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ABSTRACT 
 

 

     The aims of this study which has been organized into five chapters is 

devoted to study different temperature distributions in mechanics of 

homogeneous and inhomogeneous media. A boundary element method 

(BEM) is derived for solving the two-dimensional steady-state and non 

steady-state temperature distributions. To check its validity, the proposed 

method is applied to solve some specific problems with known exact 

solutions. And it important for the design of steam and gas turbines, jet 

motors, rockets, high speed aircraft, nuclear reactors  .  

 

    In chapter one, we discussed the numerical technique used in the thesis, 

where we have studied general BEM procedure for solving partial 

differential equation in one-dimensional. Then we generalized the BEM for 

solving two dimensional problems. Also, we discussed heat conduction in an 

undeformable body and principles of a boundary element technique, in the 

end of this chapter, we discussed the collocation method for solving a 

system of equations for the determination of the unknown boundary values 

as in our thesis's problems. 

 

    In chapter two, A boundary element method is presented for the numerical 

solution of a problem involving steady state two-dimensional heat 

conduction in homogeneous media. To reduce the differential equations to a 

system of linear algebraic equations, the temperature can be determined at 

any desired point in the interior of the solution domain. Numerical results 

obtained by using the boundary element method agree quite well with the 

exact solutions. 

 

    In chapter three, A two-dimensional problem which requires determining 

the non-steady temperature distribution in a homogeneous media. It is solved 

numerically using a dual-reciprocity boundary element method. Numerical 

results are obtained for specific test problem agree well with the exact 

solution. 

 

    In chapter four, a dual-reciprocity boundary element method is proposed 

for solving the two-dimensional steady-state temperature distribution in non-

homogeneous media. Numerical results are obtained for specific test 

problem agree well with the exact solution. 

 



    In chapter five, the boundary element method (BEM) is proposed for the 

numerical solution of the two-dimensional non steady-state temperature 

distribution in non-homogeneous media. The physical solution is recovered 

through the use of a numerical technique of dual-reciprocity BEM. Such a 

method of solution is used to solve a specific problem which has a known 

exact solution. The numerical results obtained agree well with the exact 

solution. 

 

    Then the present study concludes generally that the boundary element 

method is more suitable for study of different temperature distributions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 مستخلص البحث
 

 

 

لددا التل ة ددا  دد  تهدد ه هددلر الة ددىلا الددا الوددىل اليةددىع الل للددا لددحلا ال ى للددى  اليةا                

وذلد  اى د ل اط ظةل دا رن دة (Anisotropic)  الأو ىظ م حىلندا اللدىاف  د  عتادت الأتوىهدى   

وهدلر ال ى للدى  ذا  مهتادا  م ى ندا مدت اليدل التطدحىظ (Boundary Element Method)الي  

 Heat)والتيةكدى  اليةا لدا  (Turbines)كحاةة    صنىرا الطىئةا  وال دىا ل  وال ى ااندى  

Engines)    والت ىرلا  النىولا(Nuclear Reactors) . الحيث ختسا   ىعتطتن  

 

ال كنا  اللد ل  التسد ل ط  د  الة دىلا وتد  م ى اى  ل ا ا  ال  ل الأوع هى من كىن الغةض        

 ايادث لتكدن تلتاتدي  د  الد لن (One-dimensional)تىضاح ملطع ردىط لة كناد   د  الد  وا د  

(Two-dimensional)  وكلل  تد  اتد  ىم ملىللدا ال ىصدال اليدةا   مدن خدلاع ادىنىن  الد لنىماكى

كتدى تد  تىضداح ظةل دا   اليةا لا ال د  تد  تنىولهدى  د    دىع الة دىلااليةا لا لن ىصل لة ى للى  

ال دددد  تسددد ل ط مدددن خدددلاع تطحادددد  ظةل دددا رن دددة اليدددد   (Collocation Method)ال وتادددت 

(Boundary Element method) تسدد ل ما  دد   ددل ال ى للددى  اليةا لددا التل ة ددا وال دد  تدد  ال

 تنىولهى  ا  ىع الة ىلا.
 

 تطتن ل ا ا تى لت  ةا   مس  ة    الأعسىط الت وىنسا ممى ال  ل الثىن           

(Homogeneous)  ال لن    (Two-dimensional) وت  الوىل  ل لهلا ال ى لت اى  ل اط

  ع    نطىم اليل ل وزئ ي واخ زلت ال ى لت الل  ن   ي الا  ظةل ا رن ة الي  وال   ت طةب

موتىرا من التلىللا  الوحةلا اللطاا ملىملاتهى اساطا    الشكل و هةا اليسىب للا ممكننى 

تطحا هى اك ىءة رةا عهى  اليى ىب وكيىلا خىصا امكن الوىل اا  ر للا لتثىع مي ل وتتت م ى ن هى 

 .هى ت    عا ا ملهىاىل ا  التطحىظا ووع نى ان

 

ل ا ددددا تى لددددت  ددددةا     اددددة مسدددد  ة  دددد  الأعسددددىط الت وىنسددددا  الثىلددددث تطددددتن ال  ددددل         

(Homogeneous)  دد  الدد لن  (Two-dimensional) وتدد  الوددىل  ددل لهددلا ال ى لددت اى دد ل اط

 ظةل ا رن ة الي  وال   ت طةدب   دع  د  نطدىم اليدل ل وزئ دي واخ زلدت ال ى لدت الدل  ن   دي الدا

موتىرا من التلىللا  الوحةلا اللطاا  لا ت طتن موىهال رن  الن ىظ ال اخةاا لنطىم اليل  ومن ثد  

مدت ادا   ت  د  عاد ا  ت  الي ىع رةا اا  ر للا لةيةا ة رن  ن ع مل ة ا لاخل نطدىم اليدل ووعد نىهى 

 .اليل التطحىظ 

 

و دع  دةا    ادة لاخدل    ةهى ل ا ا تى لت  دةا   مسد الةاات ال  لوكىن الغةض من          

وامكددن الي ددىع رةددا  (Two-dimensional)  دد  الدد لن  ((Non-homogeneousم وددىن  

ووعد نى ان  الى دع اى د ل اط ظةل دا رن دة اليد  تيدت تدةوظ   لدا منى دحاال     اليةا   لاخدل 

 .مت اليل التطحىظ ل   اليل الل ل  

 

 

 

 

 



 د  و دع  دةا    ادة   د  الد لن ةا    اة مس  ةل ا ا تى لت  اللىم  ت     ال  ل و         

وظح نى ظةل ا رن دة اليد  (Two-dimensional)    ال لن  ((Non-homogeneousم وىن  

تيت تةوظ   لا واا  ائاا منى حا وامكن الي ىع رةا ال ى لت اليةا   لاخدل الى دع ووعد نى ان 

 اليل الل ل  ل    مت اليل التطحىظ.

 

  Boundary) ن ددىئا ال دد    ددةنى رةاهددى اىا ددطا ظةل ددا رن   دد ة اليدد  و نظددةا ل اددا ال      

Element)    ىن ظةل دا رن  د ة اليد  هد  م طدل الطدةم الل للدا وال   ت    مت اليل التط  حىظ 

 اددث ت طةددب   ددع  (Temperature Distributions)ليددل مسددىئل ال ى للددى  اليةا لددا التل ة ددا 

وظةل ددا اللن ددة  (Finite Difference)ل ددةوم التيدد ولة  توزئددا اليدد  وذلدد  م ى نددا اطةل ددا ا

 الة ىن ل طةحن توزئا السطح ككل. و (Finite Element)التي ول 
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NOMENCLATURE 
 

 

k  thermal conductivity.  

ijk  constant thermal conductivity. 

q  heat flux. 
,r  polar coordinate system. 

  time 

T  temperature. 
yx,  Coordinates of Cartesian system. 

i   - location of the source point (load point). 

i   - location of the source point. 

  Dirac delta function. 

  sifting deviation. 

  domain boundary. 

d  surface element. 

  domain of the problem. 

d  volume element.  

S  the entropy. 
)(iS  entropy production rate. 
)(rS  external entropy input rate. 

  density. 
r  heat source density. 

  polar angle (2-D). 

t  time. 

R  two-dimensional region. 

D  simple closed curve. 

C  closed curve. 

  positive constant. 
uhgf ,,,  functions. 

yx nandn  components of a unit normal vector to the curve .D  

  test function. 

ij  heat conductivity coefficients.  

  gradient operator. 

ix  location of the source point. 

iy  location of the source point. 
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INTRODUCTION 
 

The aim and the problem of the thesis:  

     To measure the accurateness of  boundary element method (BEM) as a 

mathematical technique (Approximation or Numerical) and its importance in 

solving the problems than the exact solution, and the comparison between 

boundary element method (BEM) and the exact solution. 

The hypothesis: 

     For the problem of this thesis, we assumed that there a difference between 

the numerical results of our solution with boundary element and other results of 

the finite difference solution.      

     Recently, thermodynamics has undergone marked development in 

connection with important problems arising during the design of steam and gas 

turbines, jet motors, rockets, high speed aircraft, nuclear reactors, 

microelectronics etc. 

     Heat flow from the gas stream in heat engines, aerodynamic heating in high-

speed aircraft, the heat given out by nuclear reactors, etc. all lead to the fact that 

the components in these machines operate under conditions of non-uniform, 

unsteady heating which change the physical and mechanical properties of the 

materials. There are then temperature gradients accompanying the non-uniform 

temperature distribution throughout the various components. Because of 

constraints, a non-uniform temperature distribution in a component having a 

complex shape usually gives rise to thermal stresses. It is essential to know the 

magnitude and effect of these thermal stresses when carrying out a rigorous 

design of such components. The thermal stresses alone and in combination with 

the mechanical stresses produced by the external forces can given rise to cracks 

and rupture in components containing brittle materials. In the general case, the 

change in temperature of a body is caused not only by heat transport from the 

surroundings but also by the process of deformation. When the rate of 

deformation is finite, thermo-mechanical effects of another nature are of 

importance, namely the generation and flow of heat within the body, the 

occurrence of associated elastic and thermal waves, thermoelastic dissipation of 

energy, etc ( Fahmy[32]). 

     The deformation of a body is inseparably connected with a change of its heat 

content and therefore with a change of the temperature distribution in the body. 

A deformation of a body which varies in time leads to temperature changes, and 

conversely. The science which deals with the investigation of the above coupled 

processes is called thermoelasticity. Anisotropic material is a material having 

mechanical properties that are not the same in all directions at a point in a body 

of it. There are no planes of material symmetry. That is, the properties are a 

function of the orientation at a point. 
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     Thermoelasticity describes the behavior of elastic bodies under the influence 

of nonuniform temperature fields. It represents, therefore, a generalization of 

the theory of elasticity. The constitutive equations, i.e., the equations 

characterizing the particular material, are temperature-dependent and include an 

additional relation connecting the heat flux in the body with the local 

temperature gradient. This relation, know in its simplest form as Fourier's law, 

determines the temperature distribution in the body. The temperature and stress 

fields in a solid body are (in general) coupled. However, for the usual heat 

transfer occurring in an unevently heated solid body as the result of external 

heat sources, the influence of the stresses and strains on the temperature 

distribution can be ignored. This enables us to calculate the temperature 

distribution in the body on the basis of a well-defined heat transfer without 

regard to the state of stress. In a solid the transfer of heat occurtos in virtue of 

heat conduction alone. This has molecular-atomic character and is not 

accompanied by any macroscopic movement. Heat transfer at the surface of a 

body can occur in three ways: heat conduction, convection or radiation. In the 

case of convection the heat exchange occurs by virtue of the motion of non-

uniformly heated fluid (or gas) contiguous with the body. Moreover, convective 

heat exchange is understood to be the sum of the heat carried by the fluid 

particles and by heat conduction. Heat exchange by radiation (radiant heat 

exchange) takes place between bodies separated by a distance (or between 

different parts of a body) by means of electromagnetic waves. The equation of 

heat conduction necessary for the study of temperature fields in elastic bodies. 

In the theory of thermal stresses which goes back to the beginings of the theory 

of elasticity, the classical heat conduction equation was used, which does not 

contain any term represent the deformation of the body. By knowing the 

temperature distribution (from the solution of the heat conduction) the 

displacement equations of the theory of elasticity were solved. The latter known 

terms proportional to the temperature gradient. Thermoelasticity deals with a 

wide class of phenomena. It contains the generalized theory of heat conduction, 

the generalized theory of thermal stresses, describes the temperature 

distribution produced by deformation and finally it contains a description of the 

phenomenon of thermoelastic dissipation. The congitive merits of this theory 

are very large indeed. In spite of its mathematical complexity, thermoelasticity 

enables us to examine, deeper than before, the mechanism of the deformation 

and thermal processes occurring in elastic bodies (Brebbia[18]). 

     In the postwar years 2
nd

 international war, there has been a rapid 

development of thermoelasticity, stimulated by various engineering sciences. A 

considerable, progress in the field of aircraft and machine structures, mainly 

with gas and steam turbines, and the emergence of new topic in chemical and 

nuclear engineering have given rise to numerous problems in which thermal 

stresses play an important and frequently roles. During the past two decades, 
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widespread attention has been given to thermoelasticity theories which admit a 

finite speed for the propagation of thermal signals. In contrast to the 

conventional theories based on parabolic-type heat equation, these theories 

involve a hyperbolic-type heat equation and are referred to as generalized 

theories. Various researchers authors have formulated these generalized theories 

on different grounds. For example, Lord and Shulman [43] obtained a theory on 

the basis of a modified heat conduction law which involves heat-flux rate, and 

Green and Lindsay [36] developed a theory by including temperature-rate 

among the constitutive variables.  

     During the fifties and early sixties of 20
th
 the century many general 

algorithms were produced and analysed for the solution of standard partial 

differential equations. Since then the emphasis has shifted toward the 

construction of methods for particular problems having special features which 

defy solution by more general algorithms. This approach often necessitates a 

greater awareness of the different physical backgrounds of the problems such as 

free and moving boundary problems, shock waves, singular perturbations and 

many others particularly in the thermoelasticity. 

     Boundary element method (also known as boundary integral equation) has 

been successfully used in a variety of areas in engineering science, such as 

potential theory, elastostatics, elastodynamics, elastoplasticity, fracture, fluid 

mechanics, heat conduction, acoustics, electromagnetism and soil- or fluid-

structure interaction (Divo,et al [28]). 

