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ABSTRACT

The aims of this study which has been organized into five chapters is
devoted to study different temperature distributions in mechanics of
homogeneous and inhomogeneous media. A boundary element method
(BEM) is derived for solving the two-dimensional steady-state and non
steady-state temperature distributions. To check its validity, the proposed
method is applied to solve some specific problems with known exact
solutions. And it important for the design of steam and gas turbines, jet
motors, rockets, high speed aircraft, nuclear reactors.

In chapter one, we discussed the numerical technique used in the thesis,
where we have studied general BEM procedure for solving partial
differential equation in one-dimensional. Then we generalized the BEM for
solving two dimensional problems. Also, we discussed heat conduction in an
undeformable body and principles of a boundary element technique, in the
end of this chapter, we discussed the collocation method for solving a
system of equations for the determination of the unknown boundary values
as in our thesis's problems.

In chapter two, A boundary element method is presented for the numerical
solution of a problem involving steady state two-dimensional heat
conduction in homogeneous media. To reduce the differential equations to a
system of linear algebraic equations, the temperature can be determined at
any desired point in the interior of the solution domain. Numerical results
obtained by using the boundary element method agree quite well with the
exact solutions.

In chapter three, A two-dimensional problem which requires determining
the non-steady temperature distribution in a homogeneous media. It is solved
numerically using a dual-reciprocity boundary element method. Numerical
results are obtained for specific test problem agree well with the exact
solution.

In chapter four, a dual-reciprocity boundary element method is proposed
for solving the two-dimensional steady-state temperature distribution in non-
homogeneous media. Numerical results are obtained for specific test
problem agree well with the exact solution.



In chapter five, the boundary element method (BEM) is proposed for the
numerical solution of the two-dimensional non steady-state temperature
distribution in non-homogeneous media. The physical solution is recovered
through the use of a numerical technique of dual-reciprocity BEM. Such a
method of solution is used to solve a specific problem which has a known
exact solution. The numerical results obtained agree well with the exact
solution.

Then the present study concludes generally that the boundary element
method is more suitable for study of different temperature distributions.
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constant thermal conductivity.

heat flux.

polar coordinate system.

time

temperature.

Coordinates of Cartesian system.

£ - location of the source point (load point).

n - location of the source point.

Dirac delta function.
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domain of the problem.
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INTRODUCTION

The aim and the problem of the thesis:

To measure the accurateness of boundary element method (BEM) as a
mathematical technique (Approximation or Numerical) and its importance in
solving the problems than the exact solution, and the comparison between
boundary element method (BEM) and the exact solution.

The hypothesis:

For the problem of this thesis, we assumed that there a difference between
the numerical results of our solution with boundary element and other results of
the finite difference solution.

Recently, thermodynamics has undergone marked development in
connection with important problems arising during the design of steam and gas
turbines, jet motors, rockets, high speed aircraft, nuclear reactors,
microelectronics etc.

Heat flow from the gas stream in heat engines, aerodynamic heating in high-
speed aircraft, the heat given out by nuclear reactors, etc. all lead to the fact that
the components in these machines operate under conditions of non-uniform,
unsteady heating which change the physical and mechanical properties of the
materials. There are then temperature gradients accompanying the non-uniform
temperature distribution throughout the wvarious components. Because of
constraints, a non-uniform temperature distribution in a component having a
complex shape usually gives rise to thermal stresses. It is essential to know the
magnitude and effect of these thermal stresses when carrying out a rigorous
design of such components. The thermal stresses alone and in combination with
the mechanical stresses produced by the external forces can given rise to cracks
and rupture in components containing brittle materials. In the general case, the
change in temperature of a body is caused not only by heat transport from the
surroundings but also by the process of deformation. When the rate of
deformation is finite, thermo-mechanical effects of another nature are of
importance, namely the generation and flow of heat within the body, the
occurrence of associated elastic and thermal waves, thermoelastic dissipation of
energy, etc ( Fahmy[32]).

The deformation of a body is inseparably connected with a change of its heat
content and therefore with a change of the temperature distribution in the body.
A deformation of a body which varies in time leads to temperature changes, and
conversely. The science which deals with the investigation of the above coupled
processes is called thermoelasticity. Anisotropic material is a material having
mechanical properties that are not the same in all directions at a point in a body
of it. There are no planes of material symmetry. That is, the properties are a
function of the orientation at a point.
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Thermoelasticity describes the behavior of elastic bodies under the influence
of nonuniform temperature fields. It represents, therefore, a generalization of
the theory of elasticity. The constitutive equations, i.e., the equations
characterizing the particular material, are temperature-dependent and include an
additional relation connecting the heat flux in the body with the local
temperature gradient. This relation, know in its simplest form as Fourier's law,
determines the temperature distribution in the body. The temperature and stress
fields in a solid body are (in general) coupled. However, for the usual heat
transfer occurring in an unevently heated solid body as the result of external
heat sources, the influence of the stresses and strains on the temperature
distribution can be ignored. This enables us to calculate the temperature
distribution in the body on the basis of a well-defined heat transfer without
regard to the state of stress. In a solid the transfer of heat occurtos in virtue of
heat conduction alone. This has molecular-atomic character and is not
accompanied by any macroscopic movement. Heat transfer at the surface of a
body can occur in three ways: heat conduction, convection or radiation. In the
case of convection the heat exchange occurs by virtue of the motion of non-
uniformly heated fluid (or gas) contiguous with the body. Moreover, convective
heat exchange is understood to be the sum of the heat carried by the fluid
particles and by heat conduction. Heat exchange by radiation (radiant heat
exchange) takes place between bodies separated by a distance (or between
different parts of a body) by means of electromagnetic waves. The equation of
heat conduction necessary for the study of temperature fields in elastic bodies.
In the theory of thermal stresses which goes back to the beginings of the theory
of elasticity, the classical heat conduction equation was used, which does not
contain any term represent the deformation of the body. By knowing the
temperature distribution (from the solution of the heat conduction) the
displacement equations of the theory of elasticity were solved. The latter known
terms proportional to the temperature gradient. Thermoelasticity deals with a
wide class of phenomena. It contains the generalized theory of heat conduction,
the generalized theory of thermal stresses, describes the temperature
distribution produced by deformation and finally it contains a description of the
phenomenon of thermoelastic dissipation. The congitive merits of this theory
are very large indeed. In spite of its mathematical complexity, thermoelasticity
enables us to examine, deeper than before, the mechanism of the deformation
and thermal processes occurring in elastic bodies (Brebbia[18]).

In the postwar years 2" international war, there has been a rapid
development of thermoelasticity, stimulated by various engineering sciences. A
considerable, progress in the field of aircraft and machine structures, mainly
with gas and steam turbines, and the emergence of new topic in chemical and
nuclear engineering have given rise to numerous problems in which thermal
stresses play an important and frequently roles. During the past two decades,
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widespread attention has been given to thermoelasticity theories which admit a
finite speed for the propagation of thermal signals. In contrast to the
conventional theories based on parabolic-type heat equation, these theories
involve a hyperbolic-type heat equation and are referred to as generalized
theories. Various researchers authors have formulated these generalized theories
on different grounds. For example, Lord and Shulman [43] obtained a theory on
the basis of a modified heat conduction law which involves heat-flux rate, and
Green and Lindsay [36] developed a theory by including temperature-rate
among the constitutive variables.

During the fifties and early sixties of 20" the century many general
algorithms were produced and analysed for the solution of standard partial
differential equations. Since then the emphasis has shifted toward the
construction of methods for particular problems having special features which
defy solution by more general algorithms. This approach often necessitates a
greater awareness of the different physical backgrounds of the problems such as
free and moving boundary problems, shock waves, singular perturbations and
many others particularly in the thermoelasticity.

Boundary element method (also known as boundary integral equation) has
been successfully used in a variety of areas in engineering science, such as
potential theory, elastostatics, elastodynamics, elastoplasticity, fracture, fluid
mechanics, heat conduction, acoustics, electromagnetism and soil- or fluid-
structure interaction (Divo,et al [28]).

Over recent decades, the boundary element method ( BEM ) has received
much attention from researchers and has become an important technique in the
computational solution of a number of physical problems. In common with the
better-known finite element method (FEM) and finite difference method
(FDM), the boundary element method is essentially a method for solving partial
differential equations (PDEs) and can only be employed when the physical
problem can be expressed as such. As with the other methods mentioned, the
boundary element method is a numerical method and hence it is an important
subject of research amongst the numerical analysis community. However, the
potential advantages of the BEM have seemed so considerable that the strongest
impetus behind its development has come from the engineering community, in
its enthusiasm to obtain flexible and efficient computer-based solutions to a
range of engineering problems.

The boundary element method (BEM) is an important technique in the
computational solution of engineering and scientific problems. In applying the
boundary element method, only a mesh of the surfaces is required, making it
easier to use and often more efficient that the more common finite element
method.

The boundary element method is derived through the discretisation of an
integral equation that is mathematically equivalent to the original partial
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differential equation. The essential re-formulation of the PDE that underlies the
BEM consists of an integral equation that is defined on the boundary of the
domain and an integral that relates the boundary solution to the solution at
points in the domain. The former is termed a boundary integral equation (BIE)
and the BEM is often referred to as the boundary integral equation method or
boundary integral method. Over the last twenty years the term boundary
element method has become more popular. The other terms are still used in the
literature however, particularly when researchers wish to refer to the overall
derivation and analysis of the methods, rather than their implementation or
applications. This study to check validity of a boundary element method (BEM)
for solving the problems; numerical results are given and compared with the
exact solutions, and also with finite difference method, (Brebbia et al[21]).

An integral equation re-formulation can only be derived for certain classes
of PDE. Hence the BEM is not widely applicable when compared to the near-
universal adaptability of the finite element and finite difference method.
However, in the cases in which the boundary element method is applicable, it
often results in a numerical method that is easier to use and more
computationally efficient than the competing methods.

The advantages in the boundary element method arises from the fact that
only the boundary (or boundaries) of the domain of the PDE requires sub-
division. (In the finite element method or finite difference method the whole
domain of the PDE requires discretisation.) Thus the dimension of the problem
is effectively reduced by one, for example an equation governing a three-
dimensional region is transformed into one over its surface. In cases where the
domain is exterior to the boundary, as it is in potential flow past an obstacle, the
extent of the domain is infinite and hence the advantages of the BEM are even
more striking; the equation governing the infinite domain is reduced to an
equation over the (finite) boundary.

The importance of BEM is unique amongst numerical methods and is a
direct consequence of three factors:

i) The friendliness and openness of the BEM Community and its ability to
continue to grow by attracting researchers all the time.

i) The Boundary Element Method was originally developed as a technique
for engineers rather than a pure mathematical technique. This meant that the
major motivation behind the method was to reduce the dependency of the
analysis on the definition of meshes. This motivation allowed the method to
expand naturally, into new areas such as Dual Reciprocity, Complex Variable
that will be used in this thesis and other Mesh Reduction Techniques.

1ii) The importance that BEM attached, right from the beginning, to produce
industrial application tools. Complex mathematics was seen as subordinate to
the needs of the practising engineer. The aim was to produce user-friendly



codes which were seemingly effortless to use, while hiding inside very complex
calculations, (Divo and Kassab [27]).

Abd-Alla [1,2,3,4] studied thermal stresse problems. Also, Abd-Alla and
Ahmed [7] studied effect of initial stress overlying semi infinite medium.
Clements [26] studied thermal stress in an anisotropic elastic half-space. Chang,
et al. [25] used fundamental Green's functions for solving heat conduction
equation in anisotropic media. Yaghoubi, et al. [50] studied a boundary element
modeling for two-dimensional transient heat conduction, Wang, et al. [49]
applied a dual reciprocity boundary element approach for the problems of large
deflection of thin elastic plates. Karami and Hematiyan [38] studied a boundary
element method of inverse non-linear heat conduction analysis with point and
line heat sources. EI-Naggar, et al. [30] used explicit difference scheme to
obtain thermal stresses in a non-homogeneous media. Kégl and Gaul [41] used
a boundary element method for anisotropic coupled thermoelasticity. Abd-Alla,
et al. [9] studied thermoelastic stresses in non-homogeneous anisotropic media.
Matsumoto, et al. [45] studied a simple technique for efficient evaluations of
boundary integrals of time-harmonic elastodynamic BEM analyses for
anisotropic solids. Fahmy [31, 32] studied an inhomogeneous anisotropic elastic
material by using BEM.

The Complex Variable Boundary Element Method or CVBEM is a
generalization of the Cauchy integral formula into a boundary integral equation
method or BIEM. This generalization allows an immediate and extremely
valuable transfer of the modeling techniques used in real variable boundary
integral equation methods (or boundary element methods) to the CVBEM.
Consequently, modeling techniques for dissimilar materials, anisotropic
materials, and time advancement, can be directly applied without modification
to the CVBEM, (Ang. et al [15]).

An extremely useful feature offered by the CVBEM is that the produced
approximation functions are analytic within the domain enclosed by the
boundary problem and, therefore, exactly satisfy the two-dimensional Laplace
equation throughout the problem domain. Another feature of the CVBEM is the
integrations of the boundary integrals along each boundary element are solved
exactly without the need for numerical integration. Additionally, the error
analysis of the CVBEM approximation functions is workable as easy-to-
understand the concept of relative error. A sophistication of the relative error
analysis is the generation of an approximative boundary upon which the
CVBEM approximation function exactly solves the boundary conditions of the
boundary value problem (of the Laplace equation), and the goodness of the
approximation is easily seen as a closeness-of-fit between the approximative
and true problem boundaries. This numerical approach can then be used to
develop solutions for potential problems which occur in engineering
applications, or to aid in numerically calibrating and verifying domain method



numerical models (e.g. finite element or finite difference methods) of steady
state diffusion type problems.

The dual-reciprocity boundary element method (DRBEM) was originally
introduced by Brebbia and Nardini [19] and Patridge and Brebbia [47] for the
numerical solution of dynamic problems in solid mechanics. The method has
now been successfully applied to solve a wide range of problems in
engineering.

Recently, Divo and Kassab [27, 28] have introduced a new technique for the
development of a boundary integral equation for heat conduction in
heterogeneous isotropic media.

This thesis devoted to study different temperature distributions for non-
homogeneous anisotropic and isotropic medium. Boundary element method is
considered to solve these problems under suitable initial and boundary
conditions. This thesis consists of five chapters as formerly summarized.



CHAPTER (I)

(The basic concepts of boundary element method)

1.1 Boundary element Method for one dimensional problem

In this section we will consider a simple one dimensional (1-D) example to
show how a differential equation can be transformed to the boundary by means
of the method of weighted residuals. In this example, we will explain the basic
steps that we will use in the derivation of the 2-D boundary element
formulations, in order to understand the principles of the boundary element
method.

The physical problem is usually described by the partial differential
equation. To obtain an integral equation, which in many respects is easier to
handle, we employ the technique of weighted residuals. In the resulting integral
equation, the differential operator acts on the unknown field variable u. Now,
by employing integration by parts, we can reduce the order of the differential
operator acting on u step-by-step, until no more partial derivatives of u appear
under the integral. In the process, we obtain a series of boundary integrals, and
the domain integral now contains partial derivatives of the weighting
functionw, i.e , we have shifted the differential operator from the field function
to the weighting function. Now, by choosing the fundamental solution as the
weighting on, we can eliminate the domain integral containing the field
function. The resulting representation formula no longer contains any unknown
variables in the domain integral. In 2-D, we have to discretise this equation, and
finally obtain a system of equations. In order to obtain the unknown boundary
values, we solve the system of equations by inserting the prescribed boundary
conditions.

Now let us have a look at the inhomogeneous differential equation
du

+U=-X
dx?

—
(v

(1.1.1)
which is defined in the domain 0<x<1. We prescribe the (homogeneous)
boundary conditions u=uon the boundary I", which in the case of the 1-D
example degenerates to two points:

U =u(x=0)=0 and U, =u(x=1)=0.
(1.1.2)



According to (1.1.2), the differential operator is given by
2
T = d—2 +1.
dx
(1.1.3)
To transform (1.1.1) to the boundary, we proceed with the following steps.

