

boundary value problem.        [5] 

 Let be analytic in R+, and set 

 

 

Now, suppose that some region of the real axis is unstressed, i.e. 

 

Where L is a region on the surface. 

  

In terms of the complex potentials 
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We will introduce the notation 

 

whence 

 

This boundary condition may be re-written in terms of the functions 

 

which are analytic in R- . 

 

but in my view this is confusing and we won’t use it here. 

 

Now, observe that 

 

Whence, substituting back into the preceding equation and taking complex 

conjugates: 

 

This condition is equivalent to the statement that the function '(which is 

analytic in R+) has the same value as the function 

(which is analytic in R-) on a line segment L. Therefore, by the continuation 
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theorem, these two functions continue one another analytically across the 

line L. We can therefore think of these two functions as a single complex 

potential, which is analytic everywhere, and set          [5] 

 

We can integrate these equations to see that 

 

We can use this result to find an expression for  in R+: 

 

Finally, eliminate from our expression for displacements and stresses in 

R+ to obtain 

 

 

 

4.2 ∙1Traction Boundary Value Problems for the Half-Plane 

 We will Find the displacements and stresses in a half-space due to a 

prescribed distribution of traction on its surface. 
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We will use the representation based on stress continuation to derive our 

result. Evidently, we need to find a potential  which is analytic in both 

R
+
 and R

-
 , and satisfies 

 

(we assumed that 

 

Thus, we need to find a potential with a prescribed discontinuity on the real 

line. 

It looks like we are stumped here, but actually this problem has a well-

known solution. 

To solve the problem, we make use of the Plemelj formulae, for which we 

will need some more results from the general theory  

of complex variables   [5]                                                                                 

The Plemelj formulae 

Let  be a complex valued function defined on an arc L. Assume 

that  satisfies the Holder conditions on L, that is: 

 

for any two points , where A is a positive constant and  
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4-3 

Then 

 

is sectionally analytic in a region R cut along L; that is to say, ΩΖ  satisfies 

the following conditions: 

1    Ωz  is   analytic  on {R-L} 

(2) is sectionally continuous in the neighborhood of L 

  (3) At an end z0  of the arc L,Ωzsatisfies  

Furthermore, the limiting valuesΩ+  may be shown to exist on L and satisfy 
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Where PV denotes that the integral should be interpreted as a Cauchy 

Principal Value (the integral is singular because z 0 lies on L). These two 

equations are the Plemelj formula.   These results provide the key to solving 

the half-plane problem. The most general solution satisfying our boundary 

condition is 

 

We added the polynomial here because any continuous analytic function on 

R evidently generates zero traction on the surface. If the stresses vanish at 

infinity then .  [ 5] 

Example: Determine the potentials generating displacement and stress fields 

in a half - plane loaded by  uniform  pressure p and shear s on  the region –a 

< x1  <  a. 

  

Evidently 

 

And hence 

 

Displacement and stress fields may be then determined from 
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 Example: Fields induced by point forces beneath the surface of a half-

plane.Here is another useful trick which exploits the idea of analytic 

continuation. 

 

4-4 

A half-plane with traction free surface is subjected to a point force 

acting at a point z0. Determine complex potentials for this problem. 

Recall that the potentials 

 

 ogether with the standard complex variable formulation (no continuation, 

that is to say) generated the fields associated with a point force acting at z0 in 

an infinite solid.On the real line, these forces induce stresses [5] 
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We must therefore superpose an additional solution which generates 

equal and opposite tractions on the surface of the half-plane. We could apply 

the procedure outlined in the preceding subsection to do this, but it is 

quicker to get the solution directly. Suppose that the corrective solution is to 

be generated by a potential , using the stress continuation discussed earlier. 

Then 

 

Now, observe that is analytic in R-, while  is analytic 

in R+. 

We may therefore satisfy the boundary conditions by setting 

 

 This solves our problem, but it is inconvenient to have part of the solution 

expressed using the standard complex variable representation, while the 

corrective term is expressed using the formulation based on stress 

continuation across the real axis. We can write the correction in the standard 

form by computing  . Recall that 

 

so that 
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(Note that whenever we evaluate  we need to decide whether its 

argument lies in R+ or R-. Since z lies in R+,  is in R-. ) 

Then, finally, we may write 

 

giving 

 

Stresses and displacements should be evaluated using the standard 

representation 

 

ensuring that both z and z0 are in R+         [5] 

Exactly the same approach may be used to find the fields due to a 

dislocation near a free surface. Alternatively, using displacement 

continuation, we may compute the vibrational fields due to a dislocation 

near a rigid boundary.   [5]                                                                                         