     Over recent decades, the boundary element method ( BEM ) has received 

much attention from researchers and has become an important technique in the 

computational solution of a number of physical problems. In common with the 

better-known finite element method (FEM) and finite difference method 

(FDM), the boundary element method is essentially a method for solving partial 

differential equations (PDEs) and can only be employed when the physical 

problem can be expressed as such. As with the other methods mentioned, the 

boundary element method is a numerical method and hence it is an important 

subject of research amongst the numerical analysis community. However, the 

potential advantages of the BEM have seemed so considerable that the strongest 

impetus behind its development has come from the engineering community, in 

its enthusiasm to obtain flexible and efficient computer-based solutions to a 

range of engineering problems. 

     The boundary element method (BEM) is an important technique in the 

computational solution of engineering and scientific problems. In applying the 

boundary element method, only a mesh of the surfaces is required, making it 

easier to use and often more efficient that the more common finite element 

method. 

     The boundary element method is derived through the discretisation of an 

integral equation that is mathematically equivalent to the original partial 
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differential equation. The essential re-formulation of the PDE that underlies the 

BEM consists of an integral equation that is defined on the boundary of the 

domain and an integral that relates the boundary solution to the solution at 

points in the domain. The former is termed a boundary integral equation (BIE) 

and the BEM is often referred to as the boundary integral equation method or 

boundary integral method. Over the last twenty years the term boundary 

element method has become more popular. The other terms are still used in the 

literature however, particularly when researchers  wish to refer to the overall 

derivation and analysis of the methods, rather than their implementation or 

applications. This study to check validity of a boundary element method (BEM) 

for solving the problems; numerical results are given and compared with the 

exact solutions, and also with finite difference method, (Brebbia et al[21]).   

     An integral equation re-formulation can only be derived for certain classes 

of PDE. Hence the BEM is not widely applicable when compared to the near-

universal adaptability of the finite element and finite difference method. 

However, in the cases in which the boundary element method is applicable, it 

often results in a numerical method that is easier to use and more 

computationally efficient than the competing methods. 

     The advantages in the boundary element method arises from the fact that 

only the boundary (or boundaries) of the domain of the PDE requires sub-

division. (In the finite element method or finite difference method the whole 

domain of the PDE requires discretisation.) Thus the dimension of the problem 

is effectively reduced by one, for example an equation governing a three-

dimensional region is transformed into one over its surface. In cases where the 

domain is exterior to the boundary, as it is in potential flow past an obstacle, the 

extent of the domain is infinite and hence the advantages of the BEM are even 

more striking; the equation governing the infinite domain is reduced to an 

equation over the (finite) boundary. 

     The importance of BEM is unique amongst numerical methods and is a 

direct consequence of three factors: 

    i) The friendliness and openness of the BEM Community and its ability to 

continue to grow by attracting researchers all the time. 

    ii) The Boundary Element Method was originally developed as a technique 

for engineers rather than a pure mathematical technique. This meant that the 

major motivation behind the method was to reduce the dependency of the 

analysis on the definition of meshes. This motivation allowed the method to 

expand naturally, into new areas such as Dual Reciprocity, Complex Variable 

that will be used in this thesis and other Mesh Reduction Techniques. 

    iii) The importance that BEM attached, right from the beginning, to produce 

industrial application tools. Complex mathematics was seen as subordinate to 

the needs of the practising engineer. The aim was to produce user-friendly 
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codes which were seemingly effortless to use, while hiding inside very complex 

calculations, (Divo and Kassab [27]). 

     Abd-Alla [1,2,3,4] studied thermal stresse problems. Also, Abd-Alla and 

Ahmed [7] studied effect of initial stress overlying semi infinite medium.   

Clements [26] studied thermal stress in an anisotropic elastic half-space. Chang, 

et al. [25] used fundamental Green's functions for solving heat conduction 

equation in anisotropic media. Yaghoubi, et al. [50] studied a boundary element 

modeling for two-dimensional transient heat conduction, Wang, et al. [49] 

applied a dual reciprocity boundary element approach for the problems of large 

deflection of thin elastic plates. Karami and Hematiyan [38] studied a boundary 

element method of inverse non-linear heat conduction analysis with point and 

line heat sources. El-Naggar, et al. [30] used explicit difference scheme to 

obtain thermal stresses in a non-homogeneous media. Kögl and Gaul [41] used 

a boundary element method for anisotropic coupled thermoelasticity. Abd-Alla, 

et al. [9] studied thermoelastic stresses in non-homogeneous anisotropic media. 

Matsumoto, et al. [45] studied a simple technique for efficient evaluations of 

boundary integrals of time-harmonic elastodynamic BEM analyses for 

anisotropic solids. Fahmy [31, 32] studied an inhomogeneous anisotropic elastic 

material by using BEM. 

     The Complex Variable Boundary Element Method or CVBEM is a 

generalization of the Cauchy integral formula into a boundary integral equation 

method or BIEM. This generalization allows an immediate and extremely 

valuable transfer of the modeling techniques used in real variable boundary 

integral equation methods (or boundary element methods) to the CVBEM. 

Consequently, modeling techniques for dissimilar materials, anisotropic 

materials, and time advancement, can be directly applied without modification 

to the CVBEM, (Ang. et al [15]). 

     An extremely useful feature offered by the CVBEM is that the produced 

approximation functions are analytic within the domain enclosed by the 

boundary problem and, therefore, exactly satisfy the two-dimensional Laplace 

equation throughout the problem domain. Another feature of the CVBEM is the 

integrations of the boundary integrals along each boundary element are solved 

exactly without the need for numerical integration. Additionally, the error 

analysis of the CVBEM approximation functions is workable as easy-to-

understand the concept of relative error. A sophistication of the relative error 

analysis is the generation of an approximative boundary upon which the 

CVBEM approximation function exactly solves the boundary conditions of the 

boundary value problem (of the Laplace equation), and the goodness of the 

approximation is easily seen as a closeness-of-fit between the approximative 

and true problem boundaries. This numerical approach can then be used to 

develop solutions for potential problems which occur in engineering 

applications, or to aid in numerically calibrating and verifying domain method 
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numerical models (e.g. finite element or finite difference methods) of steady 

state diffusion type problems. 

     The dual-reciprocity boundary element method (DRBEM) was originally 

introduced by Brebbia and Nardini [19] and Patridge and Brebbia [47] for the 

numerical solution of dynamic problems in solid mechanics. The method has 

now been successfully applied to solve a wide range of problems in 

engineering. 

Recently, Divo and Kassab [27, 28] have introduced a new technique for the 

development of a boundary integral equation for heat conduction in 

heterogeneous isotropic media. 

         This thesis devoted to study different temperature distributions for non-

homogeneous anisotropic and isotropic medium. Boundary element method is 

considered to solve these problems under suitable initial and boundary 

conditions. This thesis consists of five chapters as formerly summarized. 
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CHAPTER (I) 
 

(The basic concepts of boundary element method) 
  

 

1.1 Boundary element Method for one dimensional problem 
 

     In this section we will consider a simple one dimensional (1-D) example to 

show how a differential equation can be transformed to the boundary by means 

of the method of weighted residuals. In this example, we will explain the basic 

steps that we will use in the derivation of the 2-D boundary element 

formulations, in order to understand the principles of the boundary element 

method. 

     The physical problem is usually described by the partial differential 

equation. To obtain an integral equation, which in many respects is easier to 

handle, we employ the technique of weighted residuals. In the resulting integral 

equation, the differential operator acts on the unknown field variable u . Now, 

by employing integration by parts, we can reduce the order of the differential 

operator acting on u  step-by-step, until no more partial derivatives of u  appear 

under the integral. In the process, we obtain a series of boundary integrals, and 

the domain integral now contains partial derivatives of the weighting 

function , i.e , we have shifted the differential operator from the field function 

to the weighting function. Now, by choosing the fundamental solution as the 

weighting on, we can eliminate the domain integral containing the field 

function. The resulting representation formula no longer contains any unknown 

variables in the domain integral. In 2-D, we have to discretise this equation, and 

finally obtain a system of equations. In order to obtain the unknown boundary 

values, we solve the system of equations by inserting the prescribed boundary 

conditions. 

Now let us have a look at the inhomogeneous differential equation 

xu
dx

ud

u






2

2

   

(1.1.1) 

which is defined in the domain 10  x . We prescribe the (homogeneous) 

boundary conditions uu  on the boundary  , which in the case of the 1-D 

example degenerates to two points: 

0)0(1  xuu    and    0)1(2  xuu .                          

(1.1.2) 
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According to (1.1.2), the differential operator is given by 

1
2

2


dx

d
 .                                                                         

(1.1.3) 

To transform (1.1.1) to the boundary, we proceed with the following steps. 

 

Step 1: Weighting the differential equation with a test function  .  

This leads to the integral equation  

0

1

0
2

2















 dxxu

dx

ud
                                                                

(1.1.4) 

 

Step 2: Carrying out integration by Parts     )( dxuudxu   according 

to the order of the differential equation operator  . In our example, the first 

integration by parts yields 

dx
dx

d

dx

du

dx

du
dx

dx

ud 
  









1

0

1

0

1

0

2

2

 ,                                               

(1.1.5) 

and with the second integration by parts, we obtain from (1.1.4) 

   

.0

1
0

1
0

1

0

1

0

1

0

1

0

*

2

2















































uu

dx

d
u

dx

du
dxxudx

dx

d
                         

(1.1.6)    

The boundary terms  10* now contain both known boundary values 

)0( 21  uu and the unknown boundary values )0(u  and ).1(u  Since the 

boundary values for u are given those for uare unknown, we have a simple 

boundary-value problem.  

     If we had values of both u and uas unknowns, we would speak of a mixed 

boundary-value problem. In addition, we see that the adjoint differential 

operator .*   in this case, we call the differential operator self-adjoint. 

 

Step 3: Next we choose the fundamental solution *u of * defined by  

)(*

2

*2
**   xu

dx

ud
u                                                

(1.1.7)  



 - 9 - 

as weighting function. In (1.1.7),   is the so-called load point, at which the 

point source is applied. By choosing *u  , we obtain, with the sifting 

property of the Dirac distribution, 






 )(),()(  udxxxu  

the first integral in (1.1.6) may be written as follows 

,)()(),(

1

0

1

0

*

2

*2

  













  udxxuxudxu

dx

ud
                             

(1.1.8)  

which leads us to the so-called representation formula  
1

0

*
1

0

1

0

** ),()( 
















  dx

du
uu

dx

du
dxxxuu                             

(1.1.9) 

that yields the values )(u inside the domain if the boundary solution is known. 

 

Step 4: Now we have to determine the fundamental solution *u . Our example 

is special case of the 1-D Helmholtz equation  

),(*2

2

*2

  xu
dx

ud
                                              

(1.1.10) 

With .1 The fundamental solution of (1.1.10) is defined in the full space, 

and is given by 





2

)sin(
*




x
u .                                                      

(1.1.11) 

 

Step 5: Inserting the fundamental solution (1.1.11) and boundary conditions 

(1.1.2) into (1.1.9), we obtain the representation formula  

 
1

0

1

0

2

1 sin)(sin
2

)(    xxudxx
x

u  

        ,sin
2

)0(
1sin

2

)1(
sin

2

1

0















  

uu
dxx

x
                

(1.1.12) 
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whish gives the potential at a point   in the domain in terms of boundary 

variables only; the domain integral does not contain any unknowns and can 

therefore be regarded as a constant term. 

 

Step 6: Now we place the load point   on the boundary – this dose not pose 

any problems in 1-D problems – and obtain two equations for the unknown 

boundary values )0(u and )1(u . With 0 and 1 we obtain the equations  

,0sin
2

)0(
1sin

2

)1(
sin

2
)0(

1

0








uu

dxx
x

u   


.1sin

2

)0(
0sin

2

)1(
1sin

2
)1(

1

0 1











uu
dxx

x
u

x

                        

(1.1.13) 

Since the boundary values for u  are known 0)0(( u and ),0)1( u we 

can solve the system (1.1.13) and obtain the solution  

1
1sin

1
)0( u     and    .1

1sin

1cos
)1( u                                         

(1.1.14) 

 

Step 7: The last step is the calculation of the values )(u inside the domain. By 

inserting (1.1.14) into (1.1.12), we obtain for the representation formula  

 


















1

0

sin
2

sin1
1sin

1

2

1
1sin1

1sin

1cos

2

1
)( dxx

x
u  .   

(1.1.15) 

From (1.1.15), we obtain for instance, the value )2/1(u in the center of the 

interval 

2

1
sin1

1sin

1

2

1

2

1
sin

1sin

1sin1cos

2

1
)

2

1
( 
















 
u  

             


















1

2/1

2/1

0
2

1
sin

2

1

2

1
sin

2

1
dxxxdxxx  

        0697.0
2

1

1sin

5.0sin
                                                                          

(1.1.16) 

We observe, by comparison with the analytical solution  

x
x

xu 
1sin

sin
)( ,                                                                          

(1.1.17) 
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that the result in (1.1.16) is exact.  

     The expression boundary element formulation should not yet be used since 

we do not any discretisation in 1-D yields the exact solution might come as a 

surprise, since we have based the formulation upon a weighted residual 

statement which allows an error   inside the domain and only demands that the 

integral average of the error be zero. Hence, despite the use of the weighted 

residual formulation, (1.1.12) yields the exact solution of the differential  

equation. This can be explained as follows: for every load point n inside the 

domain we obtain a different fundamental solution ).,(**
nn xuu   Therefore, 

the weighted residual statement (1.1.4) with *
nn u corresponds to a 

formulation with infinitely many linearly independent test functions, such that 

(1.1.4) can only vanish for all test functions n if the expression in parentheses 

vanishes, i.e., if the differential equation is fulfilled exactly. 

The procedure that we have described in the previous section can be formally 

generalized to two-dimensional problems as demonstrated by means of the 

generic differential equation 

0bu ,                                                                                     

(1.1.18) 

which is defined in an arbitrary domain  . In (1.1.18),   is an arbitrary 

differential operator with constant coefficients,u  is the filed and b  is an 

arbitrary source distribution in  . In our one example, we hade (cf.(1.1.1)) 

1
2

2


dx

d
  and xxb )( . The weighted form of (1.1.18) is now given by  

 

2

1

0)(

x

x

dxbu  .                                                                               

(1.1.19) 

In the multi-dimensional case, we obtain  




 0)( dbu  .                                                                               

(1.1.20) 

Employing integration by parts according to the order of the differential 

operator, we obtain in 1-D 

 

2

1

2

1

2

1

2

1

0].[].[ ***

x

x

x

x

x

x

x

x

dxuGSuSGuudx  ,                       

(1.1.21) 
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Where G and S are boundary operators related to u , and *G , *S are the adjoint 

operators related to  . Equation (1.1.6) is a special case of this general 

formulation with 
dx

dG  and 1S .  