Step 1: Weighting the differential equation with a test function w.
This leads to the integral equation

(1.1.4)

Step 2: Carrying out integration by Parts (Iu'a)dx:[uw]— _[ uw'dx) according

to the order of the differential equation operator z. In our example, the first

integration by parts yields
1

2 1 1
J'd—ua)dx = [d_ua)} - Id—Ud—wdx ,
dx Jo

. dx? dx dx
(1.1.5)
and with the second integration by parts, we obtain from (1.1.4)
¢ d%e p du T [ deo]
j —+w dx+jxwdx+[—w} —[u—} =0.
* 1 L
o [u'wl [uo'T
(1.1.6)

The boundary terms [*ynow contain both known boundary values
(U; =u, =0)and the unknown boundary values u’(0) and u’(l). Since the

boundary values for uare given those for u’are unknown, we have a simple
boundary-value problem.

If we had values of both uand u’as unknowns, we would speak of a mixed
boundary-value problem. In addition, we see that the adjoint differential

operator z = r.in this case, we call the differential operator self-adjoint.

Step 3: Next we choose the fundamental solution u” of 7 defined by

=« dcu

r'u +u =8(x-
2 (x=<)

(1.1.7)



as weighting function. In (1.1.7), & is the so-called load point, at which the

point source is applied. By choosing w=u" , we obtain, with the sifting
property of the Dirac distribution,

Ju()s(x, £)dx =u(g)
t_he first integral in (1.1.6) may be written as follows

f(dou” . i
J'( +u JudX=I5(X,§)U(X)dX:U(§)’
0

oL dx?
(1.1.8)
which leads us to the so-called representation formula
p du T [ du”
u(g):—.fxu*(x,g)dx— LT I T
dx dx
0 0 0
(1.1.9)

that yields the values u(&) inside the domain if the boundary solution is known.

Step 4: Now we have to determine the fundamental solution u”. Our example
Is special case of the 1-D Helmholtz equation

d U* 2 *
+ AU =0(x=9¢),
dx? ¢

(1.1.10)
With A =1.The fundamental solution of (1.1.10) is defined in the full space,
and is given by
v sin(A|x — &)
24

(1.1.11)

Step 5: Inserting the fundamental solution (1.1.11) and boundary conditions

(1.1.2) into (1.1.9), we obtain the representation formula
1

1
u(é) = —Igsin\x — &dx - [u’(x)%sin\x - g\]

0 0

1 ' !
[ (s D)

(1.1.12)
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whish gives the potential at a point £ in the domain in terms of boundary

variables only; the domain integral does not contain any unknowns and can
therefore be regarded as a constant term.

Step 6: Now we place the load point & on the boundary — this dose not pose
any problems in 1-D problems — and obtain two equations for the unknown
boundary values u’(0)and u’(l) . With £=0and & =1we obtain the equations

u(&=0)= E[ sin|x|dx — () u’;O).
1 r ’
u(E=1)= ggsm\x?ﬁ (1)sino+“§0)sin1.

(1.1.13)
Since the boundary values for u are known (u(¢=0)=0and u(¢=1)=0),we

can solve the system (1.1.13) and obtain the solution

u'(O):_i—l and u'(})= &51—1
sinl sinl

(1.1.14)

Step 7: The last step is the calculation of the values u(¢) inside the domain. By

inserting (1.1.14) into (1.1.12), we obtain for the representation formula
cosl

1
u(f)———(——j nfl—&l+ —(—1—1)3|n§ J.;sin\x—ﬂdx.

sinl Sin 0

(1.1.15)
From (1.1.15), we obtain for instance, the value u(l/2)in the center of the

interval

1 1(cosl-sinl) . 1 1 1 1
u(—):—— ————~|sin= ———1|sin=
2 sinl 2 2 sinl 2

1/2
1 J' xsm(l—xjdx—— I xsm(x—l)dx
2 2 2

1/2
sm 0. 5 1

= —==0.0697
sinl 2
(1.1.16)
We observe, by comparison with the analytical solution
sin X
u(x) =——-
sinl

(1.1.17)
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that the result in (1.1.16) is exact.

The expression boundary element formulation should not yet be used since
we do not any discretisation in 1-D yields the exact solution might come as a
surprise, since we have based the formulation upon a weighted residual
statement which allows an error & inside the domain and only demands that the
integral average of the error be zero. Hence, despite the use of the weighted
residual formulation, (1.1.12) vyields the exact solution of the differential
equation. This can be explained as follows: for every load point &,inside the

domain we obtain a different fundamental solution u; = u*(x,fn). Therefore,

the weighted residual statement (1.1.4) with a)nzu:corresponds to a

formulation with infinitely many linearly independent test functions, such that
(1.1.4) can only vanish for all test functions @, if the expression in parentheses

vanishes, i.e., if the differential equation is fulfilled exactly.
The procedure that we have described in the previous section can be formally
generalized to two-dimensional problems as demonstrated by means of the
generic differential equation
wu—-b=0,

(1.1.18)
which is defined in an arbitrary domain Q. In (1.1.18), 7 is an arbitrary
differential operator with constant coefficients,u is the filed and b is an

arbitrary source distribution in Q. In our one example, we hade (cf.(1.1.1))
2

T= j—z +1 and b(x) =—x. The weighted form of (1.1.18) is now given by
X

X2

j (U — b)wdx = 0.
X1
(1.1.19)
In the multi-dimensional case, we obtain
j (1 —b)wdQ =0.
Q
(1.1.20)

Employing integration by parts according to the order of the differential
operator, we obtain in 1-D

X2 X2
j r"udx + [GuS @]} ~[SuG w]}? - j Wadx =0,
Xq X1

(1.1.21)
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Where G and S are boundary operators related to u, and G, S are the adjoint
operators related to . Equation (1.1.6) is a special case of this general

formulation with G = J-and S =1.
In two and three dimensions, we obtain a similar result by using integration

by parts and Gauss theorem to reduce the domain integrals to boundary
integrals:

Ir*a)udQ +I(Gu.8*w— Su.G w)dl - IzuwdQ =0.
Q r Q

(1.1.22)
Once again, by choosing the fundamental solution of the adjoint operator

U ==8(x,&)
(1.1.23)
as the weighting function (w=u"), we can eliminate the first term in (1.1.22)

by virtue of the sifting property of the Dirac distribution, and we obtain the
representation formula

u() = j(Gu..s*u* —SuG u)dr - jbu*dQ,
r Q

(1.1.24)
where the second domain integral has been replaced by (1.1.18).
The prescribed boundary conditions can also be generalized:
Gu=G onTlg,

(1.1.25)
Su=S  onTy,

(1.1.26)

where (1.1.25) describes the Dirichlet boundary conditions, and (1.1.26) the
Neuman boundary conditions.

The representation formula (1.1.24) is only defined if £ lies inside the
domain. By moving the load point to the boundary in a special limiting process
which will be described in detail in the following chapters — we obtain the so
called boundary integral equation (BIE), in which all unknown field variables
have been transformed to the boundary. The BIE is the starting point for the
boundary element method: by discretising the boundary into finite elements on
the boundary’, we can approximate with the geometry and field variables, and
by using this approximation with the BIE , we can set up a system of equations
which contains only nodal values of u on the boundary. Solution of the system
then yields the unknown boundary values, and, with the representation formula
(1.1.24), we can obtain the solution inside the domain at any arbitrary point
Eeql.
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1.1.1 Boundary Element formulation of Laplace’s Equation

Now we will explain in detail the derivation of the BEM for Laplace’s

equation
ui;=0 in Q
(1.1.27)
using the generic variable u for the potential and
0 =U; - q=u;n;
(1.1.28)

for the flux. The results can then easily be applied to steady-state heat
conduction, electrostatics , and other problems by identifying T, ¢, etc. with the

generic potential u and the respective fluxes with the generic flux vector g;.
For heat conduction and electrostatics, for example we have

1 1
gi = —quh and ¢ =--qf,
FA

(1.1.29)
respectively.

The first step in the boundary element formulation consists of transforming
the governing differential equation to an integral equation. As described above,
this can be achieved by using the method of weighted residuals. Weighting
Laplace’s equation (1.1.27) with a test function @, we obtain

_[u,“wdQ:O.
Q

(1.1.30)
Next, we eliminate the partial derivatives of the potential u from the domain
integral. This is achieved as follows: integration by parts of (1.1.30) leads to

JujiedQ = [(u;0) ;- [u;md0,
Q Q Q

(1.1.31)
and by applying the Gauss theorem (Ang [13]) to the first term on the right-
hand side of (1.1.31) to replace the domain integral by a boundary integral, we
obtain Green’s first identity

_[U,“a)dQ = Iu,imidr_ Iu,iw,idQ.
Q T o

(1.1.32)
to eliminate the remaining partial derivative u; in the domain integral on the

right-hand side, we have to again apply integration by parts and Gauss theorem.
This yields
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Iu’iia)szj‘(u’iw— Ua),i)nidr + Iuw,iidQ
Q r Q

(1.1.33)
which is known as Green’s second identity.
By substituting the differential equation (1.1.30) into (1.1.33), we eliminate
the first domain integral and obtain

- J-UCO,iidQ = J‘(UJC()— Ua),i )n,dr .
Q r
(1.1.34)

1.1.2 Green’s Representation Formula

The key point in the boundary element formulation is now the elimination of
the remaining domain integral in (1.1.34), so that the subsequent discretisation
needs to be applied only to the boundary I"of the material body and not to its
domain Q. This is an advantage when compared to domain discretisation
methods such as the finite element method (FEM) or the finite difference
method (FDM) and can lead to important time-savings in the discretisation
process and thus in the overall computational costs.

Using the Dirac distribution o(x,&)by its sifting property

I f(x)o(x,&)dx = f(&). This allows us to filter out a specific functional value

f (&) from an integral, thereby eliminating this integral. We will now employ
this property to eliminate the domain integral in (1.1.34) by choosing
@i =—0(X,$),

(1.1.35)
which

- J‘UCO’iidQ = U(g)
Q

(1.1.36)
For convenience, whenever the field point vector x; and load vector & appear

as arguments of functions, they will be written in the following as x and &, i.e.,
f(x,8)=f(%.%).
The function @ as defined in (1.1.35) is a so-called fundamental solution. In

general, a fundamental solution u” of the differential operator 7~ is defined as a
solution of the equation

U ==5(x,¢)
(1.1.37)

in the full space Q™ , where the minus sign in front of the Dirac distribution is
used for convenience.
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Employing now as test function @ the fundamental solution u”, we obtain
from (1.1.34)

u(€) = [ (@0u” (. €)~uIa™ (x, &))r,
r

(1.1.38)
where q” :=u;n; is the fundamental solution for the flux. Equation (1.1.38) is a
so-called representation formula, which in this particular case is also known as
Green’s representation formula and is valid for 2-D potential problems. The

representation formula allows us to calculate unknown values of the potential u
inside the domain (& € €2) when the boundary solution of the problem (potential

u and flux q) is known.

Now in 2-D, the fundamental solution of the Laplace’s operator as defined in
(1.1.35) is given by (Gual, et al. [34])

u (x,&) = —iln\xi ~&l= —%In r,
(1.1.39)

RO T ——

2 I‘ini =
7Zr ’

_;Z(Xi =&,
272"Xi —gi‘

(1.1.40)
1.2 Heat Conduction

In this section, we will derive the equations of heat conduction in an
undeformable body.

1.2.1 First Law of Thermodcynamics

In the absence of mechanical forces, the first law of thermodynamics states
that the time rate of change U of the interval energy is equal to the rate of
external heat supply:
y=9

dt
(1.2.41)
where the symbol d is again employed to make clear that the supplied heat Q is
a process variable and not a state variable, and therefore dose not possess a total
differential. The heat rate is given by
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aQ_ _[prdQ—_[qinidF
dt
Q r
(1.2.42)
and consists of two parts: the heat generated inside the volume element dQ is
described by the heat source density pr , and the heat supplied over the surface
element dI'is described by the heat flux vector q;. Possible mechanisms that

generate heat in the volume element are electric Joule heating, absorption of
thermal radiation, or chemical and reactions (Gaul, et al. [34]). The boundary
integral over the heat flux vector has a negative sign since an outward heat flux
means that the system loses energy. Therefore we obtain for the first law

D
ajpudQ: jprdQ—jqinidF.
Q Q r

(1.2.43)
By employing the generalised Gauss theorem, the surface integral can be
converted to a volume integral and we obtain the differential form of the first
law
Pl = pr =0

(1.2.44)

1.2.2 Second Law of Thermodynamics

We know from experience that heat cannot flow from lower temperatures
‘by itself’”. This phenomenon cannot be described by the first law of
thermodynamics, which is an energy balance and as such poses no restrictions
on the direction of heat exchange processes. To describe the direction and
irreversibility of thermodynamic processes, we introduce a new extensive state
variable, the entropy S .

The second law of thermodynamics now states that the time rate of change

S of the entropy is given by the sum of an external entropy input rate $Mand
an entropy production rate S®:

$=$00 150

(1.2.45)
where the entropy production rate cannot be negative:
s®>o.

(1.2.46)

For reversible processes, S® =0, while irreversible processes are
characterized by a positive entropy production rate.

For a continuous system, the entropy input rate S s given by (Carslaw and
Jaeger [23] )
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g(n =Ip—rdQ—IﬂdF,
ol T

(1.2.47)
where T is the absolute temperature. With this, we obtain, as an alternative
formulation of the second law of thermodynamics, the so-called Clausius-
Duhem inequality (Gaul. et al [34]).

D or g;n;
aimdQZdeQ_J%drl

(1.2.48)
By using Gauss integral theorem, this yields the local form

. T ;
TpS—pI’+qi7i —?ZO

(1.2.49)
With the first law (1.2.4), we can eliminate the heat source density prand
obtain

T.
—p(U—TS’)——q'_I_" >0.

(1.2.50)
When the specific entropy s is chosen as the independent state variable, it
follows that u =u(s) and thus

(1.2.51)
which yields
au . Ol
—|—-T |ps——=>0.
(85 jps T
(1.2.52)
Since s-and s - is arbitrary, we have
T2
oS
(1.2.53)
I.e., the absolute temperature Tand the specific entropy s are energetically
conjugate state variables. Since the absolute temperature is always positive
(T >0), it follows from (1.2.52) that
qiT; <0,
(1.2.54)

which means that heat can only flow from higher to lower temperatures. Thus
the second law of thermodynamics poses restrictions on the direction of heat
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transfer processes as previously demanded. The simplest relation that fulfils
(1.2.54) is Fourier’s law of heat conduction
q; =—kiTj

(1.2.55)
where k;; is the tensor of thermal conductivity, which is usually taken to be

symmetric. This does not follow from thermodynamics but from the Onsager
relations, obtained from considerations at the microscopic level, and is well
confirmed experimentally (Lesnic, et al. [42]). Substitution of (1.2.55) into the
second law (1.2.54) yields

(1.2.56)
thus the thermal conductivity tensor k;; has to be positive semi-definite to

comply with the second law.
With u =Ts, we finally obtain, from the first law (1.2.44), the local entropy
balance

pIs = pr —Qq;;
(1.2.57)

1.2.3 Field Equations of Heat Conduction

We can now derive the field equations of heat conduction from the
differential from (1.2.44) of the first law. To this end, we choose the
temperature T as the independent state variable, so that u = u(T) and thus

u=c(mT,
(1.2.58)
where

c(T) = ou(T)

oT

(1.2.59)
Is the heat capacity of the material. With (1.2.59) and Fourier’s law (1.2.55), we
obtain from the first law (1.2.44) the heat conduction equation
c(M)perl =(kiT ;)i +por,

(1.2.60)
which is a parabolic diffusion-type equation. For a homogeneous body with
constant thermal conductivity kj; and temperature-independent heat capacity,

this simplifies to

C,OT = kijT,ij +pr.
(1.2.61)
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For an isotropic medium, kj = djk, which yields for the heat conduction

j

equation
T - a.Tii +£
ToC
(1.2.62)

with the thermal diffusivity a:= k/(cp). A further simplification can be
achieved by assuming steady-state heat conduction, which is described by
Poisson’s equation
r

T,ii == _,0?

(1.2.63)
When heat sources are absent, this reduces further to Laplace,s equation
T,ii - 0

(1.2.64)

1.3.4 Boundary and Initial Conditions

For transient heat conduction described by (1.2.61), we have to know the

initial temperature distribution
Tt=0)=T" in Q.

(1.2.65)
The boundary conditions in heat conduction can be classified as follows:
* Dirichlet boundary condition: the primary field variable (here the heat
temperature T ) is prescribed:
T=T onIy.