4.3 study of quantum mechanical relaxation processes 

A major problem still confronting molecular simulations is how to determine 

time-correlation functions of many-body quantum systems. In this study the 

results of the maximum entropy (ME) and singular value decomposition 

(SVD) analytic continuation methods for calculating real time quantum 

dynamics from path integral Monte Carlo calculations of imaginary time 
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time-correlation functions are compared with analytical results for quantum 

mechanical vibrational relaxation processes. This system studied is an 

exactly solvable system: a harmonic oscillator bilinearly coupled to a 

harmonic bath. The ME and SVD methods are applied to exact imaginary-

time correlation functions with various level of added random noise, and 

also to imaginary-time data from path integral Monte Carlo (PIMC) 

simulations. The information gathered in the present benchmark study is 

valuable for the application of the analytic continuation of PIMC data to 

complex systems    [4 ]                                                    

4.3.1 MODEL SYSTEM 

Let us consider an oscillator linearly coupled to a bath of harmonic 

oscillators. The Hamiltonian of the system is  

                                                         (1) 

where Hosc. is the Hamiltonian of the free oscillator 

                                                                (2) 

where m is the reduced mass of the oscillator, and x and p are, respectively, 

the displacement of the oscillator from its equilibrium position and its 

conjugate momentum. The restoring force of the free oscillator is described 

by the potential V(x). The Hamiltonian of the harmonic bath is the sum of 

the Hamiltonians of the component harmonic oscillators 

                                                              (3) 

where x is the coordinate of the ath oscillator, pά its conjugate momentum, 

w its equilibrium frequency, and m its reduced mass. The coupling between 

the oscillator and the bath is taken to be 
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                                                                                (4) 

where the parameters g measure the degree of coupling of the oscillator 

with the ath normal mode of the bath. Let us assume also that the oscillator 

is coupled to an external radiation through its dipole µ(x) =
q

°(Χ)that varies 

linearly with the displacement coordinate x. The bath is assumed not to be 

directly affected by the field. We are interested in the equilibrium dynamics 

of the oscillator, and in particular the quantum time autocorrelation function 

x(t)x(0) that ultimately determines the absorption of radiation by the system. 

The dipole absorption cross section σ( ω) is, in fact, given by 

                                                              (5) 

where the dipole spectral density I(ω) is defined as the Fourier transform of 

the dipole time autocorrelation function q²x(t)x(0)› 

                                                              (6) 

Thus the decay time of the envelope of the position correlation function, the 

vibrational dephasing, or energy relaxation time is related to the broadening 

of the absorption band of the oscillator. The parameter q0 trivially scales by 

constant the dipole correlation function and the spectral function. In the 

following it will be omitted to simplify the notation.[4] 

A. Classical treatment: the generalized Langevin equation 

In a classical treatment of an oscillator embedded in a bath of harmonic 

oscillators, the dipole absorption cross section that describes the rate of 

energy absorption by the oscillator from an external oscillating radiation 

field is 

                                                                        (7) 
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Where 

                                                          (8) 

The autocorrelation function of the displacement of the oscillator can be 

obtained by solving the generalized Langevin equation 

                                        (9) 

where the time-dependent friction kernel δ(t) is related to the spectral density 

of the bath modes 

  (10)                                         

through a cosine transform 

                                                                     (11) 

W(x) is the potential of mean force. In the case of an harmonic bath it is 

given by 

                                                                      (12) 

and δ(t) is a Gaussian random force whose time autocorrelation function, by 

virtue of the fluctuation-dissipation theorem, is proportional to the friction 

kernel 

                                                                                  (13) 

The generalized Langevin equation, Eq. ﴾9﴿can be solved numerically by 

producing a set of realizations of the random force δ(t) compatible with Eq. 

﴾13﴿ and integrating Eq. 9 for each realization of the random force to obtain 

a set of trajectories x(t). By averaging over the trajectories,[4] 
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the time autocorrelation x(t)x(0)cl. is finally recovered . For  the particular 

case in which the potential V(x) of the oscillator is also quadratic ‚          

V(x) =m ω² x 
2
 /2, a closed form for the absorption cross  section  can  be 

derived 

                                          (14) 

where δ﴾0﴿∕ m, and[ mỳ﴾ω﴿] and[ my″ω﴿] are, respectively, the real 

and imaginary parts of the complex Laplace transform of the friction kernel, 

namely 

                                                (15) 

It can be shown  that for a harmonic system the quantum mechanical and 

classical absorption cross sections coincide so that Eq.14 is also valid when 

the oscillator and the bath modes are treated quantum mechanically. It 

follows, in particular, that the values vibrational dephasing and energy 

relaxation times are the same in either a classical or quantum mechanical 

treatment. [4]                                                                                     

 

 

4.3.2. QUANTTREATMENT: ANALYTIC CONTINUATION 

It is extremely difficult to set up a direct numerical study of the real-time 

dynamics of an oscillator in a frictional bath in a quantum mechanical 

regime. In this paper we attempt to infer dynamical properties of the system 

through the analytic continuation of imaginary-time correlation functions. 