     In two and three dimensions, we obtain a similar result by using integration 

by parts and Gauss theorem to reduce the domain integrals to boundary 

integrals: 

 
 

 0)..( *** dudGSuSGuud  .                   

(1.1.22) 

Once again, by choosing the fundamental solution of the adjoint operator 

),(**  xu                                                                              

(1.1.23) 

as the weighting function )( *u , we can eliminate the first  term in (1.1.22) 

by virtue of the sifting property of the Dirac distribution, and we obtain the  

representation formula  




 dbuduGSuuSGuu ***** )...()( ,                                 

(1.1.24) 

where the second domain integral has been replaced by (1.1.18).  

The prescribed boundary conditions can also be generalized: 

GGu       on G  ,                                                                     

(1.1.25) 

SSu         on S  ,                                                                      

(1.1.26) 

where (1.1.25) describes the Dirichlet boundary conditions, and (1.1.26) the 

Neuman boundary conditions. 

     The representation formula (1.1.24) is only defined if   lies inside the 

domain. By moving the load point to the boundary in a special limiting process 

which will be described in detail in the following chapters – we obtain the so 

called boundary integral equation (BIE), in which all unknown field variables 

have been transformed to the boundary. The BIE is the starting point for the 

boundary element method: by discretising the boundary into finite elements on 

the boundary‟, we can approximate with the geometry and field variables, and 

by using this approximation with the BIE , we can set up a system of equations 

which contains only nodal values of u  on the boundary. Solution of the system 

then yields the unknown boundary values, and, with the representation formula 

(1.1.24), we can obtain the solution inside the domain at any arbitrary point 

 . 
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1.1.1 Boundary Element formulation of Laplace’s Equation 

 

     Now we will explain in detail the derivation of the BEM for Laplace‟s 

equation 

0, iiu    in                                                                              

(1.1.27) 

using the generic variable u  for the potential and  

ii uq ,                   iinuq ,                                                  

(1.1.28) 

for the flux. The results can then easily be applied to steady-state heat 

conduction, electrostatics , and other problems by identifying ,,T etc. with the 

generic potential u  and the respective fluxes with the generic flux vector iq .  

For heat conduction and electrostatics, for example we have 

th
ii q

k
q

1
    and     el

ii qq


1
 ,                                           

(1.1.29) 

respectively. 

     The first step in the boundary element formulation consists of transforming 

the governing differential equation to an integral equation. As described above, 

this can be achieved by using the method of weighted residuals. Weighting 

Laplace‟s equation (1.1.27) with a test function  , we obtain 




 0, du ii .                                                                      

(1.1.30) 

Next, we eliminate the partial derivatives of the potential u  from the domain 

integral. This is achieved as follows: integration by parts of (1.1.30) leads to 

  
  

dududu iiiiii ,,,,, )(  ,                                           

(1.1.31) 

and by applying the Gauss theorem (Ang [13]) to the first term on the right-

hand side of (1.1.31) to replace the domain integral by a boundary integral, we 

obtain Green‟s first identity  

  
  

dudnudu iiiiii ,,,,  .                                               

(1.1.32) 

to eliminate the remaining partial derivative iu,  in the domain integral on the 

right-hand side, we have to again apply integration by parts and Gauss theorem. 

This yields 
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  
  

dudnuudu iiiiiii ,,,, )(                                         

(1.1.33) 

which is known as Green‟s second identity. 

     By substituting the differential equation (1.1.30) into (1.1.33), we eliminate 

the first domain integral and obtain 




 dnuudu iiiii )( ,,,  .                                                 

(1.1.34) 

 

1.1.2 Green’s Representation Formula 

 

     The key point in the boundary element formulation is now the elimination of 

the remaining domain integral in (1.1.34), so that the subsequent discretisation 

needs to be applied only to the boundary of the material body and not to its 

domain  . This is an advantage when compared to domain discretisation 

methods such as the finite element method (FEM) or the finite difference 

method (FDM) and can lead to important time-savings in the discretisation 

process and thus in the overall computational costs.  

     Using the Dirac distribution ),(  x by its sifting property 

)(),()(  fdxxxf  . This allows us to filter out a specific functional value 

)(f  from an integral, thereby eliminating this integral. We will now employ 

this property to eliminate the domain integral in (1.1.34) by choosing 

),(:,  xii  ,                                                                        

(1.1.35) 

which 




 )(,  udu ii .                                                                   

(1.1.36) 

For convenience, whenever the field point vector ix  and load vector i  appear 

as arguments of functions, they will be written in the following as x  and  , i.e., 

),(),( iixfxf   . 

     The function   as defined in (1.1.35) is a so-called fundamental solution. In 

general, a fundamental solution *u  of the differential operator *  is defined as a 

solution of the equation 

),(**  xu                                                                                

(1.1.37) 

in the full space  , where the minus sign in front of the Dirac distribution is 

used for convenience.  
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     Employing now as test function   the fundamental solution *u , we obtain 

from (1.1.34) 

 


dxqxuxuxqu )),()(),()(()( **  ,                                          

(1.1.38) 

where iinuq *
,

* :  is the fundamental solution for the flux. Equation (1.1.38) is a 

so-called representation formula, which in this particular case is also known as 

Green‟s representation formula and is valid for 2-D potential problems. The 

representation formula allows us to calculate unknown values of the potential u  

inside the domain )(  when the boundary solution of the problem (potential 

u  and flux q ) is known.  

     Now in 2-D, the fundamental solution of the Laplace‟s operator as defined in 

(1.1.35) is given by (Gual, et al. [34]) 

rxxu ii ln
2

1
ln

2

1
),(*





  ,                                        

(1.1.39) 

iii

ii

iiii nx
x

nr
r

nuxq )(
2

1

2

1
),(

2,
*
,

* 


 


 ,            

(1.1.40) 
 

1.2 Heat Conduction  
 

     In this section, we will derive the equations of heat conduction in an 

undeformable body.  

 

1.2.1 First Law of Thermodcynamics  

 

     In the absence of mechanical forces, the first law of thermodynamics states 

that the time rate of change U  of the interval energy is equal to the rate of 

external heat supply: 

dt

dQ
U  ,                                                                

(1.2.41) 

where the symbol d  is again employed to make clear that the supplied heat Q is 

a process variable and not a state variable, and therefore dose not possess a total 

differential. The heat rate is given by 
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 


dnqrd
dt

dQ
ii                                               

(1.2.42) 

and consists of two parts: the heat generated inside the volume element d  is 

described by the heat source density r  , and the heat supplied over the surface 

element d is described by the heat flux vector iq . Possible mechanisms that 

generate heat in the volume element are electric Joule heating, absorption of 

thermal radiation, or chemical and reactions (Gaul, et al. [34]). The boundary 

integral over the heat flux vector has a negative sign since an outward heat flux 

means that the system loses energy. Therefore we obtain for the first law 

  
  

dnqrdud
Dt

D
ii .                                                 

(1.2.43) 

By employing the generalised Gauss theorem, the surface integral can be 

converted to a volume integral and we obtain the differential form of the first 

law 

iiqru ,   .                                                                              

(1.2.44) 

 

1.2.2 Second Law of Thermodynamics  

 

     We know from experience that heat cannot flow from lower temperatures 

„by itself‟. This phenomenon cannot be described by the first law of 

thermodynamics, which is an energy balance and as such poses no restrictions 

on the direction of heat exchange processes. To describe the direction and 

irreversibility of thermodynamic processes, we introduce a new extensive state 

variable, the entropy S . 

     The second law of thermodynamics now states that the time rate of change 

S of the entropy is given by the sum of an external entropy input rate )(rS and 

an entropy production rate )(iS : 
)()( ir SSS   ,                                                                             

(1.2.45) 

where the entropy production rate cannot be negative:  

0)( iS .                                                                                       

(1.2.46) 

For reversible processes, 0)( iS , while irreversible processes are 

characterized by a positive entropy production rate.  

 

     For a continuous system, the entropy input rate )(rS is given by (Carslaw and 

Jaeger [23] ) 
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 


d
T

nq
d

T

r
S iir )( ,                                                                

(1.2.47) 

where T  is the absolute temperature. With this, we obtain, as an alternative 

formulation of the second law of thermodynamics, the so-called Clausius-

Duhem inequality (Gaul. et al [34]). 

 
 

d
T

nq
d

T

r
sd

Dt

D ii
 .                                                

(1.2.48) 

By using Gauss integral theorem, this yields the local form 

0
,

, 
T

Tq
qrsT

ii
ii .                                                        

(1.2.49) 

With the first law (1.2.4), we can eliminate the heat source density r and 

obtain 

0)(
,


T

Tq
sTu

ii .                                                              

(1.2.50) 

When the specific entropy s  is chosen as the independent state variable, it 

follows that )(suu   and thus 

s
s

u
u 




 ,                                                                                

(1.2.51) 

which yields  

0
,
















T

Tq
sT

s

u ii .                                                           

(1.2.52) 

Since s - and s - is arbitrary, we have 

s

u
T




 ,                                                                                    

(1.2.53) 

i.e., the absolute temperature T and the specific entropy s  are energetically 

conjugate state variables. Since the absolute temperature is always positive 

)0( T , it follows from (1.2.52) that 

0, iiTq  ,                                                                                  

(1.2.54) 

which means that heat can only flow from higher to lower temperatures. Thus 

the second law of thermodynamics poses restrictions on the direction of heat 
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transfer processes as previously demanded. The simplest relation that fulfils 

(1.2.54) is Fourier‟s law of heat conduction 

jiji Tkq ,  ,                                                                               

(1.2.55) 

where ijk  is the tensor of thermal conductivity, which is usually taken to be 

symmetric. This does not follow from thermodynamics but from the Onsager 

relations, obtained from considerations at the microscopic level, and is well 

confirmed experimentally (Lesnic, et al. [42]). Substitution of (1.2.55) into the 

second law (1.2.54) yields 

0,, jiij TTk ,                                                                             

(1.2.56)                          

thus  the thermal conductivity tensor ijk  has to be positive semi-definite to 

comply with the second law. 

     With sTu   , we finally obtain, from the first law (1.2.44), the local entropy 

balance 

        iiqrsT ,                                                                    

(1.2.57) 

 

1.2.3 Field Equations of Heat Conduction 

 

     We can now derive the field equations of heat conduction from the 

differential from (1.2.44) of the first law. To this end, we choose the 

temperature T  as the independent state variable, so that )(Tuu  and thus 

TTcu  )( ,                                                                           

(1.2.58) 

where  

T

Tu
Tc






)(
:)(                                                                      

(1.2.59) 

is the heat capacity of the material. With (1.2.59) and Fourier‟s law (1.2.55), we 

obtain from the first law (1.2.44) the heat conduction equation 

rTkTTc ijij   ,, )()(  ,                                                        

(1.2.60) 

which is a parabolic diffusion-type equation. For a homogeneous body with 

constant thermal conductivity ijk  and temperature-independent heat capacity, 

this simplifies to  

 

rTkTc ijij   ,
 .                                                               

(1.2.61) 
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For an isotropic medium, kk ijij  , which yields for the heat conduction 

equation 

c

r
aTT ii  ,

                                                                          

(1.2.62) 

with the thermal diffusivity )/(: cka  . A further simplification can be 

achieved by assuming steady-state heat conduction, which is described by 

Poisson‟s equation 

k

r
T ii


, .                                                                          

(1.2.63) 

When heat sources are absent, this reduces further to Laplace,s equation  

0, iiT .                                                                              

(1.2.64) 

 

1.3.4 Boundary and Initial Conditions 

 

     For transient heat conduction described by (1.2.61), we have to know the 

initial temperature distribution  
0)0( TtT             in  .                                                                        

(1.2.65) 

The boundary conditions in heat conduction can be classified as follows:  

* Dirichlet boundary condition: the primary field variable (here the heat 

temperature T ) is prescribed: 

TT          on T .                                                                            

(1.2.66) 

* Neumann boundary condition: the secondary field variable (here the heat flux 

q ) is prescribed: 

qq           on  q .                                                                      

(1.2.67) 

* Robin boundary condition:  a function of the temperature and heat flux is 

prescribed:  

0),( qTf         on Tq .                                                                     

(1.2.68) 

For practical analyses, the following boundary conditions are of particular 

importance. 
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1.3 Boundary element method for 2-D Problem  
 

     While the formulation described in the previous sections for 2-D potential 

problems, the following steps – which include the derivation of the boundary 

integral equation and the discretisation process – depend upon the dimension of 

the problem. In the remainder of this thesis, we will deal exclusively with 2-D 

problems.  

     As noted before, the representation formula (1.1.38) returns the values of the 

potential u  in the interior of the domain when the boundary solution is known. 

Hence, to obtain an equation that contains only boundary data, we have to move 

the load point   to the boundary. The resulting equation is called the boundary 

integral equation (BIE) and forms the basis of the subsequent discretisation 

process by the boundary element method. 

     The process of moving the load point to the boundary requires some care, 

since the sifting property of the Dirac distribution is not defined when the load 

point lies on the boundary: 






















 ,

for   

for     

for      

undef.

0

)(

),()(

f

dxxf  .                              

(1.3.69) 

In the following, we will solve this problem by modifying the boundary in the 

vicinity of the lode point and then move the lode point to the boundary in a 

limiting process. 

 

1.3.1 Classification of singularities in the BEM  
 

     In the direct BEM, we usually only have to deal with two types of 

singularity (see table 1.1)  

abdx
x

b

a




lnln
1

,         0, ba                                                

(1.3.70) 

as shown, the correct result is obtained. However, on second thoughts, we note 

that this must have been by chance, since the presence of the x/1 -singularity in 

the integration interval has not been taken into account properly. The problem 

at 0x  becomes apparent when trying to calculate the improper integral at 




b

x

x
dx

0

1
, which is undefined. 
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If we approach the singularity in (1.3.70) by a limiting process, we obtain  














  








1

2
21

11
lim

1

0,






a

bb

a

dx
x

dx
x

dx
x

 

          )lnlnln(lnlim 21
0, 21







ba  

         ab lnlnlnlim
2

1

0, 21











 




.                                       

(1.3.71) 

We see that the result depends on 1  and 2  if they approach zero with 

different values. However, by choosing   21 , we obtain  

01lnln 



,                                                                 

(1.3.72) 

and thus (1.3.71) yields the correct result 

a

b
dx

x

b

a

ln
1




.                                                                   

(1.4.73) 

     The integrand xxf /1)(   in (1.3.70) is strongly singular at 0x , which 

means that its integral  dxxfxF )()(  is singular at 0x , too. The value of 

the integral as calculated with the limiting process in (1.3.71) is called a Cauchy 

principal value (CPV) of the strongly singular integral and is denoted by 

dx
x

b

a




1
.                                                                    

(1.3.74)                                                              

     In addition to the strongly singular integrands, we also encounter weakly 

singular integrands in the boundary element method. In constant to the strong 

singularity, the integral over a weakly singular integrand exists and is 

continuous at the singularity point. An example for this is the xln -function. 