(1.2.66)
* Neumann boundary condition: the secondary field variable (here the heat flux
q) is prescribed:

q=7q on Tj.
(1.2.67)
* Robin boundary condition: a function of the temperature and heat flux is

prescribed:
f(T,9)=0 on Ir,.
(1.2.68)

For practical analyses, the following boundary conditions are of particular
Importance.
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1.3 Boundary element method for 2-D Problem

While the formulation described in the previous sections for 2-D potential
problems, the following steps — which include the derivation of the boundary
integral equation and the discretisation process — depend upon the dimension of
the problem. In the remainder of this thesis, we will deal exclusively with 2-D
problems.

As noted before, the representation formula (1.1.38) returns the values of the
potential u in the interior of the domain when the boundary solution is known.
Hence, to obtain an equation that contains only boundary data, we have to move
the load point £ to the boundary. The resulting equation is called the boundary
integral equation (BIE) and forms the basis of the subsequent discretisation
process by the boundary element method.

The process of moving the load point to the boundary requires some care,
since the sifting property of the Dirac distribution is not defined when the load
point lies on the boundary:

f(&) for £e€Q

jf(x)a(x,g)dgz: 0 for £eQ,éel .
undef. for el

(1.3.69)
In the following, we will solve this problem by modifying the boundary in the
vicinity of the lode point and then move the lode point to the boundary in a
limiting process.

1.3.1 Classification of singularities in the BEM

In the direct BEM, we usually only have to deal with two types of

singularity (see table 1.1)
b
jldx =Inj|-In|-a,  ab>0

X
-a

(1.3.70)
as shown, the correct result is obtained. However, on second thoughts, we note
that this must have been by chance, since the presence of the 1/ x-singularity in
the integration interval has not been taken into account properly. The problem
at x=0 becomes apparent when trying to calculate the improper integral at

b
de ~which is undefined.
x=0
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If we approach the singularity in (1.3.70) by a limiting process, we obtain

b4
—dx=lim —dx+ | —dx
Jioce | o 2o

= lim (Inhg - Ina+lnb Ing,)

£1,&p—0
. &
= lim {Nn2x|+Inb-Ina.
81,82—)0 82

(1.3.71)
We see that the result depends on ¢ and &, if they approach zero with

different values. However, by choosing &, = &, = ¢, we obtain

N =Ini= 0,
&
(1.3.72)
and thus (1.3.71) yields the correct result
21 b
[Zdx=n=—.
X a
(1.4.73)

The integrand f(x)=1/x in (1.3.70) is strongly singular at x =0, which
means that its integral F(x) :j f (x)dx is singular at x =0, too. The value of

the integral as calculated with the limiting process in (1.3.71) is called a Cauchy

principal value (CPV) of the strongly singular integral and is denoted by
b

1
_[ —dx.

X
—-a

(1.3.74)

In addition to the strongly singular integrands, we also encounter weakly
singular integrands in the boundary element method. In constant to the strong
singularity, the integral over a weakly singular integrand exists and is

continuous at the singularity point. An example for this is the In\x\ -function.
At x =0 the function is singular but the integral

jml
X

(1.3.75)
isconﬁnuou&xﬂﬂchcanbeconﬁnnedbyappbdngthenﬂeoflﬂioyﬂuﬂ{34]
I oy

dx = xIn|x| - x+c

=0.

lim xIn|x| = lim

x—0 x—0 1 Xx—0 — i
X 2

X

(1.3.76)
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Type Property 2-D

weak singularity integral is finite at Inr
singularity

strong interpretation as Cauchy 1

singularity principal value r

Table 1.1. Classification of singularities in the boundary element method

To move the load point to the boundary, we first modify the original boundary
I', augmenting it by a small circular region with radius & around the load point
& eT"as shown in figure 1.1. The modified boundary I'"is then given by

['=T-T,+T,,

(1.3.77)
so that
F'=IlmTI".
&—0
(1.3.78)

I O . it

Figure 1.1. Boundary extension around lode point &

By this process, the load point £ again comes lie inside the domain and the
representation formula (1.1.38) remains valid.

As shown in figure 1.2, the line element dI',along the boundary extension
can be parametrised by
dl', =&dé,

(1.3.79)
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where
=[x = &l
(1.3.80)
Is the Euclidean distance between the lode point £ and the point x. With this,

we can perform the limiting process when moving the load point to the
boundary.

Figure 1.2 Geometry of the augmented boundary

(1) Weakly Singular Integral

Using the 2-D fundamental solution u” given in (1.1.39), we obtain for the
first termin (1.1. 38)

Iqu*dF: lim jq
r

&—0
-fm, I g ;'Lnof g

(1.3.81)
The first integral in (1.3.81) is weakly singular, so its calculation requires no
special care. For the second integral, we obtain with (1.3.81), (1.3.82) and
1’Hospital rule
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[ dF— [ |
EIE;]O I q glino 72' '[q( ng)édg
.1 (Ing)'
= lim — ——do
60 271 j f B}
lim — dé=0
5@0 72' I e o=

(1.3.82)
Since the integral j qudris continuous at the (weak) singularity of u”, the term

in (1.3.82) over the boundary extension I", becomes zero for ¢ — 0.
(11) Strongly Singular Integral

For the strongly singular integral in (1.1.38), we have
—J'uq*dl“ = lim uwdr

r 205 ZW‘X —§|‘

= lim ugdl“+ lim Iu f,)n, ———=—dr".
(1.3.83)

Since jruq*dl“is strongly singular, the integral over the modified boundary

r —F* represents its Cauchy principal value:
lim juq dr = juq dr

e—>0
- F
(1.3.84)
For the second integral in (1.3.15), we obtain
lim uﬂdr lim ad@:u(g)jide
g—)OFE 272-‘)( étl‘ g—>09:o 2 920272'
o
=—u(é).
;U
(1.3.85)

In contrast to (1.3.82), this term dose not vanish but remains finite, since the
integrand is singular at £ =0. The strongly singular integral j uq dris therefore

given by the sum of its Cauchy principal value and the contribution from
(1.3.85).

By inserting the results for the weakly and strongly singular integrals into
(1.1.38), we obtain the boundary integral equation



-25-

U(f)——u(§)+§u(x) Dz g j()ln(x ~&)gr
ﬂ‘xi_ézl‘
(1.3.86)
or
(1—2£ju(§) +§q*(x, Su(x)dr = ju*(x, £)q(x)dr .
V4 ! !
c(s)
(1.3.87)

The factor c(&) is the free term coefficient and can be interpreted as the
fraction of u(&) that lies inside Q:
1- % for el
2r
c(&)=< 1 for £e€Q

0 for £el', &g Q

(1.3.88)

The boundary is divided into boundary elements, and the boundary variables

are interpolated by piecewise continuous functions, e.g., polynomials, so that an

approximate calculation of the boundary integrals becomes possible. This
approach is called discretisation and will be described in the following.

1.3.2 Discretisation of the Boundary

To approximate the geometry, the boundary T" is divided into E boundary
elements TW ... T®) each of which possesses one or more nodes.

Inside the element (e) with local coordinate s, the potential u® and flux

q® are interpolated using shape function ¥ (s)and nodal t(®and q{® as

follows:
M (© M €

u®(s)= Zl{f (s and q®(s)= Z‘P (s)q'®,

(1.3.89)
or in matrix notation

u® @) =T (s)a®  and q@) =¥ (5)q® ,

(1.3.90)
where 0{®, q®, ¥ are (M x1)-matrices. In 2-D analysis, the simplest shape
functions are constant and linear shape functions.
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(1) Constant Shape Functions Elements with constant shape functions possess
only one located in the middle of the element, as shown in figure 1.3. The

values of u®and q® are constant throughout the element and correspond to
the value at the node. This means that ¥;(s) =1 and

u®(s)=w,(s5)u® =i and q®(s)=W¥,(s)a® =q®.

(1.3.91)
‘P

m

)

1

0| Mode 1 el B

Figure 1.3. Constant shape function

(I1) Linear Shape Functions Using two nodes per element, we can interpolate
the potential u‘® (s) linearly over the length L® of the element as shown in

Figure 1.4. With the nodal values d{®and t{*, we obtain

1© oy —uy”

(e)
u’(s)=u; © s
__S (e) o S ()
(1 L(®) ju @z
—_— —
(1.3.92)

¥ ul®?

| L

ugl\m
0 AC

n-:)[Tle 1 node 2 % node 1 node 2 5

Figure 1.4. Linear interpolation displacements within the element r®
or in matrix notation

(e) ( : Ty
u®(s)=[¥, ‘1’2] (e) =¥ u.
(1.3.93)
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Now, using the discretisation (1.3.89), We obtain for (1.3.87) in 2-D

C(é)U(§)+Z | (Z‘P u(e)jq dr = Z [ [Z‘P <e)}J

e=1p(e) \m=1 e=1p(e) \m=1
(1.3.94)
Since the nodal values t® and q{®) are constant, we can write
E M . E
c@u(E)+ Y| D) [wha'dr =Z asy) [pu’dr
e=1\ m=1 r e=1\ m= 1 )
(1.3.95)

which is the discretised from the boundary integral equation.
If constant elements are used, the node is usually located at the center of the
element. In this case, a =, and we obtain
a 1
c(¢)=1 St
(1.3.96)
If the load point in the field point are located on the same element, the vector

r, =(X — &) is perpendicular to n; and therefore

(% —&)n=0.
(1.3.97)

1.3.3 The Collocation Method

The discretised boundary integral equation (1.3.95) is now used to set up a
system of equations for the determination of the unknown boundary values.

While this can be done in a number of ways using the method of weighted
residuals, we will only describe the collocation method, which is by far the
most frequently used approach due to its versatility and computational
efficiency. An alternative approach is the symmetric Galerkin BEM (Brebbia
[18]), which involves at double surface integration. For medium to large-scale
problems, this additional numerical cost can often be compensated by the
advantages resulting from the symmetry of the equations.

In the collocation method, we place the load point &sequentially on all
nodesof the discretisation. This way, the free term c(&)u(&) contains the
potential at the discretisation node so that no additional unknown is introduced.
When using linear and higher-order polynomial shape functions, some of the
nodes belong to more than one element, so it is advantageous to introduce a
global node numbering (n =1,...,N) that is independent of the elements.

By placing the load point on the first global node, we obtain the equation
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Ul[ j \qu*(x,egl)dr+01}+"‘+UN j ¥yq (x,&Hdr
F(N,e)

1—~(1,e)
Hll HlN
e * 1 _ * 1
=Gy | Pt OeENAT -+ [ EuT(xghdr
1"(119) F(N,e)
Gy Gin

(1.3.98)
In (1.3.98), the integral _[ e (T denotes the sum of all integrals over the

elements (e) on which the node with the global number n is located, and ¥, is

the corresponding shape function. In matrix notation, we can write (1.3.98) as
follows:

i ]

. 1 U2 102

[Hll Hi- Hin| 2 |=[Gn G Gl 7|
Uy | AN |

(1.3.99)
where |:|11 denotes the entry that contains the free term coefficient ¢, = c(&h).

By collocating the load point on the nodes 2 to N, we obtain the missing
equations, which we assemble to form the system

I:|11 Hy, -+ Hyy Ul— _Gn G, - Gy (o]}
Hy  Hap oo Hoy || Uz | Gy Gy 0 Gy || G2
_HN1 HNz HNN__UN_ _GNl GN2 GNN_ _qN_
(1.3.100)
or in matrix notation
Hu=Gq .
(1.3.101)

The diagonal eleme nts of the matrices Hand G contain the strongly and
weakly singular integrals, respectively, because r :\xi —§i\ vanishes when the
node & lies on the element over which the integration is carried out. All other
matrix elements contain regular integrals. Since both nodal vectors U and @ in
(1.3.101) contain known as well as unknown boundary values, we have to
rewrite the equations with all unknowns appearing in a vector y on one side,
Ay=1,

(1.3.102)
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Where the known boundary values are multiplied with the corresponding matrix
entries to yield the vector f. The system (1.3.102) can now be solved with
standard direct or iterative methods.

By means of a simple example, we will now illustrate how to the rearrange
the equations in (1.3.101). Consider the 2-D region shown in figure 1.5. At the

4 3
@ ———
o— ———
1 2

Figure 1.5. Rectangular region with prescribed potential U =1 on one
face and prescribed flux 0 =1 on the opposite face

boundary nodes 1 and 4, the potential u=uis prescribed and the flux q is
unknown, while at boundary nodes 2 and 3, the flux q=q is prescribed and the

potential u is unknown. The system of equations obtained with the Boundary
Element Method is the given by.

Hiy Hi Hig Hiy|[/] [Gu Gu G Gy

Hy Hyp Hyy Hy||?

Hy Hg Hag Hg |[?7] |Gsr Gg Ggg Gy
[Hat Hy Haz Hyg /]

I
.\_) ~~ ~— .\_)

(1.3.103)

where ‘/° denotes prescribed and ‘?° denotes unknown boundary values.
Rearranging the system by separating known and unknown boundary values

- Gll H12 Hl3 B Gl4 ? - |:|11 G, G5 -Hy, /
=Ga Hz Has =Gou||?|_|-H, G, G, -Hyu||/
—Gg Hzp Hazz =Gy [|?] |-Hy Gy Gy —Hul|/|
|~ G41 H 42 H 43 — G44_ _?_ L Hy G, G, —Hy /
A v f

(1.3.104)
which corresponds to (1.3.102).
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CHAPTER (I1)

( Boundary element solution of steady-state
temperature distribution
In homogeneous media )

2.1 Introduction

The boundary element method (BEM) is an integral-equation-based
mathematically was numrical technique that offers many advantages over FDM,
FVM, or FEM. Theoretical development of the BEM relies on the formulation
of the boundary integral equation that is predicated on the availability of the so-
called Green’s free-space solution for the problem of interest. Theoretical
background and numerical implementation of the BEM can be found in the
monographs by Brebbia and Walker [22], Brebbia et.al. [21], Gipson [35], and
Banerjee [16], and in the book by Brebbia and Dominguez [20]. One of the
most striking features of BEM is that, of many field problems of engineering, a
boundary integral equation is discretized to solve the field problem of interest.
Consequently, only the bounding surface of the domain is discretized, thereby
reducing the dimension of the problem by one. For instance, in the analysis of
linear and non-linear isotropic steady-state heat conduction and in linear
elasticity, a boundary discretization is only required to resolve the temperature
or stress field. Thus, for a certain class of problems, for which Green’s free-
space solutions are available, the BEM solution can be expressed in the terms of
boundary integrals only.

2.2 formulation of the problem

The two - dimensional steady-state temperature distribution may be written
in non- dimensional form as follows
o°T  o°T
—2 + —2 == O
ox° oy

(2.2.1)

Equation (2.2.1) is to be solved in a two — dimensional region R bounded by a
simple closed curve D subject to the boundary condition



-31-

T=g(xy) for (x,y)e D,
oT
P h(x,y) for (x,y)e D,

(2.2.2)
where g and h are suitably prescribed functions and D, and D, are

intersecting curves such that D, U D, = D Refer to Figure 2.1 for a geometrical
sketch of the problem.

The normal derivative a%n in Eq. 2.2.1 is defined by

oT oT oT
— =Ny —+n,—
on OX oy
(2.2.3)
where n, and n, are respectively the x and y components of a unit normal

vector to the curve D . Here the unit normal vector [n,,n,] on D is taken to be

pointing away from the region R. Note that the normal vector may vary from
point to pointon D. Thus, [n,,n,]is a function of x and y

The boundary conditions given in Eq. (2.2.2) are assumed to be properly
posed so that the boundary value problem has a unique solution, that is, it is
assumed that one can always find a functionT(x,y) satisfying Egs. (2.2.1) ,

(2.2.2) and that there is only one such function.

For a particular example of practical situations involving the boundary value
problem above, one may mention the classical heat conduction problem where
T denotes the steady-state temperature in an isotropic solid. Eq. (2.2.1) is then
the temperature governing equation derived, under certain assumptions, from
the law of conservation of energy together with the Fourier's heat flux model.
The heat flux out of the region R across the boundary D is given by
—koT/on, where kis the thermal heat conductivity of the solid. Thus, the

boundary conditions in Eq. (2.2.2) imply that at each and every given point on
D either the temperature or the heat flux (but not both) is known. To determine
the temperature field in the solid, one has to solve Eqg. (2.2.1) in R to find the
solution that satisfies the prescribed boundary conditions on D .