The legitimacy of such approach is ensured by the analyticity of quantum 

correlation functions. In particular, the real-time displacement correlation 

function‹ x(t)x(0)›, t›.0, in Eq. (8) can be interpreted as the complex-time 
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displacement correlation function ‹x(z)x(0)›, where z is a complex 

parameter, evaluated along the positive real time axis. On the same footing, 

the imaginary-time displacement correlation function ‹x(iT)x(0)› , b›t›0, is 

interpreted as the complextime displacement correlation function evaluated 

along the negative imaginary-time axis. The imaginary-time and realtime 

correlation functions are, thus, two equivalent representations of the same 

analytic function. One can be converted into the other by means of the 

analytic continuation operation. In performing the analytic continuation, it is 

useful to consider the spectral density I(ω) of ‹x(t)x(0)›. By inverting Eq. (8) 

and by performing the replacement  t→ iT where  t٫T>0  we obtain 

                                                    (16) 

The imaginary-time correlation function‹ x(iT) x(0) ›is, thus, the Fourier–

Laplace transform of I(ω). Assuming x(iT) x(0) is known for 0‹t‹h, the 

inversion of the integral equation 16 effectively completes the analytic 

continuation  because ‹x(t)x(0)› is obtainable for real and positive t by a 

straightforward back Fourier transformation of I(ω) 

                                                        (17) 

It is convenient to perform the analytic continuation starting from the 

displacement imaginary-time correlation function of the position R
²
(–it ) 

=‹│x(–iT)–x(0)│²›. In terms of R ²(i ) and the dipole absorption cross 

section ﴾ω  ﴿ Eq. 16 Becomes 

                                 (18) 

where the kernel function K(ω,t) is 
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                                    (19) 


and the detailed balance relation I(ω)= e

–
 
hω

 \ (ω) has been used. The 

corresponding equation for‹ |x(t)x(0)|²› can be easily derived by expressing 

Eqs. 18 and 19 in real time 

                                               (20) 

By differentiating twice Eq. 20 a relation between the real part 

of‹X

(t)x˙›= ‹v(t).v› and σ﴾ω﴿ is obtained 

                                       (21) 

The imaginary-time correlation functions are readily available from path 

integral Monte Carlo (PIMC) simulations. The analytic continuation 

approach, therefore, has the clear advantage of avoiding the difficult task of 

following the dynamics of the system in real time. It suffers, however, from 

the fact that numerical analytic continuation is an illconditioned problem. In 

general, changes in the model system parameters produce small variations in 

the imaginarytime correlation functions but much larger variations in the 

real-time correlation functions. This means that by inverting Eq. (18) even 

extremely small statistical noise present in the imaginary-time correlation 

function can be amplified to such an extent that little can be said about the 

real-time dynamics of the system. By correctly handling of the statistical 

noise we can, at least, successfully identify those features of the absorption 

spectrum and of the real-time correlation function that are less affected by 

the statistical noise. [4]                                 
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Fractal theory orgeometry   4.4     

        Fractal theory orgeometry began in the seventeenth and more interest is 

given in the 18
th
 , 19

th
 and decades of the last century . 

It give more interest to small matters and unlined Dynamics operations , it 

gives indication to scientific and technological problems which scientists 

ignore for a long   time till before three years [2002]    [7] 

         In the development countries more attention is given to insert the 

fractal theory orgeometry in Arithmetic terminology to qualify the 

Arithmetic teachers . 

Now and with the harmonise of Arithmetic and super science and art 

appeared theories and applies in the modern life and it is the fractal theory 

orgeometry [7] . 

4-4-1 : Fractal Theory orgeometry conceptions and foundations  

          Mr . Beno Mandelbrot a polish country  born and a French native and 

who employed  recently to IBM company in America sat on the shore side in 

England enjoys the sea   ∙∙∙   , it's waves , good weather sunny day . He 

deviated with hid sight to the other shore   and he was wholly engaged with 

the protrusions and small gulfs and the rocky topographics inspire a poet or 

essay but twisted shore grow a problem in his mind …….. many questions 

How long the England shore ? … the shape of the twisted shore he motioned 

it by the self  similarity , it is simply (( the shape consist of smaller shapes 

than it by various measures like a tree stem and its Branches , or vein with 

its   parts or a river and it's tributaries ornamentation since the ancient times 

same as ( Egyptian ang Islamic ) and as he is An Arihmetic scientist trained 

through Borbaki     Arithmetic school so he always mentioned kirtious 

Houssdorf , Jolia , kookhi and Beno interesting especially by the conceptions 

and the observed that included things   with a self similarity for a few 

measures numbers [7] 
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He Iaunched to define the self similar shapes (which is consist of smaller 

samples of it )  

The fractal general definition … ( it is an orgeometry shape ((roughen or 

fracture ) it can be divided in to parts every is at last reduction for the shape 

to various measures   … he went he wentback to the shore splits---it is 

fractals ! then he began an artmtric treatment to event new dimension for 

new fractals flew out. 