At 0x  the function is singular but the integral  

  cxxxdx
x

ln
1

ln                                                     

(1.3.75) 

is continuous, which can be confirmed by applying the rule of 1‟Hosoital:[34]  

0lim
ln

limlnlim
2

1

1

0100






x

x

x
x

xx

x
xx  .                                     

(1.3.76) 
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Table 1.1. Classification of singularities in the boundary element method 

 

To move the load point to the boundary, we first modify the original boundary 

 , augmenting it by a small circular region with radius   around the load point 

 as shown in figure 1.1. The modified boundary  is then given by 

  * ,                                                                      

(1.3.77) 

so that 


0

lim


.                                                                              

(1.3.78) 

 
Figure 1.1. Boundary extension around lode point   

 

By this process, the load point   again comes lie inside the domain and the 

representation formula (1.1.38) remains valid. 

     As shown in figure 1.2, the line element d along the boundary extension 

can be parametrised by  

 dd  ,                                                                               

(1.3.79) 

 

Type Property 2-D 

weak singularity integral is finite at 

singularity 
rln  

strong 

singularity 

interpretation as Cauchy 

principal value r

1
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where  

iix                                                                                   

(1.3.80) 

is the Euclidean distance between the lode point   and the point x . With this, 

we can perform the limiting process when moving the load point to the 

boundary. 

 

 
Figure 1.2 Geometry of the augmented boundary 

 

(I) Weakly Singular Integral  

     Using the 2-D fundamental solution *u  given in (1.1.39), we obtain for the 

first term in (1.1.38) 


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(1.3.81) 

The first integral in (1.3.81) is weakly singular, so its calculation requires no 

special care. For the second integral, we obtain with (1.3.81), (1.3.82) and 

1‟Hospital rule 
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(1.3.82) 

Since the integral 


dqu* is continuous at the (weak) singularity of *u , the term 

in (1.3.82) over the boundary extension  becomes zero for 0 .  

(II) Strongly Singular Integral  
     For the strongly singular integral in (1.1.38), we have  
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(1.3.83) 

Since   duq* is strongly singular, the integral over the modified boundary 

*
  represents its Cauchy principal value: 





 duqduq **

0
*

lim




                                                          

(1.3.84) 

For the second integral in (1.3.15), we obtain 























dudud
x

nx
u

ii

iii













00

2020 2

1
)(

2
lim

2

)(
lim  

                                           )(
2





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(1.3.85) 

In contrast to (1.3.82), this term dose not vanish but remains finite, since the 

integrand is singular at 0 . The strongly singular integral 


duq* is therefore 

given by the sum of its Cauchy principal value and the contribution from 

(1.3.85).  

     By inserting the results for the weakly and strongly singular integrals into 

(1.1.38), we obtain the boundary integral equation 
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(1.3.86) 

or 

 
 
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(1.3.87) 

The factor )(c  is the free term coefficient and can be interpreted as the 

fraction of )(u that lies inside  : 
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(1.3.88) 

    The boundary is divided into boundary elements, and the boundary variables 

are interpolated by piecewise continuous functions, e.g., polynomials, so that an 

approximate calculation of the boundary integrals becomes possible. This 

approach is called discretisation and will be described in the following. 

 

1.3.2 Discretisation of the Boundary  

 

     To approximate the geometry, the boundary   is divided into   boundary 

elements )()1( ,...,  , each of which possesses one or more nodes.  

     Inside the element )(e  with local coordinate s , the potential )(eu  and flux 
)(eq  are interpolated using shape function )(sm and nodal )(e

mu


and )(e
mq


 as 

follows: 
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(1.3.89) 

or in matrix notation 
)()( )()( eTe ussu


         and    )()( )()( eTe qssq


  ,             

(1.3.90) 

where )(e
mu


, )(e
mq


,   are )1( M -matrices. In 2-D analysis, the simplest shape 

functions are constant and linear shape functions. 

 



 - 26 - 

(I) Constant Shape Functions Elements with constant shape functions possess 

only one located in the middle of the element, as shown in figure 1.3. The 

values of )(eu and )(eq are constant throughout the element and correspond to 

the value at the node. This means that 1)(1  s  and  

)(
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(1.3.91) 

 
Figure 1.3. Constant shape function 

 

(II) Linear Shape Functions Using two nodes per element, we can interpolate 

the potential )()( su e linearly over the length )(eL of the element as shown in 

Figure 1.4. With the nodal values 
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(1.3.92) 

 
Figure 1.4. Linear interpolation displacements within the element 
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Now, using the discretisation (1.3.89), we obtain for (1.3.87) in 2-D  
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(1.3.94) 

Since the nodal values )(e
mu


 and )(e
mq


 are constant, we can write 
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 (1.3.95) 

which is the discretised from the boundary integral equation.  

     If constant elements are used, the node is usually located at the center of the 

element. In this case,   , and we obtain 

2

1
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1)( 




c .                                                                    

(1.3.96) 

If the load point in the field point are located on the same element, the vector 

)( iii xr  is perpendicular to in  and therefore  

0)(  iii nx   .                                                                         

(1.3.97) 

 

1.3.3 The Collocation Method   

 

     The discretised boundary integral equation (1.3.95) is now used to set up a 

system of equations for the determination of the unknown boundary values. 

     While this can be done in a number of ways using the method of weighted 

residuals, we will only describe the collocation method, which is by far the 

most frequently used approach due to its versatility and computational 

efficiency. An alternative approach is the symmetric Galerkin BEM (Brebbia 

[18]), which involves at double surface integration. For medium to large-scale 

problems, this additional numerical cost can often be compensated by the 

advantages resulting from the symmetry of the equations. 

     In the collocation method, we place the load point  sequentially on all 

nodesof the discretisation. This way, the free term )()(  uc  contains the 

potential at the discretisation node so that no additional unknown is introduced. 

When using linear and higher-order polynomial shape functions, some of the 

nodes belong to more than one element, so it is advantageous to introduce a 

global node numbering ),...,1( Nn   that is independent of the elements.  

     By placing the load point on the first global node, we obtain the equation  
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(1.3.98) 

In (1.3.98), the integral     den ),(  denotes the sum of all integrals over the 

elements )(e  on which the node with the global number n  is located, and n  is 

the corresponding shape function. In matrix notation, we can write (1.3.98) as 

follows: 
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(1.3.99) 

where 11Ĥ  denotes the entry that contains the free term coefficient )( 1
1 cc  .   

     By collocating the load point on the nodes 2 to N , we obtain the missing 

equations, which we assemble to form the system  
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(1.3.100) 

or in matrix notation 

qGuH


  .                                                                               

(1.3.101) 

The diagonal eleme nts of the matrices H and G  contain the strongly and 

weakly singular integrals, respectively, because iixr   vanishes when the 

node   lies on the element over which the integration is carried out. All other 

matrix elements contain regular integrals. Since both nodal vectors u


 and q


 in 

(1.3.101) contain known as well as unknown boundary values, we have to 

rewrite the equations with all unknowns appearing in a vector y


on one side, 

fyA 


 ,                                                                                       

(1.3.102) 
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Where the known boundary values are multiplied with the corresponding matrix 

entries to yield the vector f . The system (1.3.102) can now be solved with 

standard direct or iterative methods. 

     By means of a simple example, we will now illustrate how to the rearrange 

the equations in (1.3.101). Consider the 2-D region shown in figure 1.5. At the  

 

 
Figure 1.5. Rectangular region with prescribed potential 1u  on one 

      face and prescribed flux 1q  on the opposite face 

 

boundary nodes 1 and 4, the potential uu  is prescribed and the flux q  is 

unknown, while at boundary nodes 2 and 3, the flux qq  is prescribed and the 

potential u  is unknown. The system of equations obtained with the Boundary 

Element Method is the given by. 
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(1.3.103) 

where „/‟ denotes prescribed and „?‟ denotes unknown boundary values. 

Rearranging the system by separating known and unknown boundary values 

yields 
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(1.3.104) 

which corresponds to (1.3.102). 
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CHAPTER (II) 
 

( Boundary element solution of steady-state 

 temperature distribution  

in homogeneous media ) 
 

  

 2.1 Introduction 
 

     The boundary element method (BEM) is an integral-equation-based 

mathematically was numrical technique that offers many advantages over FDM, 

FVM, or FEM. Theoretical development of the BEM relies on the formulation 

of the boundary integral equation that is predicated on the availability of the so-

called Green‟s free-space solution for the problem of interest. Theoretical 

background and numerical implementation of the BEM can be found in the 

monographs by Brebbia and Walker [22], Brebbia et.al. [21], Gipson [35], and 

Banerjee [16], and in the book by Brebbia and Dominguez [20]. One of the 

most striking features of BEM is that, of many field problems of engineering, a 

boundary integral equation is discretized to solve the field problem of interest. 

Consequently, only the bounding surface of the domain is discretized, thereby 

reducing the dimension of the problem by one. For instance, in the analysis of 

linear and non-linear isotropic steady-state heat conduction and in linear 

elasticity, a boundary discretization is only required to resolve the temperature 

or stress field. Thus, for a certain class of problems, for which Green‟s free-

space solutions are available, the BEM solution can be expressed in the terms of 

boundary integrals only.  

 

2.2 formulation of the problem 
 

     The two - dimensional steady-state temperature distribution may be written 

in non- dimensional form as follows 

0
2

2

2

2











y

T

x
                                                                         

(2.2.1) 

Equation (2.2.1) is to be solved in a two – dimensional region R  bounded by a 

simple closed curve D subject to the boundary condition  
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 yxg ,                    for     1, Dyx   

 yxh
n

,



                  for   2, Dyx                                    

(2.2.2) 

where g  and h  are suitably prescribed functions and 1D  and 2D  are 

intersecting curves such that DDD 21   Refer to Figure 2.1 for a geometrical 

sketch of the problem.      

     The normal derivative 
n

 in Eq. 2.2.1 is defined by  

y
n

x
n

n
yx













                                                                   

(2.2.3) 

where xn  and yn  are respectively the x  and y  components of a unit normal 

vector to the curve D . Here the unit normal vector ],[ yx nn  on D  is taken to be 

pointing away from the region R . Note that the normal vector may vary from 

point to point on D . Thus, ],[ yx nn is a function of x  and y     

     The boundary conditions given in Eq. (2.2.2) are assumed to be properly 

posed so that the boundary value problem has a unique solution, that is, it is 

assumed that one can always find a function  yx,  satisfying Eqs. (2.2.1) , 

(2.2.2) and that there is only one such function. 

     For a particular example of practical situations involving the boundary value 

problem above, one may mention the classical heat conduction problem where 

T  denotes the steady-state temperature in an isotropic solid. Eq. (2.2.1) is then 

the temperature governing equation derived, under certain assumptions, from 

the law of conservation of energy together with the Fourier's heat flux model. 

The heat flux out of the region R  across the boundary D  is given by 

nk  , where k is the thermal heat conductivity of the solid. Thus, the 

boundary conditions in Eq. (2.2.2) imply that at each and every given point on 

D  either the temperature or the heat flux (but not both) is known. To determine 

the temperature field in the solid, one has to solve Eq. (2.2.1) in R  to find the 

solution that satisfies the prescribed boundary conditions on D .  

     In general, it is difficult (if not impossible) to solve exactly the boundary 

value problem defined by Eqs. (2.2.1) , (2.2.2). The mathematical complexity 

involved depends on the geometrical shape of the region R  and the boundary 

conditions given in Eq. (2.2.2) Exact solution can only be found for relatively 

simple geometries of R  (such as square region) together with particular 

boundary conditions for more complicated geometries or general boundary 

conditions, one may have to resort to approximate techniques for solving Eqs. 

(2.2.1) , (2.2.2).  
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     We show how in this chapter a boundary integral solution can be derived for 

Eq. (2.2.1) and apply example to obtain a simple boundary element procedure 

for approximately solving the boundary value problem under consideration.   

].)()ln[(
4

1
),,,( 22 


  yxyx                                    

(2.2.4) 

     We refer ),,,( yx  in Eq. (2.2.4) as the fundamental solution of two-

dimensional Laplac's equation may be written in the following form (Ang [16]). 

Note that ),,,( yx satisfies Eq. (2.2.1) every where except at ),(   where it 

is not well defined. 

If 1  and 2 are any two solutions ot Eq. (2.2.1) in the region R  bounded by the 

simple closed curve D  then it can be shown that  
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(2.2.5) 

Since 1  and 2  are solutions of Eq. (2.2.1) , we may write 
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If we multiply the first equation by 2  and the second one by 1  and take the 

difference of the resulting equations , we obtain  
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which can be integrated over R  to give  
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Application of the divergence theorem to convert the double integral over R  

into a line integral over D  yields   
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which is essentially Eq. (2.2.5). 

     Together with the fundamental solution given by Eq. (2.2.4) reciprocal 

relation in Eq. (2.2.5) can be used to derive a useful boundary integral solution 

for the two-dimensional Laplace's equation. 
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2.3 Boundary Element Procedure  
 

Using the same technique as in sections 1.1 and 1.3 (see chapter I)  

    Let us take ),;,(1 yxT  (the fundamental solution as defined in Eq. 

(2.2.4)) and TT 2 , where T is the required solution of the interior boundary 

value problem defined by Eqs. (2.2.1), (2.2.2). 

     Since ),;,( yx is not well defined at the point ),(  , the reciprocal 

relation in Eq. (2.2.5)is valid for ),;,(1 yxT  and TT 2 only if ),(  does 

not lie in the region DR . Thus, (Ang [13])  
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(2.3.6) 

     A more interesting and useful integral equation than Eq. (2.3.6) can be 

derived from Eq. (2.2.5) if we take the point ),(  to lie in the region DR .  