In general, it is difficult (if not impossible) to solve exactly the boundary
value problem defined by Egs. (2.2.1) , (2.2.2). The mathematical complexity
involved depends on the geometrical shape of the region R and the boundary
conditions given in Eq. (2.2.2) Exact solution can only be found for relatively
simple geometries of R (such as square region) together with particular
boundary conditions for more complicated geometries or general boundary
conditions, one may have to resort to approximate techniques for solving Egs.
(2.2.1),(2.2.2).
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We show how in this chapter a boundary integral solution can be derived for
Eq. (2.2.1) and apply example to obtain a simple boundary element procedure
for approximately solving the boundary value problem under consideration.

1
Y(x,y,6.1m) =Eln[(><—§)2 +(y-n)°1
(2.2.4)
We refer W(x,y,&,n) in Eq. (2.2.4) as the fundamental solution of two-

dimensional Laplac's equation may be written in the following form (Ang [16]).
Note that (X, y, &, n7)satisfies Eq. (2.2.1) every where except at (£,7) where it

Is not well defined.
If T, and T,are any two solutions ot Eq. (2.2.1) in the region R bounded by the

simple closed curve D then it can be shown that
J o ©i 1, C2)ds(x,y) =0

(2.2.5)
Since T; and T, are solutions of Eq. (2.2.1) , we may write
0°Ty . o°Ty
ox2 6‘y2
0°T, . 0T,
ox2 oy
If we multiply the first equation by T, and the second one by T, and take the
difference of the resulting equations , we obtain
8T oT. T, oT.
—( y T —2)+ —(Tz —-T,—2)=0
ox~ oy "oy oy

whrch can be integrated over R to give

oT oT oT oT
jj [—( 2 -T2+ + 21, T2, T2 vy = 0
ox - oy "oy oy
Appllcatlon of the divergence theorem to convert the double integral over R
into a line integral over D yields

oL oT. oL
j[(Tz Lo =)0, + (T2

+ (T
+(T, — Y
WhICh Is essentially Eq. (2.2.5).
Together with the fundamental solution given by Eq. (2.2.4) reciprocal
relation in Eq. (2.2.5) can be used to derive a useful boundary integral solution
for the two-dimensional Laplace's equation.

:O’

=0.

-1, 20, Jes(x,y) =0
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2.3 Boundary Element Procedure

Using the same technique as in sections 1.1 and 1.3 (see chapter 1)
Let us take T, =Y(X,V;&,n)(the fundamental solution as defined in Eq.

(2.2.4)) and T, =T, where T is the required solution of the interior boundary

value problem defined by Egs. (2.2.1), (2.2.2).
Since W(x,y;<&,n)is not well defined at the point (&,7), the reciprocal

relation in Eq. (2.2.5)is valid for T, =¥(x,y;&,n)and T, =T only if (&,7)does
not lie in the region RUD. Thus, (Ang [13])

JUTOY) (% Y: ) = PO, i) 2 (T V), ¥) =O
D n on

for (¢£,7) ¢ RUD.
(2.3.6)
A more interesting and useful integral equation than Eg. (2.3.6) can be
derived from Eq. (2.2.5) if we take the point (&,7)to lie in the region RUD.

For the case in which (&,n)lies in the interior of R, Eq. (2.2.5) is valid if we
replace D by DUD,, where D, is a circle of center (£,7)and radius ¢ as
shown in Figure (2.2). This is because W(x,y;<&,n)and its first order partial
derivatives (with respect to x or y) are well defined in the region between D
and D, . Thus, forD and D, in Figure (2.2) we can write (Gaul, et al. [34])

JUT 0092 (PO Y3607) = WX Y3 ) o (T, V) (x,y) =0
oUD, n on
that is,

JIT () 2 (P00 i) = B, yiom) o= (T V), )
2 n on

= [T (¥ Y ) = PO ) (T ), ).
o, n on

(2.3.7)
Eq. (2.3.7) holds for any radius ¢ >0, so long as the circle D, (in Figure

2.2) lies completely inside the region bounded by D. Thus, we may let
&—07"in Eq. (2.3.7). This gives



JIT03) 2 (Y3 ) = P06 Vi) (T, YIS, )
> n on

= lim [T O0Y) 2 (P06 Y ) = WX Y: )= (TCx, Y)Y IS(6, ),
e—>0" on on

&
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(2.3.8)

Using polar coordinates rand & centered about (&,7)as defined by

X—<&=rcosd and y—n=rsin@, we may write

WX, V&) = %mm,

0 eoyl—n O . o -
S PGy Em]=ny— [0y Em+ny ey [W(x y;¢m)]

ny cosf+nysin o

27

The Taylor’s series of T (X, y) about the point (&,7)is given by

m omT _an\k ey M-k
T(xy)= ZZ( N owy-cn & 5? (y_ 77.) -
oieo OX ay k!(m—k)!

On the circle D,., r =¢. Thus,

eMcosk @sin™ o

T(x,y)= ZZ( — k[T( Y)])‘(x y)=(¢.m) kI(m—k)!

ok X 5')/
for (x,y)e D,
Similarly, we may Write
—rr(x WE ZZ( rr( DI gy
m=0k O
m—k
Xg cos 03|n 0 for (x,y) €D, .
k!(m—k)!

(2.3.9)

(2.3.10)

(2.3.11)

Using Egs. (2.3.9), (2.3.10) and (2.3.11) and writing ds(Xx,y) = ed@with 6
ranging from 0 to 27, we may now attempt to evaluate the limit on the write
hand side of Eg. (2.3.8). On D,, the normal vector [n,,n ]is given by

[-cosd,—sin G]. Thus,



-35-

J T00Y) 1k lds(x,y)

&

1 27
=—ZT(§,n)jd9

omT °F e
rnz;);)k'(m k)' ox oy™ - _([cos"esm o
—-T(&,n) as e 07,
(2.3.12)
and
j (x, y)%rr(x, y:£m)ds(x,)
ZZ( FF( YD yy=em)
7T m=0k=0
m-+1
M _[coskesin m-k oo
KI(m — k)!
—0 as g—)O*,
2.3.13)
since e™In(¢) >0 as ¢ —> 0 for m=012,...
Consequently, as £ — 07", Eq. (2.3.8) yields
T = [T = (¥ yiém)
] N
— (Y ) o (T (YK (x,)
for (&,n)eR.
(2.3.14)

Together with Eq. (2.2.4), Eq.(2.3.14) provides us with a boundary integral
solution for the two-dimensional Laplace’s equation. If both Tand JT/on are

known at all point on D, the line integral in Eq. (2.3.14) can be evaluated (at
least in theory) to calculate T at any point (&,7)in the interior of R. From the
boundary conditions (2.2.2), at any given point on D, either T or dT/dn, not
both, is unknown, however.

To solve the interior boundary value problem, we must find the unknown
T and 0T/on on D,and D, respectively. As we shall see later on, this may be

done through manipulation of data on boundary D only, if we can derive a
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boundary integral formula for(&,7n), similar to the one in Eq. (2.3.14), for
general point (&,7) that lieson D .

For the case in which the point (&,7)lies on D, Eq. (2.2.5) holds if we
replace the curve D by CUC,, where the curves C and C,are as shown in
Figure (2.3). (If D, is the circle of center (&,7)and radius &, then C, is the part
of Dthat lies outside D, and C. is the part of D, that is inside R.) Thus,

JIT 09D (¥ y: ) = P00, ) (T (x D), )
° n on

—— [ IT00) (Y3 ) = PO Vi) (T (x ), ).
¢ n on

(2.3.15)
Let us examine what happens to Eq. (2.3.15) when we let £ > 07.
As ¢ — 07", the curve C tendsto D. Thus we may write
0 0
fﬁ(x, y)ﬁ— (Y y:&m) =Y (X y;:8m) — (T(x, y)lds(x, y)
5 n on
: 0 _
=— lim [ [T y) == (P y:€.m)
s—0" ¢, on
0
—¥(x, y;i,n)%(T (x, y))lds(x, y).
(2.3.16)

Note that, unlike in Eq. (2.3.8), the line integral over D in Eq. (2.3.16) is
improper as its integrand is not well defined at (&,7) which lies on D. Strictly

speaking, the line integration should be over the curve D without an
infinitesimal segment that contains the point (&,7), that is, line integral over

Din Eqg. (2.3.16) has to be interpreted in the Cauchy principal sense if (&,7)

lieson D.
To evaluate the limit on the right hand side of Eq. (2.3.16), we need to know

what happens to C_when we lete —0". Now if (£,7) lies on a smooth part of

D (not at where the gradient of the curve changes abruptly, that is not at a
corner point, if there is any), one can intuitively see that the part of D inside

D_ approaches an infinitesimal straight line as ¢ —0". Thus, we expect C, to

tend to a semi-circle as ¢ — 0", if (£,7) lies on smooth part of D. It follows

that in attempting to evaluate the limit on the right hand side of Eq. (2.3.16) we
have to integrate over only half a circle (instead of a full circle as in the case of
Eg. (2.3.9)).

Modifying Egs. (2.3.12) and (2.3.13), we obtain
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im[IT (% y) - (P06 yi£mds(ey) =T (Em).
4 N 2

&—0

im [0, y3&,7) 2T (x Y (x,Y) =O.
C.

&—0

HenceéEq. (2.3.11) gives
2T - Jrres )2 (P06 i)

Cw(x, y;é’,ﬂ)%(T(X, y)Ids(x, )

for (&,n)lying on smooth part of D .
(2.3.17)
Together with the boundary conditions in Eq. (2.2.2) , Eq. (2.3.17) may
applied to obtain a numerical procedure for determining the unknown T and /or
JdT /onon the boundary D. Once T and JT /onare known at all points on D,
the solution of the interior boundary value problem defined by Egs. (2.2.1),
(2.3.14) and (2.3.17) as a single equation given by

MEMTEM = [T (P yi&.m)
D

_w(x, y:é,n)a—iﬁ(x, y)ds(x, y)

(2.3.18)
if we define
0 if (&,7)eRUD
A(&,n) =41/2 if (&,n) lies on a smooth part of D.
1 if (£,7) eR
(2.3.19)

We now show how Eg. (2.3.18) may be applied to obtain a simple boundary
element procedure with constant elements for solving numerically the interior
boundary problem defined by Egs. (2.2.1),(2.2.2).

The boundary D is approximated as an N -sided polygon with sides

DO p®@ . DND and DM that is,

D= D(l) U D(2) U...U D(N—l) U D(N).
(2.3.20)
The sides or the boundary elements D&, D@ ... .DND and DM, are

constructed as follows. We put N well spaced out (x©,y®), (x@ y@)
(xND y(NDyand (xN) y™Myon D, in the order given, following the
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counter clockwise direction. Defining (xN*1,yN*)=(x®, y®), we take
D®to be the boundary element from (x®,y®)to (x&D y&Dyfor
k=12,...,N.

For a simple approximation of Tand oT/onon the boundary D, we
assume that these functions are constants over each of the boundary elements.
Specifically, we make the approximation:

T=T® and Z—T = p® for (x,y)e D®(k=12,...,N)
n

(2.3.21)
where T®and p®are respectively the values of Tand &T/én at the
midpoint D®) .

With Egs. (2.3.20) and (2.3.21), we find that Eqg. (2.3.18) can be
approximately written as

N
AMEMTE D =D T OEM & n) -PREY &},
k=1

(2.3.22)
where
FOEm = W y:Emds(x,y),
D)
FEOGm = [ 1P yi&miosx.y).
(k)
’ (2.3.23)

For a given k,either T®or p® (not both) is known from the boundary

conditions in Eq.(2.2.2). Thus, there are N unknown constants on the right hand
side of Eq. (2.3.22). To determine their values, we have to generate N equations
containing the unknowns.

If we let (&,7)in Eq. (2.3.22) be given in turn by the midpoints of
DD D@ . DN and DM we obtain

N

1rm _ ST ORM (g™, gy _ pRE®O (x(M gy
2 i 2 1

for m=12,...,N,
(2.3.24)
where (™, y(™)is the midpoint of D™,
In the derivation of Eg. (2.3.24), we take A(x™,y(™)=1/2 since
(x™ y(™)peing the midpoint of D™lies on a smooth part of the
approximate boundary DY UD®@ U..upN b,
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Eqg. (2.3.24) constitutes a system of N linear algebraic equations containing
the N unknown on the right hand side of Eq. (2.3.22). We may rewrite it as

N N
Za(mk)z(k) = Zb(m") for m=12,...,N,
kel kel

(2.3.25)
where a(™) b(M)and z(® are defined by
0 _ ] F (x™, yM) if T is specified over D,
FRO(x™M, yM)—1 MK if aT/onis specified over DY,
() _ TOERM M, y™) + 15My if T is specified over DY,
pR® (x(M ym) if aT/onis specified over D®),
S [0 M=k
|1 ifm=k
L0 _ p®) if T is specified over DY
T &) if oT/on is specified over D®
(2.3.26)

Note that z&,z@® ....z(N"Vand zNare the Nunknown constants on the
right hand side of Eq. (2.3.22), while a™Jand b are known coefficients.

Once Eq. (2.3.25) is solved for the unknowns z&,z® ... z(NDand zN | the
values of Tand &T/énover the element DX, as given by T ®and
p® respectively, are known for k=12,....N. Eq. (2.3.22) with A(&,n) =1

then providesus with an explicit formula for computing T in the interior of R,
that s,

N
TEn) 2> TORR & n) - pOFRNEn} for (&) R
k=1

(2.3.27)

To summarize a boundary element solution of the interior boundary value
problem defined by Egs.(2.2.1),(2.2.2) is given by EQ.(2.3.27) together with
Eqgn. (2.3.20) and (2.3.21), the solution is said to be obtained using constant

elements. Analytical formula for calculating Fl(")(g,n)and Fz(k) (&,m)in Eq.

(2.3.23) are given in Egs. (2.3.32), (2.3.33), (2.3.35) and (2.3.36) (together with
Eq. (2.3.30)) below.
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The boundary element solution above requires the evaluation of Fl(") (&,n7) and

F*)(&,77). These functions are defined in terms of line integrals over D® as
given in Eq. (2.3.23).
The line integrals can be worked out analytical as follows.

Points on the element D® may be described using the parametric equations
x = x®) 1l (k)n§k)

fromt=0tot=1,
y = y(k) —1l (k)n)((k)

(2.3.28)
where  1®is the length of D® and [n{),n{01=[y" D —y®,

x®) — x®*D1/1%) s the unit normal vector to D™ pointing away from R.
For (x,y) € D®) we find that ds(x, y) =+/(dx)? + (dy)? =1®dt and
(k=52 +(y-m)? = AL 1 BO & mt+ EN (&),

(2.3.29)
where
AK) — I (k)]2 ’
BY (&) =[-ny? (x = &)+ (v —m)n?1@ 1),
EQEm =Y -9 +(y® -1,
(2.3.30)

The parameters in Eq. (2.3.30) satisfy 4A0E® (£ n)—[BX (&,7)]? =0 for
any point (&,77). To see why this is true, consider the straight line defined by
the parametric equations x=x® —t1%n{) and y=y® -t1n) for
—w<t<oo. Note that D™ is a subset of this straight line (given by the

parametric equations from t=0 to t =1). Eq. (2.3.29) also holds for any point
(x,y)lying on the extended line. If (&,7)dose not lie on the line then

ARL2 L BO & mt+EX (£,7) >0 for all real values of t (that is, for all
points (x,y)on the line) and hence 4AE® (5,77)—[8(")(5,77)]2 > 0. On the
other hand, if (&,7)is on the line, we can find exactly one point (x, y)such that
A2 L gk (& mt+ g® (&,m) =0. As each point (x,y) on the line given by
unique value of t, we conclude that 4AME® (£ n)—[B® (&,1n)]? =0 for
(&,m) lying on the line.
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From Egs. (2.3.23), (2.3.28) and (2.3.29), F,*)(&,n)and F) (&,7)may be
written as

(k) 1
FOGm = - A B G £

k k k k
|(k)l n()(x() §)+n()(y() 7)

dt.
7 L A2 B £ e+ EX (&,n)

R0 (€)=

(2.3.31)
The second integral in Eq. (2.3.31) is the easiest one to work out for the case

in which 4AMWE® (£7)—[BX (&£,17)]? =0. For this case, the point (&,7) lies
on the straight line of which the element D™ is a subset. Thus, the vector
[x®) &,y —pis perpendicular to [n{), n{7, that is
n{) (x® - &) +n{d (y" ) =0, and we obtain
F9(&m) =0 for aAVEW (£,7)-[BW (£, m)])* =0
(2.3.32)
From the integration formula

j at arctan (

at? +bt+C Vaac —b? V4dac —b?

for real constants a,band csuch that 4ac — b? > 0,
we find that

F (&) =

) + constant

9O Y =)+ (v - )]

2 4ARE® (£,7) -[BY (&)
2A% +BY (&)
VAAWE® (£, ) - [B® (£, 7))
B (&m)
VAAWE® (£ 1) —[BM (¢, 7))

for aAARWE® (£ ) —[BX (&£,7)]? > 0.

x [arctan(

—arctan(

(2.3.33)
If 4AQE® (£ n)—[BX (£,7)]? =0, we may write

(k)
ABE 4 BO (& )t + EW (&) = A (42— 2 —(5377))2-
A

Thus,
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(k) 1
FﬂkénrJL;QMA“a+Bz(i”5]m
for 4AWEN (£,7)-[BY (&,m]* =0

(2.3.34)
Now if (&,7)lies on a smooth part of D® | the integral in Eq. (2.3.34) is
Improper, as its integrand is not well defined at the point
t=t, =—B® (&) /(2AM) € (01). Strictly speaking, the integral should then
be interpreted in the Cauchy principal sense, that is to evaluate it, we have to
integrate over [0,t, —&]U[t, + ,1]instead of [0,1]and then let £ — O to obtain

its value. However, in this case, it turns out that the limits of integration
t =t, — ¢ and t =t; + & eventually do not contribute anything to the integral.