Haussdorf consider dimension to get new fractal through the treated function 

system ,these fractals in mathematics are similar to what in  

nature and he admire by( Jolya set ) and that led him to invent  strange and 

famous  fractal and they named by his name  [7]    

In 1982 Mandbert wrote  a book name Fractals . As a whole looking 

attentively to nature produce a new theory full of life and beauty and has a 

big effect on man life in dynamics , technical , biological and nature . 

This reflect [Horch ideas ] about the human  Arithmetic ( made by some 

mathematicians ) he says it is variable and effect the civilization 

development . 

4.4.2  Self similarity and making some famous fractals  

Self similarly considered a basic form . To orgeometry , some  named it 

similar shape , we can divide the self similarity through the nature            

(statical in nature ) and arts same as the mathematical tree . 

4.4.3 Self similarity in nature  

Do you want to now how to make some of the Fractal orgeometry ? 

Biological , Scientists noticed the self similarity  in Arithmetic , it is 

complicated and divided to smaller units for example  as in plant [7] 

Some examples of self similarity , the division of cell unit to two parts , then 

to eight units the complete of morula and stages  of progress and gives 

smaller models from it in the fetus . 
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We can see four kinds of cells in man and animal they are : 

1 . Epithelial  

2 Tissue cells  

3 .Muscle cells  

4 . Nerve cells  

The similar cells and the distinguished cells united to each other to consist 

the organs ( kidneys – liver Heart ) and these consist organ system then to 

organism 

4.4.4 The repeated stage to produce Famous Fractals :  

In fact you remember the repeated stages where you are making a successive 

approximation for doing roots equation according to ( Newton stile ). 

   Xn+1 =  

Applied by repeated stages  

Or in complex form     Zn+1 =   

The result for every successive approximation start for the second till it 

reaches the best   F   value zero and exactly ( Root equation ) , so successive 

approximation is not just repeating but it is a repeat in ( operation – applied 

rule ) , to use out put all the repeat as in put in the next repeat . 

This successive approximation we try to make it simple through Generator . 
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4.4.5 Koch snow flake curve  

You may enjoy yourself by arose opening and enjoy it's nice sell .. the more 

enjoyment will be if you see it from starting opening till it complies opening  

The same when you following a jot from start to the end . 

Koch the Sweden Erythematic scientist calls this ( a long period fractal )  

Now come let's enjoy snow flakes and how it consist from light to heavy 

snow . 

The bud here is straight pieces  s0 

length is =1 

S0                  become   ـــــــــــــــــــــــــــــــــــــــــــــــn= 0 

 

Generator in repeated n 2 exchange every strait piece for the first shape to 

the Generator shape then every of the four pieces and change the middle 

piece – that result (S 2) with 16 pieces every length . 

                 = 3
-2

 =       

Start pieces                   N = 4
2
 = 16  

Length of the curve L (    ) =   =   
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In the third stage n2  change all strait pieces of the 16 in shape S2 to 

Generator to result S3  

 

Observe the fractions are more specific when there is increase in the repeat 

and we come to snow flake [7] 

So the Generator  

L (S) = (4/3)
n
   the length of the small strait piece   = 3

-n
   

Numerator of strait pieces [7] 

N(  ) = 4
n
 =    

                                                                                 It can be written     N(  ) =             

Since  

-D =         
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  D  =  

    =      D  =  

Prophet Mohamed may God grant him peace and mercy says : (( think in the 

creatures of God and don't think in his being )) 

Also he said (( An hour of thinking is better than a year of worship )) 

In fact thinking and praise are interchanged . 

A mathematical conception is a nearest approach and most honest science 

which we can reach with it to what ALLA Almighty said :  

 )) سُريهى اياحُا في الآفاق وفي اَفسهى حخً يخبيٍ نهى اَّ انحك ((

 )صذق الله انعظيى ( 

The creation of man in the Holly Koran and in modern Arithmetic is of 

important questions which must make scientists to answer through  

(( Amathematical  science and Holly Koran )) 

We pray to Alla to rum wisdom and knowledge inour hearts and minds ( 

Ammin )[7]                                                                                                        
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