     For the case in which ),(  lies in the interior of R , Eq. (2.2.5) is valid if we 

replace D  by DD , where D is a circle of center ),(  and radius   as 

shown in Figure (2.2). This is because ),;,( yx and its first order partial 

derivatives (with respect to x  or y ) are well defined in the region between D  

and D . Thus, for D  and D in Figure (2.2) we can write (Gaul, et al. [34]) 
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that is, 
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(2.3.7) 

      Eq. (2.3.7) holds for any radius 0 , so long as the circle D (in Figure 

2.2) lies completely inside the region bounded by D . Thus, we may let 
 0 in Eq. (2.3.7). This gives 

 

 

 

 



 - 34 - 

),())],((),;,()),;,((),([ yxdsyx
n

yxyx
n

yxT

D










   

).,())],((),;,()),;,((),([lim
0

yxdsyx
n

yxyx
n

yxT

D










 






   

(2.3.8) 

     Using polar coordinates r and   centered about ),(  as defined by 

 cosrx   and  sinry  , we may write 
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(2.3.9) 

     The Taylor‟s series of ),( yxT about the point ),(  is given by 
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     On the circle D , r . Thus, 
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(2.3.10) 

     Similarly, we may write 
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(2.3.11) 

     Using Eqs. (2.3.9), (2.3.10) and (2.3.11) and writing dyxds ),( with   

ranging from  0 to 2 , we may now attempt to evaluate the limit on the write 

hand side of Eq. (2.3.8). On D , the normal vector ],[ yx nn is given by 

]sin,cos[   . Thus, 
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(2.3.12) 
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2.3.13) 

since 0)ln(1   m  as  0 for ,...2,1,0m  

     Consequently, as  0 , Eq. (2.3.8) yields  
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(2.3.14) 

     Together with Eq. (2.2.4), Eq.(2.3.14) provides us with a boundary integral 

solution for the two-dimensional Laplace‟s equation. If both T and n  are 

known at all point on D , the line integral in Eq. (2.3.14) can be evaluated (at 

least in theory) to calculate T at any point ),(  in the interior of R . From the 

boundary conditions (2.2.2), at any given point on D , either T or n , not 

both, is unknown, however. 

     To solve the interior boundary value problem, we must find the unknown 

T and n  on 2D and 1D  respectively. As we shall see later on, this may be 

done through manipulation of data on boundary D  only, if we can derive a 
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boundary integral formula for ),(  , similar to the one in Eq. (2.3.14), for 

general point ),(   that lies on D . 

     For the case in which the point ),(  lies on D , Eq. (2.2.5) holds if we 

replace the curve D  by CC  , where the curves C  and C are as shown in 

Figure (2.3). (If D is the circle of center ),(  and radius  , then C , is the part 

of D that lies outside D and C is the part of D that is inside R .) Thus, 
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(2.3.15) 

     Let us examine what happens to Eq. (2.3.15) when we let  0 . 

     As  0 , the curve C  tends to D . Thus we may write 
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(2.3.16) 

     Note that, unlike in Eq. (2.3.8), the line integral over D  in Eq. (2.3.16) is 

improper as its integrand is not well defined at ),(   which lies on D . Strictly 

speaking, the line integration should be over the curve D  without an 

infinitesimal segment that contains the point ),(  , that is, line integral over 

D in Eq. (2.3.16) has to be interpreted in the Cauchy principal sense if ),(   

lies on D .  

     To evaluate the limit on the right hand side of Eq. (2.3.16), we need to know 

what happens to C when we let  0 . Now if ),(   lies on a smooth part of 

D (not at where the gradient of the curve changes abruptly, that is not at a 

corner point, if there is any), one can intuitively see that the part of D  inside 

D approaches an infinitesimal straight line as  0 . Thus, we expect C to 

tend to a semi-circle as  0 , if ),(   lies on smooth part of D . It follows 

that in attempting to evaluate the limit on the right hand side of Eq. (2.3.16) we 

have to integrate over only half a circle (instead of a full circle as in the case of 

Eq. (2.3.8)). 

     Modifying Eqs. (2.3.12) and (2.3.13), we obtain 



 - 37 - 

),(
2

1
),()],;,([),([lim

0






Tyxdsyx
n

yxT

C







, 

.0),()],([),;,(lim
0












C

yxdsyxT
n

yx  

Hence Eq. (2.3.11) gives  
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                                                  for ),(  lying on smooth part of D .      

(2.3.17) 

     Together with the boundary conditions in Eq. (2.2.2) , Eq. (2.3.17) may 

applied to obtain a numerical procedure for determining the unknown T and /or 

nT  / on the boundary D . Once T and nT  / are known at all points on D , 

the solution of the interior boundary value problem defined by Eqs. (2.2.1), 

(2.3.14) and (2.3.17) as a single equation given by 
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(2.3.18) 

if we define  
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(2.3.19)   

We now show how Eq. (2.3.18) may be applied to obtain a simple boundary 

element procedure with constant elements for solving numerically the interior 

boundary problem defined by Eqs. (2.2.1),(2.2.2).  

     The boundary D  is approximated as an N -sided polygon with sides  
)1()2()1( ,...,, NDDD  and )(ND , that is, 

.... )()1()2()1( NN DDDDD                                         

(2.3.20) 

     The sides or the boundary elements )1()2()1( ,...,, NDDD  and )(ND , are 

constructed as follows. We put N well spaced out ),,( )1()1( yx  ),( )2()2( yx  ..., 

),( )1()1(  NN yx and ),( )()( NN yx on D , in the order given, following the 
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counter clockwise direction. Defining ),(),( )1()1(11 yxyx NN  , we take 
)(kD to be the boundary element from ),( )()( kk yx to ),( )1()1(  kk yx for 

.,...,2,1 Nk   

          For a simple approximation of T and n on the boundary D , we 

assume that these functions are constants over each of the boundary elements. 

Specifically, we make the approximation: 

)(kTT   and )(kp
n





 for ),...,2,1(),( )( NkDyx k           

(2.3.21) 

 where )(kT and )(kp are respectively the values of T and nT  /  at the 

midpoint )(kD . 

     With Eqs. (2.3.20) and (2.3.21), we find that Eq. (2.3.18) can be 

approximately written as 
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(2.3.23) 

     For a given ,k either )(kT or )(kp (not both) is known from the boundary 

conditions in Eq.(2.2.2). Thus, there are N unknown constants on the right hand 

side of Eq. (2.3.22). To determine their values, we have to generate N equations 

containing the unknowns. 

     If we let ),(  in Eq. (2.3.22) be given in turn by the midpoints of  
)1()2()1( ,...,, NDDD  and )(ND we obtain 

)},(),({
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1 )()()(
1

)()()(

1

)(
2

)()( mmkkmm
N

k

kkm yxFpyxFTT 


 

                                                              for ,,...,2,1 Nm                   

(2.3.24) 

where ),( )()( mm yx is the midpoint of )(mD . 

     In the derivation of Eq. (2.3.24), we take ,2/1),( )()( mm yx since 

),( )()( mm yx being the midpoint of )(mD lies on a smooth part of the 

approximate boundary )()1()2()1( ... NN DDDD   . 
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     Eq. (2.3.24) constitutes a system of N linear algebraic equations containing 

the N unknown on the right hand side of Eq. (2.3.22). We may rewrite it as  
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(2.3.25) 

where )()( , mkmk ba and )(kz are defined by  
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(2.3.26) 

     Note that )1()2()1( ,...,, Nzzz and Nz are the N unknown constants on the 

right hand side of Eq. (2.3.22), while )(mka and )(mkb are known coefficients. 

     Once Eq. (2.3.25) is solved for the unknowns )1()2()1( ,...,, Nzzz and Nz , the 

values of T and nT  / over the element )(kD , as given by  )(kT and 
)(kp respectively, are known for Nk ,...,2,1 . Eq. (2.3.22) with 1),(   

then providesus with an explicit formula for computing T in the interior of R , 

that is, 

)},(),({),(
)(

1
1

)()(
2

)(  k
N

k
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(2.3.27) 

     To summarize a boundary element solution of the interior boundary value 

problem defined by Eqs.(2.2.1),(2.2.2) is given by Eq.(2.3.27) together with 

Eqn. (2.3.20) and (2.3.21), the solution is said to be obtained using constant 

elements. Analytical formula for calculating ),(
)(

1 k
F and ),(

)(
2 k

F in Eq. 

(2.3.23) are given in Eqs. (2.3.32), (2.3.33), (2.3.35) and (2.3.36) (together with 

Eq. (2.3.30)) below. 
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The boundary element solution above requires the evaluation of ),(
)(

1 k
F  and 

),(
)(

2 k
F . These functions are defined in terms of line integrals over )(kD as 

given in Eq. (2.3.23).  

The line integrals can be worked out analytical as follows. 

     Points on the element )(kD may be described using the parametric equations 
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k
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 from 0t  to 1t ,                                   

(2.3.28) 

where )(kl is the length of )(kD  and ],[ )()( k
y

k
x nn ,[ )()1( kk yy    

)()1()( /] kkk lxx   is the unit normal vector to )(kD  pointing away from .R  

     For ,),( )(kDyx  we find that dtldydxyxds k )(22 )()(),(   and  

),,(),()()( )()(2)(22  kkk EtBtAyx                  

(2.3.29) 

where 
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2)(2)()( )()(),(   kkk yxE .                                 

(2.3.30) 

     The parameters in Eq. (2.3.30) satisfy 0)],([),(4 2)()()(   kkk BEA  for 

any point ),(  . To see why this is true, consider the straight line defined by 

the parametric equations )()()( k
y

kk ntlxx   and )()()( k
x

kk ntlyy   for 

 t . Note that )(kD is a subset of this straight line (given by the 

parametric equations from 0t  to 1t ). Eq. (2.3.29) also holds for any point 

),( yx lying on the extended line. If ),(  dose not lie on the line then 

0),(),( )()(2)(   kkk EtBtA  for all real values of t  (that is, for all 

points ),( yx on the line) and hence 0)],([),(4 2)()()(   kkk BEA . On the 

other hand, if ),(  is on the line, we can find exactly one point ),( yx such that 

0),(),( )()(2)(   kkk EtBtA . As each point ),( yx  on the line given by 

unique value of t , we conclude that 0)],([),(4 2)()()(   kkk BEA  for  

),(   lying on the line. 
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     From Eqs. (2.3.23), (2.3.28) and (2.3.29), ),(
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written as 
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(2.3.31) 

     The second integral in Eq. (2.3.31) is the easiest one to work out for the case 

in which 0)],([),(4 2)()()(   kkk BEA . For this case, the point ),(  lies 

on the straight line of which the element )(kD  is a subset. Thus, the vector 

],[ )()(   kk yx is perpendicular to ],[ )()( k
y

k
x nn , that is 

 0)()( )()()()(   kk
y

kk
x ynxn ,  and we obtain 
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(2.3.32) 

From the integration formula  
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(2.3.33) 

     If 0)],([),(4 2)()()(   kkk BEA , we may write  
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(2.3.34) 

     Now if ),(  lies on a smooth part of )(kD , the integral in Eq. (2.3.34) is 

improper, as its integrand is not well defined at the point 

)1,0()2/(),( )()(
0  kk ABtt  . Strictly speaking, the integral should then 

be interpreted in the Cauchy principal sense, that is to evaluate it, we have to 

integrate over ]1,[],0[ 00   tt  instead of ]1,0[ and then let 0  to obtain 

its value. However, in this case, it turns out that the limits of integration 

 0tt  and  0tt  eventually do not contribute anything to the integral. 

Thus, for 0)],([),(4 2)()()(   kkk BEA , the final analytical formula for 

),(
)(

1 k
F is the same irrespective of whether ),(  lies on )(kD  or not. If 

),(   lies on )(kD , we may ignore the singular behaviour of the integrand and 

apply the fundamental theorem of integral calculus to evaluate the definite 

integral in Eq. (2.3.34) directly over [0,1], (Bnerjiee[16]). 

     The integration required in Eq. (2.3.34) can be easily done to give  
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(2.3.35) 
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(2.3.36) 
 

 

2.4 Example  
 

    In order to illustrate the performance of the BEM proposed, we can consider 

the exact solution of this particular boundary value problem as follows 

)sinh(

)cos()sinh(



 yx
T                                                                      

(2.4.37) 

There is a significant improvement  in the accuracy  of the numerical results 

when the number of boundary elements  used is increased from 60 to 120. 

Now, we take the solution domain as the square region ,10  x .10  y  

     The boundary conditions are 

10for  1 and 0on    0
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1on     )cos(

0on               0
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xyT
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(2.4.38) 

     The sides of the square are discretized into boundary elements of equal 

length. To do this, we choose N  evenly spaced out points on the sides as 

follows 

),,( )1()1( yx  ),( )2()2( yx  ,......, ),,( )1()1(  NN yx ),( )()( NN yx  and 

),( )1()1(  NN yx  arranged in counter clockwise order on the boundary of the 

solution domain.  

     Now we will compare the numerical values of T  at various interior points 

obtained using 60 and 120 boundary elements with the exact solution in table 

(2.1). 
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Points BEM 

N=60 

BEM 

N=120 

FDM Exact 

(0.1,0.2) 0.0226 0.0224 0.0214 0.0224 

(0.1,0.3) 0.0165 0.0163 0.0143 0.0163 

(0.1,0.4) 0.0086 0.0085 0.0012 0.0085 

(0.5,0.2) 0.1622 0.1614 0.1530 0.1612 

(0.5,0.3) 0.1180 0.1173 0.1169 0.1171 

(0.5,0.4) 0.0621 0.0617 0.0562 0.0616 

(0.9,0.2) 0.5895 0.5899 0.5870 0.5899 

(0.9,0.3) 0.4283 0.4286 0.4198 0.4286 

(0.9,0.4) 0.2251 0.2253 0.2196 0.2253 

 
Table (2.1) 

 

 

     The result, we found that the boundary element solution agrees quite well 

with the exact solution. And more suitable than the  result we obtained from the 

finite difference method.      

 

 

 
( Fig 2.1 ) 
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( Fig 2.2  

 

 
 

( Fig 2.3) 
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CHAPTER (III) 
 

( Boundary Element Solution of  

Non Steady-State Temperature  

Distribution in Homogeneous Media ) 
 

 

3.1 Introduction 
 

       The application of boundary integral equation (BIE) formulation and 

boundary element methods (BEM) to inverse analysis have recently gained 

special attention in several fields of engineering. Of particular interest to this 

study is the recent monograph by Ingham and Yuan [37] dedicated to BIE for 

inverse analysis. Here, BIE applications to a broad class of inverse problems 

including identification of temperature dependent properties, the detection of 

surfaces cavities and flaws, inverse acoustic and electromagnetic scattering, 

crack-identification methods, and parameter identification in groundwater. 