Thus, for 4ARE® (&£ 1) -[BX (£,7)]? =0, the final analytical formula for
F")(&,n)is the same irrespective of whether (&,7)lies on D™ or not. If

(&,n) lies on D® | we may ignore the singular behaviour of the integrand and

apply the fundamental theorem of integral calculus to evaluate the definite
integral in Eq. (2.3.34) directly over [0,1], (Bnerjiee[16]).
The integration required in Eq. (2.3.34) can be easily done to give

(k) ( ) (k)
FY & n) = o {In(l(k))+(1+—2;i)n)}ln 1. B (E)

2 AK)
_BYem, BYEn| }
k) (k)
2A 2A® |

for AAWE® (&,m) -[BY(£.m)]* =0

(2.3.35)
Using

jln(at2 +bt +c)dt =t[In(a) — 2] + (t + £) |n[t2 + gt + g]

+—«/4ac bt arctan(

+b
) + constant

V4ac —b?

for real constants a,b and csuch that 4ac —b® > 0,

we obtain
(k) (k)
RO En =" g2 - B;QW|EAg"ﬂ
BN (£,n) BY(£n)  EM(En)
+(1+W)In1+ G + G }
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VAAVEO € ) -[BY )P
AK)
2AK) L B (£ 1)
JAAOE® (£, —[BY (£,)
BY)(£,n) n
JAALE® (£, —[BY) (£,)
for 4AWE® &£ 7 -[B® (£, n)]? >0.

x [arctan(

—[arctan(

(2.3.36)

2.4 Example

In order to illustrate the performance of the BEM proposed, we can consider
the exact solution of this particular boundary value problem as follows
T sinh(7x) cos(zy)
sinh(r)

(2.4.37)
There is a significant improvement in the accuracy of the numerical results
when the number of boundary elements used is increased from 60 to 120.
Now, we take the solution domain as the square region 0<x <1, 0<y<1.

The boundary conditions are

T=0 onx=0

for O<y<1
T =cos(zy) onx=1
oT

8_:O on y=0and y=1forO<x<1
n

(2.4.38)

The sides of the square are discretized into boundary elements of equal

length. To do this, we choose N evenly spaced out points on the sides as
follows

(X(l)’y(l))’ (X(2)’y(2)) I (X(N_l)’y(N_l))’(X(N)’y(N)) and

(x(N*D y(N*Dy “arranged in counter clockwise order on the boundary of the

solution domain.

Now we will compare the numerical values of T at various interior points
obtained using 60 and 120 boundary elements with the exact solution in table
(2.2).
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Points BEM BEM FDM Exact
N=60 N=120
(0.1,0.2) 0.0226 0.0224 0.0214 0.0224
(0.1,0.3) 0.0165 0.0163 0.0143 0.0163
(0.1,0.4) 0.0086 0.0085 0.0012 0.0085
(0.5,0.2) 0.1622 0.1614 0.1530 0.1612
(0.5,0.3) 0.1180 0.1173 0.1169 0.1171
(0.5,0.4) 0.0621 0.0617 0.0562 0.0616
(0.9,0.2) 0.5895 0.5899 0.5870 0.5899
(0.9,0.3) 0.4283 0.4286 0.4198 0.4286
(0.9,0.4) 0.2251 0.2253 0.2196 0.2253

Table (2.1)

The result, we found that the boundary element solution agrees quite well
with the exact solution. And more suitable than the result we obtained from the
finite difference method.

D (T 15 specified hcrc)

3

] X

(Fig2.1)




( Fig 2.3)
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CHAPTER (1)

( Boundary Element Solution of
Non Steady-State Temperature
Distribution in Homogeneous Media )

3.1 Introduction

The application of boundary integral equation (BIE) formulation and
boundary element methods (BEM) to inverse analysis have recently gained
special attention in several fields of engineering. Of particular interest to this
study is the recent monograph by Ingham and Yuan [37] dedicated to BIE for
inverse analysis. Here, BIE applications to a broad class of inverse problems
including identification of temperature dependent properties, the detection of
surfaces cavities and flaws, inverse acoustic and electromagnetic scattering,
crack-identification methods, and parameter identification in groundwater.
Examples of BEM-based inverse formulation for identification of flaw and
cavities can be found in Kassab et al. [39], Kassab and Pollard [40] and Lesnic
et al. [42]. Chandra and Chan [24] explicitly determine design sensitivities
using the BEM and direct differentiation in steady-state conduction-convection
problems for modeling and optimization of thermal aspects of machining
processes. Martin and Dulikravich [44] discussed a non-iterative algorithms to
retrieve unknown heat sources and boundary conditioned in the ill-posed two
dimensional Poisson problem using over-specified boundary conditions or
internal temperature measurements. They use singular-value decomposition to
regularize their formulation.

In this chapter

3.2 Formulation of the problem

The two-dimensional non steady-state temperature distribution in

homogeneous media may be written in the following form
o°T o°T T
—_—t —— = —

(3.2.1)
where « is a given positive constant, t denotes time and T(x,y,t)is

temperature.
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For t >0, we are interested in solving the (heat) equation in Eq. (3.2.1) in
the two-dimensional region R bounded by simple closed curve D (on the
Oxy plane) subject to the initial- boundary conditions

T(x,y,0)= f(x,y)for (x,y) eR,
T(X y,t)= g(x,y)for (x,y) e D;and t >0,

%[T(X, y,t)]= h(x,y)for (x,y) € D,and t >0,

(3.2.2)
where f, g and h are suitably prescribed functions, D, and D,are non-

intersecting curves such that D; UD, =D, dT /én=n,oT /ox+n,dT /oy and
[ny,n,]is the unit normal vector on D, pointing away from R.

The fundamental solution of the two-dimensional Laplace’s equation as
given (in Chapter II) by

WX,y En) =$In[(x—§)2 F(y-m?],

(3.2.3)
may be used to convert Eq. (3.2.1) to an integro-differential equation given by

AEMTE D~ [[a¥(x y:&m) STT (x, y. ey
R

- [ y,t)@ﬁ(w(x, v )2 (T (x, v, )Jds(x, )
! n on

for (£,7) e RUD,

(3.2.4)
where lies on a smooth part of
0 if (£,7)gRUD
A(E,n)=<1/2 if (&,n) lies on a smooth part of D
1 if (£,n)eR
(3.2.5)

3.3 Boundary Element Procedure

Using the same technique as in sections 1.1 and 1.3 (see chapter I)

In this section, we show how Eg. (3.2.4) may be used to obtain a boundary
element procedure for the numerical solution of the initial boundary value
problem defined by Egs. (3.2.1) and (3.2.2). The entire solution domain into
many tiny cells, we apply the dual-reciprocity method to convert the domain
integral in Eq. (3.2.4) approximately into a line integral over the boundary D.
In implementing the boundary element procedure, only the boundary D has to
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be discretized into elements. The unknowns of the boundary element
formulation here do not involve only the yet to be determined values of T or
JdT /on on the boundary elements but also those of T at selected collocation
points in the interior of R.

The dual-reciprocity boundary element approach approximately reduces Eq.
(3.2.4) into a system of linear equations containing unknown functions of time.
First order time derivatives of some of the unknown functions are also present
in the system. Several approaches may be employed for solving the system of
linear algebraic-differential equations. The approach used here is to
approximate the first order time derivatives using a finite difference formula, so
that the initial-boundary value problem can be formulated as systems of linear
algebraic equations to be solved at consecutive time levels separated by a small
time-step. For the approach to work well, the boundary element procedure used
to obtain the numerical solution must be sufficiently accurate. For this reason,
we use the discontinuous linear elements for the approximation made on the
boundary.

Eq. (3.2.4) may be written approximately as (Ang [13])

M Mo
AEMTERD - 2T (X, y,0)] S o™a(E 7™ ™)
j=1at (x,y)=(aP b m=1

= [T 000 (¥ y: ) = 0% i o) (T (%, . 0) (. Y)
> n on

for (&,7) e RUD,

(3.3.6)
where (@®,b®), @@ ,b@),..(@MV pbMDyand @™ b™))are selected
collocation points in RU Dand
O(&,17;,8,b) = A(E,m) x(&.m:8,D)

#1006 2 (G mianb)
D n

—Ema, b)a%(‘l’(x’ i mds(x, ),

M i —
3" 0 pal® bib;a™ pim) :{1 it k=m,

i
o(x,y;a,b) =1+ r?(x, y;a,b) + r3(x, y;a,b),

0if k=m,

. 1 2 ) 1 4 . 1 5 .
X, v:a,b)==rc(x,y;ab)+—r"(x,y;a,b)+—r>(x,vy;a,b),
z(y)4(y)16(y)25(y)

r(x.y;ab) =+ (x—a)2 + (y —b)2.
(3.3.7)
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We approximate the boundary integral in Eq. (3.3.6) using the discontinuous
linear elements as detailed in W. T. Ang [13]. To do this, we discretize D into

N straight line elements DWW D@ .. .DNYand DM, The endpoint of
k—th element D®are (x®,y®) and x& y*Dy  (Note that
(MDY NDy (@ v @Y ) Two points (20, 70) and (6N (V)Y 51
a distance of 71 from (x®,y®y and (x**V, y*k*Dy respectively, where 7 is

a positive number such that 0<z<1/2 and 1%is the length of D®, are

chosen on DM,
For discontinuous linear elements, we make the approximation

T(X, y,t) ~ [S(X, Y) - (1— T)| (k)]'f(k) (t) _ [S(X, y) 7l (k)]-lﬁ(N+k) ('[)

e -1®
for (x,y) € D®
(3.3.8)
and
0 s(x,y) = @=)N®T1p® 1) = [s(x, y) = 71 W1 p N+ (¢
&1 y.op BN =020 ]p(zr(_)l)l[(k() y) - 71“7pMN 1)
for (x,y) e D®,
(3.3.9)

where T® (t) and T(N*K (t) are the values of T(x,y,t) at (x,y) = (X, 7®)
and (x,y)= (N 7Ny respectively, p® (t)and pN*) (t) are the values
of the normal derivative o[T(x,y,t)]/on at (x,y) =Y ,n®) and
(x, y) = (N N+ respectively and

s(x,y) = (x—x®)2 + (y — y®)2 for (x,y) e DY,
with Egs. (3.3.8)and (3.3.9), we may write

JIT Y02 (0 Y3 ) ¥ yi) (T (), Y)
> n on

I

N
> @ 1)|<k> O O~ NP )+ FO E )]
+ T QEHORM (&,m) - F¢En)]

- pOO-A-NOEX (& n) + F & m)]

pN R O[O EX (&,7) - FE (& nl),
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where analytical formulae for calculating Fl(k)((f, n), Fék)(«f,n), F3(k) (&,7m) and
F4(k) (&,n) are given in Ang [13].
Note that (a®,b®),@®@ b®@),...,@M D bM-Dy and @™ ,bM)Y in Eq.

(3.3.6) are M selected points that are well spaced out in the region RUD.
Taking M =2N +L, we choose the first 2N of these points to be those on the

boundary elements given by (£, 7®) and (N LNy for
k=12,..,N. The remaining L points denoted by (&@N* ,@N+)y
(E@NWD) ) (2N42)y (EONHD @NHDY ang (s@N+D) ONTLY
chosen points in the interior of R.

Below Eq. (3.3.9) we have already points defined T™ (t) =T (c™,»™M 1)
for n=12,...,2N. view of the L selected points inside R, we now extend the
definition to include n=2N+1,2N+2, ..., 2N + L.

Eq. (3.3.6) may now be approximately written as
2N+L

MEMT(E L) —a 2 rr<”(t)] Za)‘m’)@@ n,EM ™)y

N
@ 1)|<k> {r<k> OA-NOFED &)+ FO ]
=1

k
+ TN QIOER &,7) - FEm)]
- pOOA-NOFRN & n) +FE ]

- PO ORY & m) - R &,
(3.3.10)
We assume that either T or 0T /on (not both) is specified across a given

element. If Tis specified on D® then p® (t)and pMN*¥(t) are unknown
functions. Otherwise, if 0T /on is specified on D® | T® (t) and TN (t) are
unknowns. At the selected interior points  (£GNTY ,(N+Dy
(5(2N+2),77(2N+2))1 (5(2N+I—l)’77(2N+I—1)) and (§(ZN+L)’77(2N+L))’TiS not
known at all time except at t =0 [when it is given by the initial condition in Eq.
(3.2.2)], that is T@ND), TEN* D), ..., TENHD)  TEND(t)are
unknown functions of t for t>0. Thus, there are 2N + L unknown functions
of t on the right hand side of Eq. (3.3.10).

From Eq. (3.3.7), with the boundary D discretized into boundary elements,
we may approximately evaluate ®(&,7;a,b) using
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(2 b) = AUEm) 2 (& miab)
Z Y 1>| €W ab)-a- DI OFM ) + FO )]
+ z(é(N+k),n(N+k’ ab) [l WFN & n) - FR En)]

- Lgmab)] 1= DI OFY & n) + FOE )]
on (=) %)

- %[ 2(Emab)] [1OF € m) + R & )] }

(&m)=(ENTR) p(N+K)y

(3.3.11)
If we let (&,7) in Eq. (3.3.10) be given in turn by (£™,»™) for
n=12,...2N + L, we generate a system of 2N + L linear equations in 2N + L
unknown functions of t that is we obtain

0 M) (N 2N+L ni d e
AED T - _ZM L0l

N

=2

(2 1)|(k){T(k)(t)[ (1- T)|(k)|:(|<)(éz(n)’77(n))+F(k)(g(n)’ﬂ(n))]
k=1 \ &7 —

4+ T (N+k) ®)[r |(k)|:(|<) (f(n) (n))_ |:4(k) (f(n),ﬂ(n))]
(k) ) [-1-7)l (k) Fl(k) (éf(n) ’ 77(”)) n |:3(k) (f(n) ’ 77(n) )]
ﬁ(N+k) ®)[! (k) |:1(k) (f(n) ’ U(n)) _ |:3(k) (f(n) ’ U(n)]}’
for n=12,...2N + L,

(3.3.12)
where
] 2N+L
ﬂ(nJ) — Z@(m”q)(f(n),U(n);‘f(m)’ﬂ(m)
m=1
(3.3.13)

Note that A(EM,nMy=1/2 for n=12..2N and A(E™,n™M)=1 for
n=2N+1 2N +2,....2N + L. The constants ™’ are determined from Eq.
(337) by leting M=2N+L and (@™,b™M)y=&™ »My for
n=12,...2N + L.

If we are able to solve Eq. (3.3.12) together with the initial-boundary
conditions in Eqg. (3.2.2), then we have determined T numerically (for the

initial-boundary value problem described in Section 3.2) at 2N + L selected
points in RUD.
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Now we will describe a time-stepping approach for solving Eqg. (3.3.12)
together with the initial-boundary conditions in Eq. (3.2.2).

The function T () (t) and its first order derivative are approximated using
T (1) = %[‘f(j)(t N %At) . On —%At)]

d =) 1 ey, L SO
= )] — t+=A)+T D == A)],
SOOI O 2 a0+T0 - a0]

(3.3.14)
where At is a small (positive) time-step. The errors in the approximations in

Eq. (3.3.14) have magnitudes which are of the order O ([At]?).
Substitution of Egs. (3.3.14) into Eq. (3.3.12) yields

%/1(5(”),77(”))[f(”) (t+%At)+f<”> (t—%At)]

a X iy Gy, L (s L
——= > WPt + A -TV (-2 At)]
At S 2 2

N
l 1 fa 1 A l
- Z—{E[I'(k)(t +5 A0 +T®(t -5 A0]

k k
X —(1—r)|(k) Fz( )(f(n),ﬂ(n)) — F4( )(f(n),ﬂ(n))]
+%rf<N+k> (t +%At)+f<N+k>(t —%At)]

x[710) |:2(k) (g(n)’n(n))_'_ F4(k)(§(n),77(n))]
-pOOFA- RO E™ M)+ B ™))
_ p(N+k) ®)[) (k) Fl(k) (éz(n)’n(n)) _ |:3(k) (f(n),ﬂ(n)]},
for n=12,...2N +L,
(3.3.15)
If we assume that T (t—23At)(j=12...2N +L)are known then Eq.

(3.3.15) constitutes a system of 2N +L linear algebraic equations containing
2N + L unknowns. There are 2N unknowns on the boundary. They are given

by T t+21At) and TN (t+LAt)if 6T /on is specified on the boundary
element D®, or by p®(t) and pN*™(t)if T is known on D®. The
remaining unknowns are the value of T at the L chosen interior points, as
given by T (t+1At) for j=2N+1, 2N+2, « , 2N+L.

Eq. (3.3.15) may be solved at consecutive time levels t=JAt,3At,2At, ...,
as follows.
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_1 i - (1) 1 _T10) P
If we let t =2 At, we find that TV (t - At) =TV (0) (j=12,...,2N +1).
For j=12,...,L it is obvious that T 2N+ (0) can be determined directly from
the initial condition in Eq. (3.2.2) that is T@N*TD(Q) = f(£@N+D) p@N+Dy |

there is no discontinuity between the value of Tin R at t =0 and that specified
on D, for t >0, we may extend the initial condition to include all the points on

the boundary and take T™M (@)= f (™ »™M) for m=12..2N. If a
discontinuity exists, and if T is known on D® | then the known T on D® for
t>0 is extended to include t=0, so that T®(©) and TN (0) are

respectively given by g(E®,n®,0) and g, »(N*0 0) [instead of
f(c® 0y and f(EcN »(NTY] in order to ensure that d[T ® (t)]/dt and

df ™0 )/dt  are well defined at t=0". With T™(©) known for
n=12,...,2N + L, we can solve Eg. (3.3.15) for the unknown given by either

TM@AY) or pM@Eat) for m=12..2N, and by T@"*D(At)for
j=12,...,L. Once these unknowns are determined, we can go to the next time
level t =32 At and solve Eq. (3.3.15) again for either T™ (2at) or p™ (2 At)
for m=12,....2N and T@N*D(2At) for j=12,...,L. We may repeat the
procedure at t = %At : %At , ... to find the unknowns at higher time levels.

We may rewrite Eq. (3.3.15) as (Stehfest [48])

N L . :
Z(a(nk)zk(t) + a(n[N+k])Z(N+k) (t))+Z a(n[2N+j])Z(2N+j)(t))
k=1 j=1

= i[b“‘k) (1) +c™ @]

2N+L
Z[ (nj)+ §(nj)ﬂ,(§(1),77(1))]'|'(1)(t 2 t) for n=12,...2N + L,

(3.3.16)
where
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27 -~ o) FM (™, ™)

O RR M 5 M) if T is given on D™
a(”k) = 1 k
(47 - 2) -—2)F (™, M)

) . T (K
FIIOTEER (™ ) if oT/on is given on D
—%5(nk)0{,u(nk)(At)_l

(27 1) =00 ™ ™)
FIOTROE ™) i T is given on DY
a‘(n[N +k]) _

(47 -2) 1R (€™ ™)
~HOTEER (M 5] if aT/on is given on DX

- %5([H—N]k)a (n[N+k]) (At)_l

U

4 (ME2N-+j]) :Aﬁtﬂ(n[ZNﬂ'l) _%5[”—2'\'“ for j=12,....L,

3.4 Example

In order to illustrate the performance of the BEM proposed, we can consider the
exact solution of this particular boundary value problem as follows
72t

_rt X .y
T=1+e 8 cos(~)sin(=
( 4) ( 4)

(3.4.17)

There is a significant improvement in the accuracy of the numerical results

when the number of boundary elements used is increased from 60 to 120.
Now, we take the solution domain as the square region 0 <x<1,0<y<1.

The initial and boundary conditions are
T :1+cos(%)sin(%) at t=0 forO<x<1,0<y<],
2
T=1+ exp(—%t)sin(%) on x=0 forO<y<1and t>0,

1 72t . ny
T =1+—exp(——)sin(<>) on x=1forO<y<land t>0,
5O )sinC) y



-B5 -

oT T 7t ny

— =——exp(——)cos(>) on y=0 forO<x<1land t>0,
—- == &P(= "o ) on y

oT T %t 7IX

—=——exp(——)cos() on y=1forO<x<1land t>0,
o =23 P g )eosE) on

(3.4.18)
Now We will compare the numerical values of T at various interior points at
t =1 obtained using 60 and 120 boundary elements with the exact solution in
table (3.1).

Points BEM BEM FDM Exact
N=60, t=1 N=120, t=1 =1
t=1

(0.1,0.2) | 1.0458 1.0454 | 10437 | 1.0454
(0.1,0.3) | 1.0683 1.0677 | 10672 | 1.0678
(0.1,0.4) | 1.0902 1.0808 | 1.0886 | 1.0897
(050.2) | 1.0419 1.0422 | 10410 | 1.0421
(050.3) | 1.0624 1.0629 | 1.0598 | 1.0628
(0.50.4) | 1.0826 10832 | 1.0769 | 1.0831
(0.9,02) | 1.0350 1.0346 | 10312 | 1.0346
(0.9,03) | 1.0520 10517 | 1.0493 | 1.0517
(0.9,0.4) | 1.0690 1.0684 | 1.0682 | 1.0684

Table (3.1)

The result, we found that the boundary element solution agrees quite well
with the exact solution. And more suitable than the result we obtained from the
finite difference method.
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CHAPTER (IV)

( Boundary element solution of
steady-state temperature distribution
In non-homogeneous media )

4.1 Introduction

Many modern industrial materials, for instance functionally gradient
materials, to meet ever-increasing demands placed on materials by modern
technologies such as the single stage to orbit plan, ceramic engines, and
advanced turbomachinary components. There are also many naturally occurring
materials such as sedimentary rock and wood that exhibit material
heterogeneity. Practical issues related to analysis of non-homogeneous media
via the so-called ‘homogenization’ or effective statistical macroscopic
description of thermal conductivity is reviewed in Furmanski [33]. Abd-Alla, et
al. [8] studied magneto-thermoelastic problem in non-homogeneous isotropic
cylinder. Al-Huniti [11], Barletta and Zanchini [17] discussed hyperbolic heat
conduction equation, analysis in heterogeneous media thus finds much
importance in engineering practice. However, analytical solutions of this
problem are truly challenging due to the variable-coefficient partial differential
equations arising in isotropic analysis and the presence of cross-derivatives of
the dependent variables arising in the governing equation in anisotropic media.
Various approaches were proposed for particular non-homogeneous isotropic
media.

4.2 Formulation of the problem

In non-dimensional form the two-dimensional steady-state temperature
distribution in non-homogeneous media may be written as follows

d oT .
8—Xi(2ij aTj)—O in R,
(4.2.1)
Subject to
T(x,y)=g(x,y) for(x,y)e D,
a(x,y)=h(x,y) for (x,y) e D,
(4.2.2)
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where x; and X, are the same dimensionless expressions x and y respectively.

R is a two-dimensional region bounded by a simple closed curve D on the
Oxy plane, T(x,y)is the unknown function to be determined, 4; are non-

negative coefficients satisfying the symmetry property 4; = 4;; are the strict

inequality A2, — 4;,4,, <0 at all points in the region RUD, D, and D, are
non-intersecting curves such that D,UD, =D,
a(x, y) = 4;; (X, )i (x, y)oT /x;, ni(x,y)on D and g , h are suitably
prescribed functions. If g is specified at all points on D then, to ensure
compatibility with (4.2.1), the function q in (4.2.2) is required to satisfy

ifh(x, y)ds(x,y) =0
D

(4.2.3)
In the present chapter, we consider the case in which coefficients of the non-
homogenous anisotropic media take the form

25 (% y) = APu(x, ),
(4.2.4)
where u is a given positive function that can be partially differentiated at least

twice with respect to x; and li(jo)are non-negative constants satisfying

A0 =20and  [2D17 - AP AS) <0. After using a substitution to re-write
(4.2.1) in a suitable form, we employ the fundamental solution, for the
corresponding homogenous anisotropic media, which takes the form of a simple
logarithmic function, to derive an integral formulation for the BVM under
consideration. With such a fundamental solution, the integral formulation
inevitably contains a domain integral over the region R. To use the formulation
for deriving a BEM for the numerical solution of the BVP, we apply the dual-
reciprocity method (DRM) proposed by Brebbia and Nardini [19] to convert the
domain integral into a line integral approximately. The DRM requires us to
collocate at points in RUDbut the discretization of the region R into tiny
elements is not needed. Thus, in the proposed approach solving numerically
(4.2.1) and (4.2.2) with (4.2.4), only the curve boundary D has to be
discretized. In the literature, the term ‘dual-reciprocity boundary element
method’ (DRBEM) is used to describe such a BEM approach. The DRBEM
outlined in the present chapter is applicable for physically suitable u given by
any general function that varies spatially in a sufficiently smooth manner. To
assess the applicability of method, it is used to solve some specific problems.
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4.3. Boundary element procedure

Using the same technique as in sections 1.1 and 1.3 (see chapter 1)
With the substitution

1
T(X’ y) - m CO(X, y)

(4.3.5)
we fined that (4.2.1) with (4.2.4) can be re-written as
0) 5 w
Aij e ——=k(x,y)o
(4.3.6)
where k is given by
1
k(x,y) = 29 u
(X, ) 0CY) Aij x a (X, y)
(4.3.7)

If we pretend that the right hand side of (4.3.6) is known, i.e. if we regard
(4.3.6) as a Poisson’s equation, we can apply the analysis in Clements [26] to
derive the integral equation

y(&ma&n) = [[kx Yo y)¥(x y, & n)dxdy
R

+ Iy, € me(x,y)
D

—¥(x,y,&m)APn (X, o {w(x y)}ds(x, y)

(4.3.8)
where

0 if (&,7)¢RUD

y(@&m=q1 i (5n)eR ,
a Iif0<a<lif (&,n)eD

and
1
Y(x,y,&,1n)= 27z\/ 00 0T Re{In(x— & +z[y —77])}
1 L(X,Y)
(X, y,E 1) = R
e A LT It o)

L%, y) = (AD +22)n, (%, y) + AR +22)n, (x, y)
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_ 20 i [0)50 072
I N G e e =
Z(O)
22

(4.3.9)
with (4.3.6), we can re-write the integral equation (4.3.10) as follows (Ang, et
al. [15])

y (&S, mT(Sm)
= [[ k06 YU IT (x,y)
R

xW(x,Yy,<&,n)dxdy
+JI0C Y, E MUl YT (%, y)

D

ST AP (x Y) - 4ok )}

j
n M]\P(x, y,&,m)]ds(x,y)

Ju(x,y)

Notice that q(x, y) = 4;; (X, Y)n; (X, y)oT /0x; (as defined earlier on).

In the following section, the integral equation (4.3.6) is used to derive a
DRBEM for the numerical solution of the boundary value problem defined by
(4.2.1) and (4.2.2) with 4;; as given by (4.2.4).

For the DRBEM, let us discretize the curve D into N straight line (boundary)
elements denoted D@, D@ ... DIND and DN, jie. we make the
approximation:

D =~ D(l) U D(Z) U...uU D(N—l) U D(N)_

(4.3.10)

(4.3.11)
As we shall see later on, the DRBEM requires us to collocate equations at
points on the boundary D and in the interior of R. For this purpose, we select

N points on the boundary D given by (®,7®), @ n?®), ...
N 0Ny rand (™, 7M), and L well-spaced out points in the interior
of the region R as denoted by (&N Ny (g(N+2) ,(N+2)y
(N (N Fand (6 (N*D) [ (N+D)y For convenience, for p=12,---,N,

we take (£P,n(P), to be midpoint of the line element D(P.

To apply the dual-reciprocity method (DRM) of Brebbia and Nardini [19] to
transform the domain integral in (4.3.6) into a line integral, we first make the
approximation
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KOG YU YT (X, y) = NZﬂa%(p) (% Y)
p=1

(4.3.12)
where a‘P are constants to be determined and
o (x,y) =1+ ([x - &P + Re{rHy - n P3P + [ImEcHy - P3?)
+([x = &P 4 Re{e}y — ™32 + [Im{Hy - P12 f 2.
(4.3.13)

It should be noted that for A’ = &;; (Kronecker-delta) we find that r=i and

(4.3.13) reduces to give the local interpolating function suggested by Zhang and
Zhu [51].

We can let (x,y)in (4.3.12) be given by (&M, ™M) for m=1,2,---,N +L,

to set up a system of linear algebraic equations in a(® which can be inverted to
obtain

N+L
a® =y JuE™ My My M M)y, ()

m=1

(4.3.14)
where TM =T »MYy (M=12-- N+L) and ™ are constants
defined by
N+L 1 if p=r
ZG(P)(g(m)’n(m))Z(mr){o o
~ if p=r

(4.3.15)
Using (4.3.12) and (4.3.14) and applying the DRM, we find that the double
integral in (4.3.10) can be approximately re-written as follows (Ang and Cooke

[14])
JJ KO VOO YIT (6 )P (. Y, £, )ds(x, )

R

N+L N+L
~ Z \/u(§(m) ,ﬂ(m))T (m)k(f(m),n(m)) Zl(mp)q)(p) (&,7)
m=1 p=1

(4.3.16)
where

o (£,7) = y (&m0 (&) + (%, v, &) B (x, y)ds(x,y)
D

~§0P (x Ly, £ m)ds(x, )
D

(4.3.17)
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With

0) /1(0) ~[ (0)]2
[ﬂil 22/1(0) 212 Jg(p) (X, )
22

— x4 RegeHy -} +ImirHy -1 V1)
#- x4 RefeHy -0 Y7 + ImisHy - P} f

%({x—g“’) +Re{rHy — 7 P32 + [Im{Hy - n 312 f

(4.3.18)
and

(P)
AP (x,y) = 2O, (x, y)a

Xy
(4.3.19)
The integral equation (4.3.10) together with (4.3.11) and (4.3.16) may used
to derive

7,(5(”) (n)) /u(g(n) (n))-l-(n)

N+L

— Z\/U(f(m):ﬂ(m))T (m)k(f(m) ’U(m)) Zz(pm)q)(lo) (f(n) ’77(“))

m=1 p=1

+2Ju(§<m> 2™ [Ty, £, n™)ds(x,y)

p(m

0
z [T (m)ﬁ() {m —{\/U(X, y) _(am) (m)
j (x,y)=(&"" ")

m=1
q(m)

e ™)

] j (%, y,&™,n™)ds(x, y)

forn=212,---,N+L

(4.3.20)
where g™ =q(&™, ™) (m=12,---,N) and [n{™,n{™7 is the outward unit
normal vector to D™ . Notice that, in deriving (4.3.20) we let (x,y) in
(4.3.10) be given by (™ 7MY for n=1,2,---,N +L, and in the integrands of
the line integrals over D™ e approximate the functions multiplied to
w(x,y; M n™Y and T(x,y;¢™, n™M)as constants given by the values (of
the functions) at the midpoint of D™
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In view of the boundary conditions (4.2.2), either T(™ or g™ (not both) is
known for m=12,...,N. Being the values of u at the interior collocation points
(§(N+l)’77(N+l))’ (§(N+2)’77(N+2))’”', (g(N-l—L—l)’n(N-i-L—l))’ and
(END H(N+DY " the constants TN T(N+2) L T (N+L=D gng T(N*L) 3re
not known. Thus, the system (4.3.10) consists of N+ L linear algebraic
equations which can be solved for N +L unknown given by either TM or
g™ for m=12,---,N and T for n=12,---, L.