Examples of BEM-based inverse formulation for identification of flaw and 

cavities can be found in Kassab et al. [39], Kassab and Pollard [40] and Lesnic 

et al. [42]. Chandra and Chan [24] explicitly determine design sensitivities 

using the BEM and direct differentiation in steady-state conduction-convection 

problems for modeling and optimization of thermal aspects of machining 

processes. Martin and Dulikravich [44] discussed a non-iterative algorithms to 

retrieve unknown heat sources and boundary conditioned in the ill-posed two 

dimensional Poisson problem using over-specified boundary conditions or 

internal temperature measurements. They use singular-value decomposition to 

regularize their formulation. 

     In this chapter    

 

3.2 Formulation of the problem 
 

     The two-dimensional non steady-state temperature distribution in 

homogeneous media may be written in the following form  

,
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


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
                                                             

(3.2.1) 

where   is a given positive constant, t  denotes time and ),,( tyxT is 

temperature. 
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     For 0t , we are interested in solving the (heat) equation in Eq. (3.2.1) in 

the two-dimensional region R  bounded by simple closed curve D  (on the 

Oxy plane) subject to the initial- boundary conditions 

),()0,,( yxfyxT  for ,),( Ryx   

),(),,( yxgtyxT  for 1),( Dyx  and ,0t  

),()],,([ yxhtyxT
n





for 2),( Dyx  and ,0t                 

(3.2.2) 

where gf ,  and h  are suitably prescribed functions, 1D  and 2D are non-

intersecting curves such that yTnxTnnTDDD yx  ///,21   and 

],[ yx nn is the unit normal vector on D , pointing away from R . 

     The fundamental solution of the two-dimensional Laplace‟s equation as 

given (in Chapter II) by  
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may be used to convert Eq. (3.2.1) to an integro-differential equation given by 
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3.3 Boundary Element Procedure 
  

Using the same technique as in sections 1.1 and 1.3 (see chapter I) 

     In this section, we show how Eq. (3.2.4) may be used to obtain a boundary 

element procedure for the numerical solution of the initial boundary value 

problem defined by Eqs. (3.2.1) and (3.2.2). The entire solution domain into 

many tiny cells, we apply the dual-reciprocity method to convert the domain 

integral in Eq. (3.2.4) approximately into a line integral over the boundary D . 

In implementing the boundary element procedure, only the boundary D  has to 
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be discretized into elements. The unknowns of the boundary element 

formulation here do not involve only the yet to be determined values of T or 

nT  /  on the boundary elements but also those of T at selected collocation 

points in the interior of R . 

     The dual-reciprocity boundary element approach approximately reduces Eq. 

(3.2.4) into a system of linear equations containing unknown functions of time. 

First order time derivatives of some of the unknown functions are also present 

in the system. Several approaches may be employed for solving the system of 

linear algebraic-differential equations. The approach used here is to 

approximate the first order time derivatives using a finite difference formula, so 

that the initial-boundary value problem can be formulated as systems of linear 

algebraic equations to be solved at consecutive time levels separated by a small 

time-step. For the approach to work well, the boundary element procedure used 

to obtain the numerical solution must be sufficiently accurate. For this reason, 

we use the discontinuous linear elements for the approximation made on the 

boundary. 

Eq. (3.2.4) may be written approximately as (Ang [13]) 
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where ),(...),,(),,( )1()1()2()2()1()1(  MM bababa and ),( )()( MM ba are selected 

collocation points in DR and  
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     We approximate the boundary integral in Eq. (3.3.6) using the discontinuous 

linear elements as detailed in W. T. Ang [13]. To do this, we discretize D into 

N straight line elements )1()2()1( ,...,, NDDD and )(ND . The endpoint of 

thk   element )(kD are ),( )()( kk yx  and ),( )1()1(  kk yx . (Note that 

).,(),( )1()1()1()1( yxyx NN  ) Two points ),( )()( kk   and ),( )()( kNkN    at 

a distance of )(kl from ),( )()( kk yx  and ),( )1()1(  kk yx  respectively, where   is 

a positive number such that 2/10   and )(kl is the length of )(kD , are 

chosen on )(kD .  

     For discontinuous linear elements, we make the approximation 
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(3.3.9)   

where )(ˆ )( tT k  and )(ˆ )( tT kN   are the values of ),,( tyxT  at ),(),( )()( kkyx   

and ),(),( )()( kNkNyx   respectively, )(ˆ )( tp k and )(ˆ )( tp kN  are the values 

of the normal derivative ntyxT  /)],,([  at ),(),( )()( kkyx   and 

),(),( )()( kNkNyx    respectively and 

2)(2)( )()(),( kk yyxxyxs   for )(),( kDyx  . 

     with Eqs. (3.3.8)and (3.3.9), we may write 
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where analytical formulae for calculating ),(),,(),,(
)(

3
)(

2
)(

1  kkk
FFF  and 

),(
)(

4 k
F  are given in Ang [13]. 

     Note that ),(,...,),(),,( )1()1()2()2()1()1(  MM bababa  and ),( )()( MM ba  in Eq. 

(3.3.6) are M  selected points that are well spaced out in the region DR . 

Taking LNM  2 , we choose the first N2 of these points to be those on the 

boundary elements given by ),( )()( kk   and ),( )()( kNkN    for 

.,...,2,1 Nk   The remaining L  points denoted by ),( )12()12(  NN  , 

),( )22()22(  NN   ,..., ),( )12()12(  lNlN   and ),( )2()2( LNLN    are 

chosen points in the interior of R . 

     Below Eq. (3.3.9) we have already points defined ),,()(ˆ )()()( tTtT nnn   

for .2,...,2,1 Nn   view of the L  selected points inside ,R  we now extend the 

definition to include .2,...,22,12 LNNNn   

Eq. (3.3.6) may now be approximately written as  
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(3.3.10) 

     We assume that either T or nT  /  (not both) is specified across a given 

element. If T is specified on )(kD  then )(ˆ )( tp k and )(ˆ )( tp kN   are unknown 

functions. Otherwise, if nT  /  is specified on )(ˆ, )()( tTD kk  and )(ˆ )( tT kN   are 

unknowns. At the selected interior points ),( )12()12(  NN  , 

),( )22()22(  NN  , ..., ),( )12()12(  lNlN   and ),( )2()2( LNLN   ,T is not 

known at all time except at 0t  [when it is given by the initial condition in Eq. 

(3.2.2)], that is ),(ˆ )12( tT N  ),(ˆ )22( tT N   ..., ),(ˆ )12( tT lN   )(ˆ )2( tT LN are 

unknown functions of t  for 0t . Thus, there are LN 2  unknown functions 

of t  on the right hand side of Eq. (3.3.10). 

     From Eq. (3.3.7), with the boundary D  discretized into boundary elements, 

we may approximately evaluate ),;,( ba  using 
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),;,(),(),;,( baba    
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                                                                                                              (3.3.11) 

     If we let ),(   in Eq. (3.3.10) be given in turn by ),( )()( nn   for 

LNn  2,...,2,1 , we generate a system of LN 2  linear equations in LN 2  

unknown functions of t  that is we obtain  
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                                                                        for  ,2,...,2,1 LNn                                 

(3.3.12) 

where 
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  (3.3.13) 

Note that 2/1),( )()( nn   for Nn 2,...,2,1  and 1),( )()( nn   for 

12  Nn  22, N ,... LN 2, . The constants )(mj  are determined from Eq. 

(3.3.7) by letting LNM  2  and ),(),( )()()()( nnnn ba   for  

.2,...,2,1 LNn   

     If we are able to solve Eq. (3.3.12) together with the initial-boundary 

conditions in Eq. (3.2.2), then we have determined T  numerically (for the 

initial-boundary value problem described in Section 3.2) at LN 2  selected 

points in .DR  
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Now we will describe a time-stepping approach for solving Eq. (3.3.12) 

together with the initial-boundary conditions in Eq. (3.2.2). 

     The function )(ˆ )( tT j  and its first order derivative are approximated using  
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(3.3.14) 

where t  is a small (positive) time-step. The errors in the approximations in 

Eq. (3.3.14) have magnitudes which are of the order )]([ 2tO  . 

Substitution of Eqs. (3.3.14) into Eq. (3.3.12) yields 
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                                                                        for  ,2,...,2,1 LNn                                 

(3.3.15) 

     If we assume that )2,...,2,1()(ˆ
2
1)( LNjttT j  are known then Eq. 

(3.3.15) constitutes a system of LN 2  linear algebraic equations containing 

LN 2  unknowns. There are N2  unknowns on the boundary. They are given 

by )(ˆ
2
1)( ttT k   and )(ˆ

2
1)( ttT kN  if nT  /  is specified on the boundary 

element )(kD , or by )(ˆ )( tp k  and )(ˆ )( tp kN if T  is known on )(kD . The 

remaining unknowns are the value of T  at the L  chosen interior points, as 

given by )(ˆ
2
1)( ttT j   for 12  Nj , 22 N  , ...  , LN 2 . 

     Eq. (3.3.15) may be solved at consecutive time levels  ...,,,,
2
5

2
3

2
1 tttt   

as follows. 
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     If we let tt 
2

1 , we find that )0(ˆ)(ˆ )(

2
1)( jj TttT   )12,...,2,1(  Nj .  

For Lj ,...,2,1  it is obvious that )0(ˆ )2( jNT   can be determined directly from 

the initial condition in Eq. (3.2.2) that is ),()0(ˆ )2()2()2( jNjNjN fT    . If 

there is no discontinuity between the value of T in R  at 0t  and that specified 

on 1D  for 0t , we may extend the initial condition to include all the points on 

the boundary and take ),()0(ˆ )()()( mmm fT   for  Nm 2,...,2,1 . If a 

discontinuity exists, and if T  is known on )(kD , then the known T  on )(kD  for 

0t  is extended to include 0t , so that )0(ˆ )(kT  and )0(ˆ )( kNT   are 

respectively given by )0,,( )()( kkg   and )0,,( )()( kNkNg    [instead of 

),( )()( kkf   and ),( )()( kNkNf   ], in order to ensure that dttTd k /)](ˆ[ )(  and 

dttTd kN /)](ˆ[ )(   are well defined at  0t . With )0(ˆ )(nT  known for  

LNn  2,...,2,1 , we can solve Eq. (3.3.15) for the unknown given by either 

)(ˆ )( tT m   or )(ˆ
2
1)( tp m   for  Nm 2,...,2,1 , and by  )(ˆ )2( tT jN  for 

.,...,2,1 Lj   Once these unknowns are determined, we can go to the next time 

level tt 
2
3  and solve Eq. (3.3.15) again for either )2(ˆ )( tT m   or )(ˆ

2
3)( tp m   

for Nm 2,...,2,1  and )2(ˆ )2( tT jN   for Lj ,...,2,1 . We may repeat the 

procedure at tt 
2
5  , t

2
7  , ... to find the unknowns at higher time levels. 

     We may rewrite Eq. (3.3.15) as (Stehfest [48]) 
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                                                                                                                   (3.3.16) 

where  
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3.4 Example  
 

In order to illustrate the performance of the BEM proposed, we can consider the 

exact solution of this particular boundary value problem as follows 

)
4

sin()
4

cos(1 8

2

yx
eT

t





                                                             

(3.4.17) 

There is a significant improvement  in the accuracy  of the numerical results 

when the number of boundary elements  used is increased from 60 to 120. 

Now, we take the solution domain as the square region ,10  x .10  y  

The initial and boundary conditions are 

,10 , 10for   0at     )
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(3.4.18) 

Now We will compare the numerical values of T  at various interior points at 

1t  obtained using 60 and 120 boundary elements with the exact solution in 

table (3.1). 

 

 

Points BEM 

N=60, 1t  

BEM 

N=120, 

1t  

FDM 

1t  

Exact 

1t  

(0.1,0.2) 1.0458 1.0454 1.0437 1.0454 

(0.1,0.3) 1.0683 1.0677 1.0672 1.0678 

(0.1,0.4) 1.0902 1.0898 1.0886 1.0897 

(0.5,0.2) 1.0419 1.0422 1.0410 1.0421 

(0.5,0.3) 1.0624 1.0629 1.0598 1.0628 

(0.5,0.4) 1.0826 1.0832 1.0769 1.0831 

(0.9,0.2) 1.0350 1.0346 1.0312 1.0346 

(0.9,0.3) 1.0520 1.0517 1.0493 1.0517 

(0.9,0.4) 1.0690 1.0684 1.0682 1.0684 
 

Table (3.1) 

 

 

     The result, we found that the boundary element solution agrees quite well 

with the exact solution. And more suitable than the  result we obtained from the 

finite difference method.      
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CHAPTER (IV) 
 

( Boundary element solution of 

 steady-state temperature distribution  

in non-homogeneous media ) 
 

 

4.1 Introduction 
 

     Many modern industrial materials, for instance functionally gradient 

materials, to meet ever-increasing demands placed on materials by modern 

technologies such as the single stage to orbit plan, ceramic engines, and 

advanced turbomachinary components. There are also many naturally occurring 

materials such as sedimentary rock and wood that exhibit material 

heterogeneity. Practical issues related to analysis of non-homogeneous media 

via the so-called „homogenization‟ or effective statistical macroscopic 

description of thermal conductivity is reviewed in Furmanski [33]. Abd-Alla, et 

al. [8] studied magneto-thermoelastic problem in non-homogeneous isotropic 

cylinder. Al-Huniti [11], Barletta and Zanchini [17] discussed hyperbolic heat 

conduction equation, analysis in heterogeneous media thus finds much 

importance in engineering practice. However, analytical solutions of this 

problem are truly challenging due to the variable-coefficient partial differential 

equations arising in isotropic analysis and the presence of cross-derivatives of 

the dependent variables arising in the governing equation in anisotropic media. 

Various approaches were proposed for particular non-homogeneous isotropic 

media.  

 

4.2 Formulation of the problem 
 

     In non-dimensional form the two-dimensional steady-state temperature 

distribution in non-homogeneous media may be written as follows 

0)( 








j
ij

i x

T

x
  in ,R                                             

(4.2.1) 

Subject to  

),(),( yxgyxT      for ,1),( Dyx   

),(),( yxhyxq      for ,2),( Dyx                                         

(4.2.2)  
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where 1x  and 2x  are the same dimensionless expressions x  and y  respectively. 