4.4. Example

A 2-D steady-state heat conduction problem in an orthotropic heterogeneous
medium is considered with a thermal conductivity taken as,

2X+Yy+5 0
k(x,y) = :
0 3X+y+7

(4.4.21)

With this k,an exact temperature satisfying the governing equations is,

T(X,y) = 4x% +10xy — 7y? + 20x +18y.
(4.4.22)

Points BEM BEM FDM Exact
N=60 N=120

(0.1,0.2) | 55359 55572 | 55298 | 5.5600
(0.1,03) | 7.0975 7.1087 | 7.0964 | 7.1100
(0.1,0.4) | 8.4898 85189 | 8.4889 | 8.5200
(050.2) | 152999 | 15.3210 | 15.2983 | 15.3200
(0.50.3) | 17.2458 | 17.2689 | 17.2449 | 17.2700
(0.50.4) | 19.0797 | 19.0800 | 19.0782 | 19.0800
(0.9,0.2) | 26.3059 | 26.3598 | 26.2994 | 26.3600
(0.9,0.3) | 28.6554 | 28.7095 | 28.6493 | 28.7100
(0.9.04) | 30.9089 | 30.9157 | 30.9037 | 30.9200

Table (4.1)

The result, we found that the boundary element solution agrees quite well
with the exact solution. And more suitable than the result we obtained from the
finite difference method.
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CHAPTER (V)

( Boundary element solution of
non steady-state temperature distribution
In non-homogeneous media )

5.1 Introduction

The increasing use of anisotropic material in engineering application has
resulted in considerable research activity in this area in recent years. An
understanding of thermally-induced stresses in anisotropic bodies is essential
for a comprehensive study of their response due to an exposure to a temperature
field, which may in turn occur in service or during the manufacturing stages.
Our study in the present chapter is of fundamental importance to several
disceiplines such as geophysics, earthquake engineering, geomechanics,
composites, nondestructive testing, etc.

Recent technological advances allowed further a miniaturisation of
electronic devices and an increase of their operating frequency. Unfortunately,
both these factors augmented significantly the dissipated power density.
Therefore, cooling problems occur now even in apparently low power
applications. For this reason, still more and more products undergo in their
design process a thermal simulation. Most commercial thermal simulators
employ numerical methods for the solution of the heat equation. In order to
obtain accurate results, these methods require a dense structure meshing,
especially where the temperature gradient values are significant, which is time
consuming. Thus, regarding the cost and time of a design process, analytical
solutions providing explicit formulas, relating power dissipation to temperature
rise, would be much more desirable, but usually they are difficult to find. In
recent years, the BEM has also been found to be especially accurate and
efficient in the analysis of thin elastic structures or materials. The assumption
that the inertia terms may be omitted from the equations of motion holds good
only when the variation in stresses, displacements and temperature with time
are negligible, as we assumed for the displacement equation in the present
chapter, but the heat equation is time dependent.

Abd-Alla, et al. [5] studied thermal stresses in a rotating orthotropic
composite tubes. Abd-Alla, et al. [6, 7] discussed thermoelastic waves under the
effect of initial stress. EI-Naggar, et al. [29] proposed explicit finite difference
scheme to obtain thermal stresses in an infinite slab. Also, they discussed
transient thermal stresses in a rotating non-homogeneous orthotropic hollow
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cylinder. Linear and nonlinear boundary value problems were discussed by
Barletta and Zanchini [17], and Nayfeh and Nasser [46] considered various
mechanical problems coupled to electromagnetic effects through a large
magnetic field.

The boundary element method (BEM), based on the boundary integral
equation (BIE) formulation, is well known for its accuracy and efficiency in
stress analysis.

The dual-reciprocity boundary element method was originally introduced by
Brebbia and Nardini [19] for the numerical solution of dynamic problems in
solid mechanics. The method has now been successfully extended to a wide
range of heat diffusion problems in engineering. refer to Zhu, et al. [52].

This chapter presents a general treatment of the transient temperature
distribution in a non-homogeneous anisotropic media. The heat conduction
equation is solved by means of a boundary element method (BEM) and the
numerical calculations are carried out for the temperature. The numerical and
exact values show good agreement.

5.2 Formulation of the problem

In non-dimensional form the two-dimensional non steady state temperature
distribution in non-homogeneous anisotropic media may be written in the
following form (Fahmy [31])

o, oT Gl
— (A —)= pc—
axi( ! axj) 7 a

(5.2.1)
Subject to
T(xy.0)=f(xy) for(x,y)eRUD,
T(xy,t)=g(x,y,t) for(x,y)eD;,t>0,
a(x, y,t) =h(x,y,t) for(x,y) e D,,t >0.
(5.2.2)
where x; and X, are the same dimensionless expressions x and y respectively,

Z;; are heat conductivity coefficients such that the symmetry relation 4; = 4;;

is satisfied and the strict inequality (1;,)? — 41142, <0 holds at all points in the
solid, p is the density, c is the specific heat capacity of the solid and t is the
dimensionless time. Also, f, gand h are suitably prescribed functions of x
and y, D, and D, are non-intersecting curves such that D =D; UD,.
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In the present chapter, we consider the task of solving (5.2.1) and (5.2.2) for
the case in which thermal conductivity coefficients are

Aij (X, y) = 2;u(x, y)

(5.2.3)
where u is a function that may be partially differentiated at least twice with
respect to x and 4; are non-negative constants (the values of 4; in

homogeneous matter).

5.3 Boundary element procedure

Using the same technique as in sections 1.1 and 1.3 (see chapter 1)

We shall now outline a boundary element procedure for solving (5.2.1)
subject to (5.2.2) in a two-dimensional region R bounded by a simple closed
curveD.

From (5.2.1), (5.2.2) and (5.2.3) we obtain the integro-differential equation
(Ang [12])

y(&myu(&.mT(&,n.1)
= [ {k(x YT Y1) + Jﬁ atrr(x Y, t)]}\v(x Y, &,m)dxdy
j (% Y, E VUG YT (%, ,)

|: ij |(X y)T(X Y t)—\/U(X Y)

J

_ax, y’t)}‘y(x, Y, &, )ds(x, y)

u(x, y)
(5.3.4)
where
0 if (£,n)eRUD
y(&.m=41 if (5,77)eR
a, O<axl if (¢,7)eD
(5.3.5)
(X y.¢m)

1
27 \/ A1z — (A12) ?

Re{ln[(x-&) +(y -n)]},

(5.3.6)
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1

27 \/ Midg — (/112)2
K = (A + 2g2)n (X, Y) + (Apr + FAp0)N2 (X, )
(X=8&)+z(y—n)

L(x,y,&n)= RGM

(5.3.7)

T:—/112+i\//111/122—(112)2 (i =+
A2 |

u(x,y)),

(5.3.8)
The boundary D is discretized into N straight line elements denoted by

DY D@ .., DN and DN, and we employ discontinuous linear boundary
elements (Clements [26]) to obtain the terms .u(x, y)T(xY,t),

1
T(X,Y, t) o, 1/u(x y) and m

7N*™Y) on D™ are chosen as:

q(x, y.t) in (5.3.4), where ({™,7{™) and

(77(N +m)

" =al™ + (6" i)

foragiven rye(0 1)
1 =" + 1 (6 —a™) S

(5.3.9)
Hence, we have for (x,y)e D™
JUGC YT (%, y.1) = Ju@™ )T ™ - d ™ (x, y)]
+ \/U(U(N+m) ’772N+m) )T (N+m) (t)d (m) (x,y),
for (x,y) e D™
(5.3.10)

TMOR-d™(x,y)]

TWYU—ﬂNWY~ J(y\
+aw/u(x, y ‘

x,y)=(™ §™)

(N+m) (m)
06y =M, (N+m))T (td (%, y),

for (x,y) e DM
(5.3.11)

and

1
—qx ¥, )=
Ju(x, y) \/u n(m),ném)

a™ ) —d™ (x, )]
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+ . ™™ (©)d ™ (x, y).
\/U(771(N+m),77£N+m))
(5.3.12)
where
d™(x,y) = J(X )"+ (v —ag) -l
@—2ry)I™
(5.3.13)

We implement the dual-reciprocity boundary element method in (5.3.4),

with considering the following approximation
2N+L

KO, YT (X, y,t) + ﬁat[“x y]x > alPelP(x,y)

p=1

(5.3.14)
To obtain a system of 2N + L first order linear ordinary differential equations,

where a(P are constants to be determined and

a(p)(x,y):1+([x P + Re(r)(y - np))]z [Im(r)(y Up))]zj

[[x 2+ Re(r)(y —n$P [ + Im@)y - ) [ jm

(5.3.15)

where (7,78, (2 082, .... N i)Y are the 2N points on the
(2N+1) n(2N+D)

112

boundary elements as defined by (5.3.6) and (7,

(p2N*2) pEN+2)y | pNHE) p2NFL)Y are L selected points in the interior

of R.
We can let (x,y) in (5.3.14) be given by ({™,7{™) for m=1,2,.

2N + L, to set up a system of linear algebraic equations in a(P’. The algebralc

equations can then be inverted to obtain
2N+

a(P) — ZL{k (U(m) ’ 772m) )T (m) (t)

m=1

o d[(m ] (mp)

+ (t)
\/U(m(m) ,nzm)) dt

(5.3.16)
where T =T 7W t)y(m=12,....2N+L) and »™) are constants
defined by
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2N+L 1if p=r
(P) (,,(M) ,(m)y _ (mp) _
oy ) x —{ :
rZ‘l 2 e Oif p=r

(5.3.17)

Using (5.3.14) and (5.3.16) and applying the dual-reciprocity boundary

element method, we find that the double integral in (5.3.4) can be
approximately re-written as

Yo, NG
k(x, y)T (X, y,1) + —[T(x y,t)]}‘l’(x, y,&,n)dxdy
IRI { Ju(x,y) ot

P

+L
< > k@™, 7y ™ 1)

m=1

pe T (m) (Mp) 3, (P)
\/U(ﬂ(m),n(m)) dt[ (t)]} ZZ T e

where
P (&,n) = y(&mO™P (&)

+ [P0y, EmB P (xy) =Ty, &m0 (x, y)Hs(x,Y)
D

(5.3.18)

(5.3.19)
with

[111/1221— (A1,)° ]H(p) (x.y)
22

— (b2 +Rete)y - n$F + [mee)y - nf |
116 ([x 2 4 Re(r)(y - n$P)[ + [lm(r)(y_ng’))]zj2
e 2l ety -nF + by -F )

(5.3.20)
and

(p)
A (x,y) = 2 (%, y) 22

OXj
(5.3.21)
The dual-reciprocity boundary element method approximately reduces the
integro-differential equation into a system of 2N + L first order linear ordinary
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differential equations to be solved subject to known values of T () (Hatt=0 as

given by the initial temperature in (5.2.2).
To solve the system of ordinary differential equations, we approximate the

nodal temperature T (t) (n=12,...,2N + L) as follows (Stehfest [48])

M +1 ()
t—t
TM (t) ~ I\AZ+1T (n) (t(l)) 1=H¢| ( )
M +1
1=1 H (t(l)—t(l))
A=1 k=l
(5.3.22)
where t©) =t, + (*— 1At (for *=1, 2, ..., M+1).
Differentiating (5.3.19) with respect to t, we obtain:
M+1 M+1 .
" Z | H | (t _t(l))
[-I-(n) (t)]~ z -I-(n) (t(l)) mzl,m;ztl\l/lj+ 1 j=l, j=m
-1 7 @ -t®)
A=1,k=I
(5.3.23)

Substituting (5.3.22)-(5.3.23) into the system of ordinary differential
equations, and if t (in the system of ordinary differential equations) is chosen to

be given in turn by t®, t@  t™) and tM*D \we obtain a system of linear
algebraic equations containing T™ ) for (n=12,...,2N+L and

*=1, 2, ...,.M+1) and g™ ™) for (m=12,....2N and
*=1,2,...,M +1),and hence the temperature is determined in the region R.

5.4 Example

For a specific problem governed by (5.2.1) with coefficients given by
1 2 X
5/111 =Ap =4y = 5/122 = 3+0032(E+%)a

— 3L+ oS+ D).
pe=3 ( > 3)]

(5.4.24)
We use a particular solution
T(xy,t)= x——y+2+e cos(— y)

(5.4.25)
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Thus, we can choose the region R to be given by
R={(x,y):0<x<10<y<1}

(5.4.26)
The dual-reciprocity boundary element method is applied to solve (5.2.1) with
coefficients (5.4.24) and (5.4.25) inside the square domain subject to the initial-
boundary conditions
T(x,y,00=f(x,y) for (x,y)eRUD

T(x,y,t) =g(x,y,t) for (x,y)e D;and t >0

q(x, y,t) =h(x,y,t) for (x,y)e D, and t>0
(5.4.27)

Points BEM BEM FDM, t=1 | Exact, t=1
N=60, t=1 | N=120, t=1
(0.1,0.2) 2.1998 2.1984 2.1982 2.1987
(0.1,0.3) 2.0646 2.0638 2.0635 2.0637
(0.1,0.4) 1.9295 1.9285 1.9283 1.9284
(0.5,0.2) 2.5838 2.5829 2.5819 2.5829
(0.5,0.3) 2.4464 2.4457 2.4398 2.4456
(0.5,0.4) 2.3086 2.3079 2.3079 2.3078
(0.9,0.2) 2.9545 2.9535 2.9486 2.9532
(0.9,0.3) 2.8146 2.8138 2.7937 2.8136
(0.9,0.4) 2.6745 2.6739 2.6589 2.6737

Table (5.1)

The result, we found that the boundary element solution agrees quite well
with the exact solution. And more suitable than the result we obtained from the
finite difference method.
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Discussion of Results

As mentioned in the introduction of the thesis, exact closed form solutions
are seldom available to most of the heat conduction and the use of approximate
method is often inevitable. This thesis introduces the results of the most popular
computational method available for solving heat conduction problems, the finite
difference method and the boundary element method. Both these methods are
based on the philosophy of discretisation and they provide approximate
solutions to a large variety of heat conduction problems. The finite difference
method is a domain-type method where the entire problem domain is
discretized into finite elements. On the other hand, in the boundary element
method the boundary of the region alone needs to be discretized. As mentioned
in the introduction of this thesis many researchers solved the problems of
temperature distribution analytically or with using finite difference method but
we used the boundary element technique for solving the problems under
consideration in our thesis for these reasons.

1) The boundary element method (BEM) has received much attention from
researchers and has become an important technique in the computational
solution of a method of physical problems. In common with the better-known
finite difference method (FDM), the boundary element method is essentially a
method for solving partial differential equations (PDEs) and can only be
employed when the physical problem can be expressed as such as with the other
method mentioned, the boundary element method is a numerical method and
hence it is an important subject of research amongst the numerical analysis
community. However, the potential advantages of the BEM have seemed so
considerable that the strongest impetus behind its development has come from
the engineering community, in its enthusiasm to obtain flexible and efficient
computer-based solutions to a range of engineering problems.

2) The advantages in the boundary element method arises from the fact that
only the boundary (or boundaries) of the domain of the PDE requires sub-
division. (In the finite difference method the whole domain of the PDE requires
discretisation). Thus the dimension of the problem is effectively reduced by one
for example an equation governing a three-dimensional region is transformed
into one over its surface. In cases where the domain is exterior to the boundary,
as it is in potential flow past an obstacle, the extent of the domain is infinite an
hence the advantages of the BEM are even more striking; the equation
governing the infinite domain is reduced to an equation over the (finite)
boundary.
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3) The friendliness and openness of the BEM Community and its ability to
continue to grow by attracting younger researchers all the time.

4) The major motivation behind the method of BEM was to reduce the
dependency of the analysis on the definition of meshes. This motivation
allowed the method to expand naturally, into new areas such as Dual
Reciprocity, Complex Variable that will be used in this thesis and other Mesh
Reduction Techniques.

5) The importance that BEM attached, right from the beginning, to produce
industrial application tools.

6) We announce that the boundary element method solutions agree quite well
with the exact solution, and more suitable than the result we obtained from the
finite difference method or and the finite element method.
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RESULTS AND RECOMMENDATION

[1] The present thesis concludes generally that the boundary element method is
more suitable for numerical study of difficult thermal science problem than the
finite difference method. Also, boundary element method will be an important
technique in the computational solution of a number of physical, engineering
and scientific problems.

[2] Boundary element method will be an important technique may be used in a
variety of areas in engineering science, such as potential theory, thermo-
elastostatics, thermo-elastodynamics, thermo-elastoplasticity, thermo-fluid
mechanics, heat conduction in any anisotropic media.

[3] Boundary element method will be an important technique in thermo-
electromagnetism and thermopiezoelectric.

[4] Complex variable boundary element method will be suitable for solving
complex static problems.

[5] Dual reciprocity boundary element method will be suitable for solving
complex dynamic problems.

[6] We recommende that it is very important and suitable for those doing in
area of industrial mathematics and physics and engineering to use boundary
element method in their research areas and works.
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T1=exp((-(pi."2).*1)/8)
T2=(cos((pi.*x)/4).*sin((pi.*y)/4))
T=1+(T1.*T2)
x=0.9,y=0.2:0.1:04, t=1
T1=exp((-(pi."2).*1)/8)
T2=(cos((pi.*x)/4).*sin((pi.*y)/4))
T=1+(T1.*T2)

X =
0.1000
y=
0.2000 0.3000 0.4000
t=

0.1560 0.2327 0.3081

1.0454 1.0678 1.0897

0.2000 0.3000 0.4000

0.1445 0.2157 0.2855



T=
1.0421 1.0628 1.0831

X =
0.9000
y=
0.2000 0.3000 0.4000
t=
1
T1=
0.2912
T2 =
0.1190 0.1775 0.2350

T=
1.0346 1.0517 1.0684

>>Warning: MATLAB Toolbox Path Cache is out of date and is not being used.
Type 'help toolbox_path_cache' for more info.

To get started, select "MATLAB Help" from the Help menu.

>>x=0.1, y=0.2:0.1:.0.4
T1=(4.%(x."2))+(10.*(x.*y))
T2=(-7.*(y."2))+(20.*x)+(18.*y)
T=T1+T2

x=0.5, y=0.2:0.1:0.4
T1=(4.%(x."2))+(10.*(x.*y))
T2=(-7.*(y."2))+(20.*x)+(18.*y)
T=T1+T2

x=0.9, y=0.2:0.1:0.4
T1=(4.%(x."2))+(10.*(x.*y))
T2=(-7.%(y."2))+(20.*x)+(18.*y)
T=T1+T2

X =

0.1000

y:

0.2000 0.3000 0.4000
Tl=

0.2400 0.3400 0.4400
T2 =

5.3200 6.7700 8.0800

T=
5.5600 7.1100 8.5200

X =
0.5000



y:

0.2000 0.3000 0.4000
T1=

2.0000 2.5000 3.0000
T2 =

13.3200 14.7700 16.0800

T=
15.3200 17.2700 19.0800

X =

0.9000
y:

0.2000 0.3000 0.4000
T1=

5.0400 5.9400 6.8400
T2 =

21.3200 22.7700 24.0800

T=
26.3600 28.7100 30.9200

>>Warning: MATLAB Toolbox Path Cache is out of date and is not being used.
Type 'help toolbox_path_cache' for more info.

To get started, select "MATLAB Help" from the Help menu.

>>x=0.1, y=0.2:0.1:0.4, t=1
T1=x-(1.3333.*y)+2
T2=exp(-t).*cos((0.5.*x)+(0.3333.*y))
T=T1+T2

x=0.5,y=0.2:0.1:04, t=1
T1=x-(1.3333.*y)+2
T2=exp(-t).*cos((0.5.*x)+(0.3333.*y))
T=T1+T2

x=0.9,y=0.2:0.1:04, t=1
T1=x-(1.3333.*y)+2
T2=exp(-t).*cos((0.5.*x)+(0.3333.*y))
T=T1+T2

X =
0.1000
y=
0.2000 0.3000 0.4000
t=
1
T1=
1.8333 1.7000 1.5667



T2=
0.3654

2.1987

0.5000

0.2000

[EEN

Tl=
2.2333

T2 =
0.3496

2.5829

0.9000

0.2000

[EEN

Tl=
2.6333

0.3199
2.9532

>>

0.3637

2.0638

0.3000

2.1000

0.3456

2.4456

0.3000

2.5000

0.3136

2.8136

0.3617

1.9284

0.4000

1.9667

0.3412

2.3079

0.4000

2.3667

0.3070

2.6737
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Program EX1PT1

integer NO , BCT(1000), N, i, ians

double precision xb(1000) , yb(1000) , xm(1000) , ym(1000) ,
nx(1000) , ny(1000) , Ig(1000) , BCV(1000),

phi(1000) , dphi(1000) , pint, d1, xi, eta, pi

Ro Ro

print*,”Enter number of elements per side (<250):’
red*,NO

N=4*NO

pi=4d0*dtan(1d0)

d1=1d0/dfloat(NO)

do 10 i=1,NO
xb(i)=dfloat(i-1)*d1
yb(i)=0d0
xb(NO+i)=1d0
yb(NO+i)xb(i)
Xb(2*NO+i)=1d0-xb(i)
yb(2*NO0+i)=1d0
xb(3*NO+i)=0d0
yb(3*NO+i)=1d0-xb(i)
10 continue
xb(N+1)=xb(1)
yb(N+1)=yb(1)

do20i=1,N
xm(i)=0.5do*(xb(i)+xb(i+1))
ym(i)=0.5do*(yb(i)+yb(i+1))
1g(i)=dsqrt((xb(i+1)-xb(i))**2d0+(yb(i+1)-yb(i))**2d0)
nx(i)=(yb(i+1)-yb(i))/19(i)
ny(i)=(xb(i)-xb(i+1))/1g(i)

20 continue

do 30i=1,N
if (.1e.NO) then
BCT(i)=1
BCV(i)=0d0
else if ((i.gt.NO).and.(i.le.(2*N0))) then
BCT(i)=0
BCV/(i)=dcos(pi*ym(i))
else if ((i.gt.(2*N0)).and.(i.le.(3*N0))) then
BCT(i)=1
BCV/(i)=0d0
else
BCT(i)=0
BCV(i)=0d0
endif
30 continue



call CELAPL (N, xm, ym, xb, yb, nx, ny, 1g, BCT, BCV, phi, dphi)
50 print*,”Enter coordinates xi and eta of an interior point:’

read* xi,eta
call CELAP2(N, xi, eta, xb, yb, nx, ny, 1g, phi, dphi, pint)
write (*,60) pint , (dexp(pi*xi)-dexp(-pi*xi))*dcos(pi*eta)
& /(dexp(pi)-dexp(-pi))
60 format (’Numerical and exact values are:’,

& F14.6,” and’,F14.6,” respectively’)

print*,”To continue with another point enter 1:’
read*, ians

if (ians.eq.1) goto 50

end
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program EX2PT1
integer NO, BCT(1000), N, i, ians, N1, L, j, k,1ud

double precision xb(1000), yb(1000), xm(1000), ym(1000), d1, alpha,
& nx(1000), ny(1000), 1g(1000), BCV(1000), pi, tau , phi(1000), dt,
& ti, tir

print*,”Enter integer NO (<101):’
read*, NO
N=4*NO

print*,’Enter integer N1 (<15):’
read *,N1

L=N1**2

NL=2*N+L

print*,’Enter time-step dt:’
read*,dt

tau=0.25d0

pi=4d0*datan(1d0)
alpha=1d0

d1=1d0/dfloat(NO)

do 10 i=1,NO
xb(i)=dfloat(i-1)*d1
yb(i)=0d0
xb(NO+i)=1d0
yb(NO+i)=xb(i)
Xb(2*N0+i)=1d0-xb(i)
yb(2*N0+i)=1d0
xb(3*N0+i)=0d0
yb(3*NO0+i)=xb(2*NO0+i)

10 continue

xb(N+1)=xb(1)



yb(N+1)=yb(1)

do 20 i=1,N

xm(i)=xb(i)+tau*(xb(i+1)-xb(i))
ym(i)=yb(i)+tau*(yb(i+1)-yb(i))
xm(N+i)=xb(i)+(1d0-tau)*(xb(i+1)-xb(i))
ym(N+i)=yb(i)+(1d0-tau)*(yb(i+1)-yb(i))
1g(i)=dsqrt((xb(i+1)-xb(i))**2d0+(yb(i+1)-yb(i))**2d0)
nx(i)=(yb(i+1)-yb(i))/19(i)

nx(i)=(xb(i)-xb(i+1))/1g(i)

20 continue

d1=1d0/dfloat(N1+1)
i=2*N

do 25 j=1,N1

do25 k=1,N1

i=i+1
xm(i)=dfloat(j)*d1
ym(i)=dfloat(k)*d1

25 continue

do 26 i=1,N

if ((i.1e.NO).or.((i.gt(2*N0)).and.(i.le.(3*N0)))) then
BCT(i)=1

else

BCT(i)=0

endif

26 continue

do 27 i=1,NL
phi(i)=1d0+dcos(0,25d0*pi*xm(i))*dsin(0.25d0*pi*ym(i))

27 continue

ti=-0,5d0*dt
1du=1

28 ti=ti+dt

tir=ti+0.5d0*dt

do 30 i=1,N
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if (i.1e.NO) then
BCV(i)=-0.25d0*pi*dexp(-pi*pi*0.125d0*ti)
& *dcos(0.25d0*pi*xm(i))
BCV/(N=i)=-0.25d0*pi*dexp(-pi*pi*0.125d0*ti)
& *dcos(0,25d0*pi*xm(N+i))
else if (i.le.(2*N0)) then
BCV/(i)=1d0+dexp(-pi*pi*0.125d0*tir)
& dsin(0,25d0*pi*ym(i))/dsqrt(2d0)
BCV(N+i)=1d0+dexp(-pi*pi*0.125d0tir)
& dsin(0,25d0*pi*ym(N+i))/dsqrt(2d0)
else if (i.le(3*N0)) then
BCV(i)=0.25d0*pi*dexp(-pi*pi*0.125d0ti)
& dcos(0,25d0*pi*xm(i))/dsqrt(2d0)
BCV/(N+i)=0.25d0*pi*dexp(-pi*pi*0.125d0tir)
& *dcos(0.25d0*pi*xm(N+i))/dsqrt(2d0)
else
BCV/(i)=1d0+dexp(-pi*pi*0.125d0tir)
& dsin(0,25d0*pi*ym(i))
BCV(N+i)=1d0+dexp(-pi*pi*0.125d0tir)
& dsin(0,25d0*pi*ym(N+i))
endif

30 continue

call DLEDIFF(1ud,N,L,tau,alpa,xm,ym,
& xb,yb,nx,ny,lg,BCT,BCV,dt,phi)

print*,” Time="tir
print*,” x y Numerical Exact’

do 50 i=2*N+1,2*N+L

write (*,60) xm(i) , ym(i) ,phi(i) ,

& 1d0+dexp(-pi*pi*0.125d0*tir)

& *dcos(0.25d0*pi*xm(i))*dsin(0.25d0*pi*ym(i))
50 continue

60 format (4F14.6)
print*,”To continue with the next time level enter 1:’
read*, ians
1ud=0
if (ians.eq.1) goto 28

end



MAIN PROGRAM

VARIABLES
T TEMPERTAURE ARRAY
Q: HEAT FLUX ARRAY
BC BOUNDARY CONDITION ARRAY
HB BOUNADRY FILM COEFFICIENT ARRAY
KB BOUNDARY CONDITION CODE ARRAY
(1) -FIRST KIND (TEMPERATURE
(2) ~SECOND KIND (HEST FLUX)
(3) _THRD KIND (CONVECTION)
X,Y: BOUNDARY ELEMENT NODAL COORDINATES ARRAY
X1,YI: INTERNAL POINT COORDINATE ARRAY
EF: INFLUENCE COEFFICIENT MATRICES
C: THERMAL CONDUCTIVITY COEFFICIENT ARRAY
NE: NUMBER OF BOUNDARY ELEMENTS
NI: NUMBER OF INTERNAL POINTS
NS: NUMBER OF SAMBLE POINTS FOR K
X1,Y1:
X2,Y2:

X3,Y3: CURRENT ELEMENT NODAL POINT COORDINATES
XP,YP: CURRENT COLLOCAYION POINT

IMPLICIT DOBLE PRECISION (A-H,0-Z)
INCLUDE ‘Bem2D parameters. for’

REAL*8 T(NEMAX+NIMAX),Q(NEMAX)
REAL*8 BC(NEMAX),HB(NEMAX)

REAL*8 X(NEMAX,3),Y(NEMAX,3)

REAL*8 XI(NEMAX),YI(NEMAX)

REAL*8 E(NEMAX+NIMAX, NEMAX+NIMAX)
REAL*8 F(NEMAX+NIMAX, NEMAX+NIMAX)
REAL*8 BM(NEMAX+NIMAX)

REAL*8 W(NEMAX+NIMAX)

REAL*8 XS(NSMAX),YS(NSMAX),KS(NSMAX,3)
REAL*8 KXMAX,KYMAX

INTEGER KB(NEMAX)

INTEGER NS

INTEGER KCONST,KORTHO

INTEGER INDX (NEMAX+NIMAX)
CHARACTER*40 FILEIN

CHARACTER*80 TITLE

COMMON/CONDUC/(6,3)
COMMON/INFORM/NE,NI
COMMON/COEFFI/X1,X2,X3,Y1,Y2,Y3,XP,YP,PI

INPUT DATA FILE AND INITIAL PARAMETERS

WRITE(*,*)
WRITE(*,*) ‘WAIT WHILE BEM DATA IS BEING PROCESSED...’
WRITE(*,*)

WRITE (*,101)
READ (*,'(A)) FILEIN
OPEN (15,FILE=FILEIN,STATUS='OLD)
101 FORMAT(1X,'ENTERTHE PATH AND NAME OF THE BEM /O FILE:..)
WRITE (*,001)
001FORMAT(//2X, 'READING PROBLEM INFORMATION FROM FILE............ D)
READ (15,%) NB
READ (15,%) NB
READ (15, '(A)) TITEL
READ (15,*) NE,NI,NS



READ (15,%) NB
CALL CONDUCTIVITY DISTRIBUTION SUBROTIN

WRITE (*,003)
003 FORMAT (2X, 'EXPANDING CONDUCTIVITY SAMPLES INTO A FUNCTION.......")
CALL CONDUCTIVITY (XS,YS, KS, NS, KCONST, KORTHO)

CALL DATA INPUT SUBROUTINE

WRITE(*,004)
004 FORMAT(2X, 'READING PROBLEM BEM DATA FROM FILE.........oooovvvvvomvrerrrereee.. .. "
CALL INPUT (X, Y., XI, Y1, BC, KB, HB, W)

CALL DATA TRANSFORM SUBROUTINE

IF (KORTHO. EQ.1) THEN
WRITE(*,006)

006 FORMAT(2X, TRANSFORMING BEM DATAACCORDING TO ORTHOTROPY....")
CALL TRANSFORMING (X, Y. XI, Y1, BC, KB, HB, KXMAX, KYMAX)
END IF

CALL COMPUTATION OF EPSILON COEFFICIENTS SUBROUTINE
IF (KCONST.EQ.0) THEN

WRITE(*,007)

007 FORMAT (2X, 'COMPUTING SIFTING ERROR CORRECTION .......oooovmvrrmrorrrrrnsi... "
CALL EPSILONCOEFF (X, Y, X1, YI, W, E, F, BM, INDX)
END IF

CALL INFLUENCE COEFFICIENTS COMPUTATION SUBROUTINE

WRITE(*,008)
008 FORMAT (2X, 'GENERATING INFLUENCE COEFFICIENT MATRICES................... "
CALL COMPUTING (X,Y, XI,YI, E, F,W)

CALL ALGEBRAIC SETUP SUBROUTINE

WRITE(*,010)
010 FORMAT (2X, 'ARRANGING AND SOLVING ALGEBRAIC SYSTEM. ......ooooeunene...)
CALL ALGEBRA (E, F, BC, KB, HB, BM, INDX, T, Q)

CALL DATA BACK-TRANSFORM SUBROUTINE

IF (KORTHO.EQ,1) THEN
WRITE(*,011)

011 FORMAT (2X, 'BACKTRANSFORMING DATA ACCORDING TO ORTHOTROPY....
CALL BACKTRANSFORM (X, Y, X1, Y1, Q, KB, BC, HB, KXMAX, KYMAX)
END IF

~

CALL DATA OUTPUT SUBROUTINE

WRITE(*,013)

013 FORMAT (2X, 'OUTPUTTING BEM RESULTS TO BEM I/O FILE ...........coovvvereeeee... "
CALL OUTPUT (T.Q)
CLOSE (15)
WRITE (*%)
WRITE (*,*) '...BEM ANALYSIS COMPLETED SUCCESSFULY'
WRITE (**)
WRITE (**) 'PRESS <ENTER> TO END PROGRAM'
READ (**)

END
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