R  is a two-dimensional region bounded by a simple closed curve D  on the 

xy0  plane, ),( yxT is the unknown function to be determined, ij  are non-

negative coefficients satisfying the symmetry property ijij    are the strict 

inequality 02211
2
12    at all points in the region 1, DDR  and 2D  are 

non-intersecting curves such that DDD 21  , 

,/),(),(),( jiij xTyxnyxyxq    ),( yxni on D  and g  , h  are suitably 

prescribed functions. If q  is specified at all points on D  then, to ensure 

compatibility with (4.2.1), the function q  in (4.2.2) is required to satisfy  

0),(),(  yxdsyxh

D

                                                             

(4.2.3) 

     In the present chapter, we consider the case in which coefficients of the non-

homogenous anisotropic media take the form 

),(),(
)0(

yxuyx ijij   ,                                                            

(4.2.4)  

where u  is a given positive function that can be partially differentiated at least 

twice with respect to ix  and )0(
ij are non-negative constants satisfying 

)0()0(
jiij   and  0][

)0(
22

)0(
11

2)0(
12   . After using a substitution to re-write 

(4.2.1) in a suitable form, we employ the fundamental solution, for the 

corresponding homogenous anisotropic media, which takes the form of a simple 

logarithmic function, to derive an integral formulation for the BVM under 

consideration. With such a fundamental solution, the integral formulation 

inevitably contains a domain integral over the region R . To use the formulation 

for deriving a BEM for the numerical solution of the BVP, we apply the dual-

reciprocity method (DRM) proposed by Brebbia and Nardini [19] to convert the 

domain integral into a line integral approximately. The DRM requires us to 

collocate at points in DR but the discretization of the region R  into tiny 

elements is not needed. Thus, in the proposed approach solving numerically 

(4.2.1) and (4.2.2) with (4.2.4), only the curve boundary D  has to be 

discretized. In the literature, the term „dual-reciprocity boundary element 

method‟ (DRBEM) is used to describe such a BEM approach. The DRBEM 

outlined  in the present chapter is applicable for physically suitable u  given by 

any general function that varies spatially in a sufficiently smooth manner. To 

assess the applicability of method, it is used to solve some specific problems. 
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4.3. Boundary element procedure 

 
Using the same technique as in sections 1.1 and 1.3 (see chapter I) 
     With the substitution  

),(
),(

1
),( yx

yxu
yxT                                                   

(4.3.5) 

we fined that (4.2.1) with (4.2.4) can be re-written as  




 ),(
2

)0(
yxk

xx ji
ij 




                                                      

(4.3.6) 

where k  is given by  

]),([
),(

1
),(

2
)0(

yxu
xxyxu

yxk
ji

ij



                               

(4.3.7) 

     If we pretend that the right hand side of (4.3.6) is known, i.e. if we regard 

(4.3.6) as a Poisson‟s equation, we can apply the analysis in Clements [26] to 

derive the integral equation 

dxdyyxyxyxk
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(4.3.9) 

with (4.3.6), we can re-write the integral equation (4.3.10) as follows (Ang, et 

al. [15]) 

),(),(),(  Tu  
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yxTyxuyxk ),(),(),(  

dxdyyx ),,,(   

),(),(),,,([ yxTyxuyx
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),()],,,(]
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yxdsyx

yxu

yxq
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(4.3.10)                                                           

Notice that jiij xTyxnyxyxq  /),(),(),(  (as defined earlier on). 

     In the following section, the integral equation (4.3.6) is used to derive a 

DRBEM for the numerical solution of the boundary value problem defined by 

(4.2.1) and (4.2.2) with ij  as given by (4.2.4). 

For the DRBEM, let us discretize the curve D  into N  straight line (boundary) 

elements denoted ,  and  ,,, )()1()2()1( NN DDDD   i.e. we make the 

approximation: 
)()1()2()1( ... NN DDDDD   .                                                 

(4.3.11) 

     As we shall see later on, the DRBEM requires us to collocate equations at 

points on the boundary D  and in the interior of R . For this purpose, we select 

N  points on the boundary D  given by ),,( )1()1(   ),,( )2()2(   ,  

),,( )1()1(  NN   and ),,( )()( NN   and L  well-spaced out points in the interior 

of the region R  as denoted by ),,( )1()1(  NN   ),,( )2()2(  NN   ,  

),,( )1()1(  LNLN   and ),( )()( LNLN   . For convenience, for ,,,2,1 Np   

we take ),,( )()( pp   to be midpoint of the line element )( pD . 

     To apply the dual-reciprocity method (DRM) of Brebbia and Nardini [19] to 

transform the domain integral in (4.3.6) into a line integral, we first make the 

approximation  
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),(),(),(),( )(

1

)( yxayxTyxuyxk p
LN

p

p 




                                        

(4.3.12) 

where )( pa  are constants to be determined and  

 2)(2)()()( }]}{Im{[}]}{Re{[1),( pppp yyxyx    

  2/32)(2)()( }]}{Im{[}]}{Re{[ ppp yyx   .                    

(4.3.13) 

It should be noted that for ijij  
)0(

(Kronecker-delta) we find that i  and 

(4.3.13) reduces to give the local interpolating function suggested by Zhang and 

Zhu [51]. 

     We can let ),( yx in (4.3.12) be given by ),( )()( mm   for ,,,2,1 LNm    

to set up a system of linear algebraic equations in )( pa  which can be inverted to 

obtain  
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(4.3.14) 

where ),( )()()( mmm TT   ),,2,1( LNm    and )(mp  are constants 

defined by 
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(4.3.15) 

     Using (4.3.12) and (4.3.14) and applying the DRM, we find that the double 

integral in (4.3.10) can be approximately re-written as follows (Ang and Cooke 

[14]) 
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(4.3.16) 

where 
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(4.3.17) 
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With 
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(4.3.19) 

     The integral equation (4.3.10) together with (4.3.11) and (4.3.16) may used 

to derive  
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                                                              for LNn  ,,2,1                         

(4.3.20) 

where ),( )()()( mmm qq   ),,2,1( Nm   and ],[
)(

2
)(

1
mm

nn  is the outward unit 

normal vector to )(mD . Notice that, in deriving (4.3.20) we let  ),( yx  in 

(4.3.10) be given by ),( )()( mm   for ,,,2,1 LNn    and in the integrands of 

the line integrals over )(mD , we approximate the functions multiplied to 

),;,( )()( nnyx   and  ),;,( )()( nnyx  as constants given by the values (of 

the functions) at the midpoint of .)(mD  
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     In view of the boundary conditions (4.2.2), either )(mT  or )(mq   (not both) is 

known for Nm ,...,2,1 . Being the values of u  at the interior collocation points 

),,( )1()1(  NN   ),,( )2()2(  NN  ,  ),,( )1()1(  LNLN   and 

),( )()( LNLN   , the constants )()1()2()1(   and  ,,, LNLNNN TTTT    are 

not known. Thus, the system (4.3.10) consists of LN   linear algebraic 

equations which can be solved for LN   unknown given by either )(mT  or 
)(mq  for Nm ,,2,1   and T  for .,,2,1 Ln    

 

4.4. Example  
 

     A 2-D steady-state heat conduction problem in an orthotropic heterogeneous 

medium is considered with a thermal conductivity taken as, 

,
730
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yx

yx
yxk                                                      

(4.4.21) 

With this ,k an exact temperature satisfying the governing equations is, 

.18207104),( 22 yxyxyxyxT                                                

(4.4.22) 

 

Points BEM 

N=60 

BEM 

N=120 

FDM Exact 

(0.1,0.2) 5.5359 5.5572 5.5298 5.5600 

(0.1,0.3) 7.0975 7.1087 7.0964 7.1100 

(0.1,0.4) 8.4898 8.5189 8.4889 8.5200 

(0.5,0.2) 15.2999 15.3210 15.2983 15.3200 

(0.5,0.3) 17.2458 17.2689 17.2449 17.2700 

(0.5,0.4) 19.0797 19.0800 19.0782 19.0800 

(0.9,0.2) 26.3059 26.3598 26.2994 26.3600 

(0.9,0.3) 28.6554 28.7095 28.6493 28.7100 

(0.9,0.4) 30.9089 30.9157 30.9037 30.9200 

 
Table (4.1) 

 

     The result, we found that the boundary element solution agrees quite well 

with the exact solution. And more suitable than the result we obtained from the 

finite difference method.      
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CHAPTER (V) 

 

( Boundary element solution of  

non steady-state temperature distribution  

in non-homogeneous media ) 
  
 

5.1 Introduction   
 

      The increasing use of anisotropic material in engineering application has 

resulted in considerable research activity in this area in recent years. An 

understanding of thermally-induced stresses in anisotropic bodies is essential 

for a comprehensive study of their response due to an exposure to a temperature 

field, which may in turn occur in service or during the manufacturing stages. 

Our study in the present chapter is of fundamental importance to several 

disceiplines such as geophysics, earthquake engineering, geomechanics, 

composites, nondestructive testing, etc. 

      Recent technological advances allowed further a miniaturisation of 

electronic devices and an increase of their operating frequency. Unfortunately, 

both these factors augmented significantly the dissipated power density. 

Therefore, cooling problems occur now even in apparently low power 

applications. For this reason, still more and more products undergo in their 

design process a thermal simulation. Most commercial thermal simulators 

employ numerical methods for the solution of the heat equation. In order to 

obtain accurate results, these methods require a dense structure meshing, 

especially where the temperature gradient values are significant, which is time 

consuming. Thus, regarding the cost and time of a design process, analytical 

solutions providing explicit formulas, relating power dissipation to temperature 

rise, would be much more desirable, but usually they are difficult to find. In 

recent years, the BEM has also been found to be especially accurate and 

efficient in the analysis of thin elastic structures or materials. The assumption 

that the inertia terms may be omitted from the equations of motion holds good 

only when the variation in stresses, displacements and temperature with time 

are negligible, as we assumed for the displacement equation in the present 

chapter, but the heat equation is time dependent. 

            Abd-Alla, et al. [5] studied thermal stresses in a rotating orthotropic 

composite tubes. Abd-Alla, et al. [6, 7] discussed thermoelastic waves under the 

effect of initial stress. El-Naggar, et al. [29] proposed explicit finite difference 

scheme to obtain thermal stresses in an infinite slab. Also, they discussed 

transient thermal stresses in a rotating non-homogeneous orthotropic hollow 
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cylinder. Linear and nonlinear boundary value problems were discussed by 

Barletta and Zanchini [17], and Nayfeh and Nasser [46] considered various 

mechanical problems coupled to electromagnetic effects through a large 

magnetic field.  

      The boundary element method (BEM), based on the boundary integral 

equation (BIE) formulation, is well known for its accuracy and efficiency in 

stress analysis.  

      The dual-reciprocity boundary element method was originally introduced by 

Brebbia and Nardini [19] for the numerical solution of dynamic problems in 

solid mechanics. The method has now been successfully extended to a wide 

range of heat diffusion problems in engineering. refer to Zhu, et al. [52]. 

      This chapter presents a general treatment of the transient temperature 

distribution in a non-homogeneous anisotropic media. The heat conduction 

equation is solved by means of a boundary element method (BEM) and the 

numerical calculations are carried out for the temperature. The numerical and 

exact values show good agreement. 

 

5.2  Formulation of the problem 
       

      In non-dimensional form the two-dimensional non steady state temperature 

distribution in non-homogeneous anisotropic media may be written in the 

following form (Fahmy [31]) 

t

T
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 )(                                                                         
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    Subject to 

,),(for     ),()0,,( DRyxyxfyxT                                                

,0 ,),(for     ),,(),,( 1  tDyxtyxgtyxT                                         

.0 ,),(for      ),,(),,( 2  tDyxtyxhtyxq                                        

(5.2.2) 

where 1x  and 2x  are the same dimensionless expressions x  and y  respectively, 

ij  are heat conductivity coefficients such that the symmetry relation jiij    

is satisfied and the strict inequality 0)( 2211
2

12    holds at all points in the 

solid,   is the density, c  is the specific heat capacity of the solid and t  is the 

dimensionless time. Also, ,f g and h  are suitably prescribed functions of x  

and ,y  1D  and 2D  are non-intersecting curves such that  21 DDD  . 
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      In the present chapter, we consider the task of solving (5.2.1) and (5.2.2) for 

the case in which thermal conductivity coefficients are 

),(),( yxuyx ijij                                                                           

(5.2.3) 

where u  is a function that may be partially differentiated at least twice with 

respect to x  and ij  are non-negative constants (the values of ij  in 

homogeneous matter). 

 

5.3  Boundary element procedure  
 

Using the same technique as in sections 1.1 and 1.3 (see chapter I) 
      We shall now outline a boundary element procedure for solving (5.2.1) 

subject to (5.2.2) in a two-dimensional region R  bounded by a simple closed 

curve D . 

      From (5.2.1), (5.2.2) and (5.2.3) we obtain the integro-differential equation 

(Ang [12]) 
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      The boundary D  is discretized into N  straight line elements denoted by 

 ..., ,D , (2))1(D )1( ND  and ,)(ND  and we employ discontinuous linear boundary 

elements (Clements [26]) to obtain the terms ),,(),( tyxTyxu , 
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Hence, we have for )(mD(x,y)  
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      We implement the dual-reciprocity boundary element method in (5.3.4), 

with considering the following  approximation 
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To obtain a system of LN 2  first order linear ordinary differential equations, 

where )( pa  are constants to be determined and 
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where ),,( )1()1()( tTT m  )2 ..., ,2 ,1( LNm   and )(mp  are constants 

defined by 
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      Using (5.3.14) and (5.3.16) and applying the dual-reciprocity boundary 

element method, we find that the double integral in (5.3.4) can be 

approximately re-written as 
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      The dual-reciprocity boundary element method approximately reduces the 

integro-differential equation into a system of LN 2  first order linear ordinary 
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differential equations to be solved subject to known values of )()( tT n at 0t  as 

given by the initial temperature in (5.2.2). 

To solve the system of ordinary differential equations, we approximate the 

nodal temperature )()( tT n
,...,2,1( n )2 LN   as follows (Stehfest [48]) 
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where ttt  )1(*0
(*) (for ).121*  , ..., M,  

      Differentiating (5.3.19) with respect to t , we obtain: 
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      Substituting (5.3.22)-(5.3.23) into the system of ordinary differential 

equations, and if t (in the system of ordinary differential equations) is chosen to 

be given in turn by ,)1(t ,...)2(t )(Mt  and ,)1( Mt  we obtain a system of linear 

algebraic equations containing )( (*))( tT n  for LN, ..., , n  221(  and 

)121*  , ...,M,  and )( (*))( tq m  for Nm 2 ..., ,2 ,1(   and 

),1 ..., ,2 ,1*  M and hence the temperature is determined in the region R . 

 

 5.4  Example  
             

     For a specific problem governed by (5.2.1) with coefficients given by  
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    We use a particular solution 
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Thus, we can choose the region R  to be given by 

 10 ,10:),(  yxyxR                                                               

(5.4.26) 

The dual-reciprocity boundary element method is applied to solve (5.2.1) with 

coefficients (5.4.24) and (5.4.25) inside the square domain subject to the initial-

boundary conditions 

0 and  ),(for    ),,(),,(

0  and for    ),,(),,(

),(for     ),()0,,(

2

1







 tDyxtyxhtyxq

tD(x,y)tyxgtyxT

DRyxyxfyxT 

                                   

(5.4.27) 

 

Points BEM 

N=60, t=1 

BEM 

N=120, t=1 

FDM, t=1 Exact, t=1 

(0.1,0.2) 2.1998 2.1984 2.1982 2.1987 

(0.1,0.3) 2.0646 2.0638 2.0635 2.0637 

(0.1,0.4) 1.9295 1.9285 1.9283 1.9284 

(0.5,0.2) 2.5838 2.5829 2.5819 2.5829 

(0.5,0.3) 2.4464 2.4457 2.4398 2.4456 

(0.5,0.4) 2.3086 2.3079 2.3079 2.3078 

(0.9,0.2) 2.9545 2.9535 2.9486 2.9532 

(0.9,0.3) 2.8146 2.8138 2.7937 2.8136 

(0.9,0.4) 2.6745 2.6739 2.6589 2.6737 

  
Table (5.1) 

 

     The result, we found that the boundary element solution agrees quite well 

with the exact solution. And more suitable than the result we obtained from the 

finite difference method.      
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Discussion of Results 
 

 

     As mentioned in the introduction of the thesis, exact closed form solutions 

are seldom available to most of the heat conduction and the use of approximate 

method is often inevitable. This thesis introduces the results of the most popular 

computational method available for solving heat conduction problems, the finite 

difference method and the boundary element method. Both these methods are 

based on the philosophy of discretisation and they provide approximate 

solutions to a large variety of heat conduction problems. The finite difference 

method is a domain-type method where the entire problem domain is 

discretized into finite elements. On the other hand, in the boundary element 

method the boundary of the region alone needs to be discretized. As mentioned 

in the introduction of this thesis many researchers solved the problems of 

temperature distribution analytically or with using finite difference method but 

we used the boundary element technique for solving the problems under 

consideration in our thesis for these reasons. 

1) The boundary element method (BEM) has received much attention from 

researchers and has become an important technique in the computational 

solution of a method of physical problems. In common with the better-known 

finite difference method (FDM), the boundary element method is essentially a 

method for solving partial differential equations (PDEs) and can only be 

employed when the physical problem can be expressed as such as with the other 

method mentioned, the boundary element method is a numerical method and 

hence it is an important subject of research amongst the numerical analysis 

community. However, the potential advantages of the BEM have seemed so 

considerable that the strongest impetus behind its development has come from 

the engineering community, in its enthusiasm to obtain flexible and efficient 

computer-based solutions to a range of engineering problems. 

2) The advantages in the boundary element method arises from the fact that 

only the boundary (or boundaries) of the domain of the PDE requires sub-

division. (In the finite difference method the whole domain of the PDE requires 

discretisation). Thus the dimension of the problem is effectively reduced by one 

for example an equation governing a three-dimensional region is transformed 

into one over its surface. In cases where the domain is exterior to the boundary, 

as it is in potential flow past an obstacle, the extent of the domain is infinite an 

hence the advantages of the BEM are even more striking; the equation 

governing the infinite domain is reduced to an equation over the (finite) 

boundary. 

 

 



 - 72 - 

3) The friendliness and openness of the BEM Community and its ability to 

continue to grow by attracting younger researchers all the time. 

4) The major motivation behind the method of BEM was to reduce the 

dependency of the analysis on the definition of meshes. This motivation 

allowed the method to expand naturally, into new areas such as Dual 

Reciprocity, Complex Variable that will be used in this thesis and other Mesh 

Reduction Techniques. 

5) The importance that BEM attached, right from the beginning, to produce 

industrial application tools. 

6) We announce that the boundary element method solutions agree quite well 

with the exact solution, and more suitable than the result we obtained from the 

finite difference method or and the finite element method.  
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RESULTS AND RECOMMENDATION 
 

 

 

[1] The present thesis concludes generally that the boundary element method is 

more suitable for numerical study of difficult thermal science problem than the 

finite difference method. Also, boundary element method will be an important 

technique in the computational solution of a number of physical, engineering 

and scientific problems. 

 

[2] Boundary element method will be an important technique may be used in a 

variety of areas in engineering science, such as potential theory, thermo-

elastostatics, thermo-elastodynamics, thermo-elastoplasticity, thermo-fluid 

mechanics, heat conduction in any anisotropic media. 

 

[3] Boundary element method will be an important technique in thermo-

electromagnetism and thermopiezoelectric. 

 

[4] Complex variable boundary element method will be suitable for solving 

complex static problems. 

 

[5] Dual reciprocity boundary element method will be suitable for solving 

complex dynamic problems.  

 

[6] We recommende that it is very important and suitable for those doing in 

area of industrial mathematics and physics and engineering to use boundary 

element method in their research areas and works.   
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Warning: MATLAB Toolbox Path Cache is out of date and is not being used. 

Type 'help toolbox_path_cache' for more info. 

  

  To get started, select "MATLAB Help" from the Help menu. 

  

>> x=0.1, y= 0.2:0.1:0.4 

T1=(sinh(pi.*x)).*(cos(pi.*y)) 

T2=sinh(pi) 

T=T1/T2 

x=0.5, y= 0.2:0.1:0.4 

T1=(sinh(pi.*x)).*(cos(pi.*y)) 

T2=sinh(pi) 

T=T1/T2 

x=0.9, y= 0.2:0.1:0.4 

T1=(sinh(pi.*x)).*(cos(pi.*y)) 

T2=sinh(pi) 

T=T1/T2 

 

x = 

    0.1000 

y = 

    0.2000    0.3000    0.4000 

T1 = 

    0.2584    0.1877    0.0987 

T2 = 

   11.5487 

 

T = 

    0.0224    0.0163    0.0085 

 

 

x = 

    0.5000 

y = 

    0.2000    0.3000    0.4000 

T1 = 

    1.8618    1.3527    0.7111 

T2 = 

   11.5487 

 

T = 

    0.1612    0.1171    0.0616 

 

x = 

    0.9000 

y = 

    0.2000    0.3000    0.4000 

 

T1 = 

    6.8131    4.9500    2.6024 
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T2 = 

   11.5487 

 

T = 

    0.5899    0.4286    0.2253 

 

>> 

Warning: MATLAB Toolbox Path Cache is out of date and is not being used. 

Type 'help toolbox_path_cache' for more info. 

  

  To get started, select "MATLAB Help" from the Help menu. 

  

>> x=0.1, y= 0.2:0.1:0.4, t=1 

T1=exp((-(pi.^2).*t)/8) 

T2=(cos((pi.*x)/4).*sin((pi.*y)/4)) 

T=1+(T1.*T2) 

x=0.5, y= 0.2:0.1:0.4, t=1 

T1=exp((-(pi.^2).*t)/8) 

T2=(cos((pi.*x)/4).*sin((pi.*y)/4)) 

T=1+(T1.*T2) 

x=0.9, y= 0.2:0.1:0.4, t=1 

T1=exp((-(pi.^2).*t)/8) 

T2=(cos((pi.*x)/4).*sin((pi.*y)/4)) 

T=1+(T1.*T2) 

 

x = 

    0.1000 

y = 

    0.2000    0.3000    0.4000 

t = 

     1 

T1 = 

    0.2912 

T2 = 

    0.1560    0.2327    0.3081 

 

T = 

    1.0454    1.0678    1.0897 

 

x = 

    0.5000 

y = 

    0.2000    0.3000    0.4000 

t = 

     1 

T1 = 

    0.2912 

T2 = 

    0.1445    0.2157    0.2855 
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T = 

    1.0421    1.0628    1.0831 

 

x = 

    0.9000 

y = 

    0.2000    0.3000    0.4000 

t = 

     1 

T1 = 

    0.2912 

T2 = 

    0.1190    0.1775    0.2350 

 

T = 

    1.0346    1.0517    1.0684 

 

>>Warning: MATLAB Toolbox Path Cache is out of date and is not being used. 

Type 'help toolbox_path_cache' for more info. 

  

  To get started, select "MATLAB Help" from the Help menu. 

  

>> x=0.1, y=0.2:0.1:0.4 

T1=(4.*(x.^2))+(10.*(x.*y)) 

T2=(-7.*(y.^2))+(20.*x)+(18.*y) 

T=T1+T2 

x=0.5, y=0.2:0.1:0.4 

T1=(4.*(x.^2))+(10.*(x.*y)) 

T2=(-7.*(y.^2))+(20.*x)+(18.*y) 

T=T1+T2 

x=0.9, y=0.2:0.1:0.4 

T1=(4.*(x.^2))+(10.*(x.*y)) 

T2=(-7.*(y.^2))+(20.*x)+(18.*y) 

T=T1+T2 

 

x = 

    0.1000 

y = 

    0.2000    0.3000    0.4000 

T1 = 

    0.2400    0.3400    0.4400 

T2 = 

    5.3200    6.7700    8.0800 

 

T = 

    5.5600    7.1100    8.5200 

 

x = 

    0.5000 
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y = 

    0.2000    0.3000    0.4000 

T1 = 

    2.0000    2.5000    3.0000 

T2 = 

   13.3200   14.7700   16.0800 

 

T = 

   15.3200   17.2700   19.0800 

 

x = 

    0.9000 

y = 

    0.2000    0.3000    0.4000 

T1 = 

    5.0400    5.9400    6.8400 

T2 = 

   21.3200   22.7700   24.0800 

 

T = 

   26.3600   28.7100   30.9200 

 

>>Warning: MATLAB Toolbox Path Cache is out of date and is not being used. 

Type 'help toolbox_path_cache' for more info. 

  

  To get started, select "MATLAB Help" from the Help menu. 

  

>> x=0.1, y= 0.2:0.1:0.4, t=1 

T1=x-(1.3333.*y)+2 

T2=exp(-t).*cos((0.5.*x)+(0.3333.*y)) 

T=T1+T2 

x=0.5, y= 0.2:0.1:0.4, t=1 

T1=x-(1.3333.*y)+2 

T2=exp(-t).*cos((0.5.*x)+(0.3333.*y)) 

T=T1+T2 

x=0.9, y= 0.2:0.1:0.4, t=1 

T1=x-(1.3333.*y)+2 

T2=exp(-t).*cos((0.5.*x)+(0.3333.*y)) 

T=T1+T2 

 

x = 

    0.1000 

y = 

    0.2000    0.3000    0.4000 

t = 

     1 

T1 = 

    1.8333    1.7000    1.5667 
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T2 = 

    0.3654    0.3637    0.3617 

 

T = 

    2.1987    2.0638    1.9284 

 

x = 

    0.5000 

y = 

    0.2000    0.3000    0.4000 

t = 

     1 

T1 = 

    2.2333    2.1000    1.9667 

T2 = 

    0.3496    0.3456    0.3412 

 

T = 

    2.5829    2.4456    2.3079 

 

x = 

    0.9000 

y = 

    0.2000    0.3000    0.4000 

t = 

     1 

T1 = 

    2.6333    2.5000    2.3667 

T2 = 

    0.3199    0.3136    0.3070 

T = 

    2.9532    2.8136    2.6737 

 

>> 
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     Program EX1PT1 

     integer NO , BCT(1000) , N , i , ians 

     double precision xb(1000) , yb(1000) , xm(1000) , ym(1000) , 

&  nx(1000) , ny(1000) , lg(1000) , BCV(1000), 

&  phi(1000) , dphi(1000) , pint , d1 , xi , eta , pi 

 

     print*,‟Enter number of elements per side (<250):‟ 

     red*,N0 

     N=4*N0 

     pi=4d0*dtan(1d0) 

     d1=1d0/dfloat(N0) 

 

     do 10 i=1,N0 

     xb(i)=df1oat(i-1)*d1 

     yb(i)=0d0 

     xb(N0+i)=1d0 

     yb(N0+i)xb(i) 

     xb(2*N0+i)=1d0-xb(i) 

     yb(2*N0+i)=1d0 

     xb(3*N0+i)=0d0 

     yb(3*N0+i)=1d0-xb(i) 

10 continue  

     xb(N+1)=xb(1) 

     yb(N+1)=yb(1) 

    

     do 20 i=1 , N 

     xm(i)=0.5do*(xb(i)+xb(i+1)) 

     ym(i)=0.5do*(yb(i)+yb(i+1)) 

     1g(i)=dsqrt((xb(i+1)-xb(i))**2d0+(yb(i+1)-yb(i))**2d0) 

     nx(i)=(yb(i+1)-yb(i))/1g(i) 

     ny(i)=(xb(i)-xb(i+1))/1g(i) 

20 continue 

      

     do 30 i=1 ,N 

     if (i.1e.N0) then 

     BCT(i)=1 

     BCV(i)=0d0 

     else if  ((i.gt.N0).and.(i.le.(2*N0)))  then 

     BCT(i)=0 

     BCV(i)=dcos(pi*ym(i)) 

     else if  ((i.gt.(2*N0)).and.(i.le.(3*N0)))  then 

     BCT(i)=1 

     BCV(i)=0d0 

     else 

     BCT(i)=0 

     BCV(i)=0d0 

     endif 

30 continue 
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     call CELAP1 (N, xm, ym, xb, yb, nx, ny, 1g, BCT, BCV, phi, dphi) 

50 print*,‟Enter coordinates xi and eta of an interior point:‟ 

 

     read*,xi,eta 

 

     call CELAP2(N, xi, eta, xb, yb, nx, ny, 1g, phi, dphi, pint) 

     

     write (*,60) pint , (dexp(pi*xi)-dexp(-pi*xi))*dcos(pi*eta) 

 & /(dexp(pi)-dexp(-pi)) 

60 format (‟Numerical and exact values are:‟, 

 & F14.6,‟ and‟,F14.6,‟ respectively‟) 

 

     print*,‟To continue with another point enter 1:‟ 

     read*, ians 

 

     if (ians.eq.1) goto 50 

 

     end   
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     program EX2PT1 

 

     integer N0, BCT(1000), N, i , ians, N1, L, j, k,1ud 

      

     double precision xb(1000), yb(1000), xm(1000), ym(1000), d1, alpha, 

     & nx(1000), ny(1000), 1g(1000), BCV(1000), pi, tau , phi(1000), dt, 

     & ti, tir 

 

     print*,‟Enter integer N0 (<101):‟ 

     read*, N0 

     N=4*N0 

 

     print*,‟Enter integer N1 (<15):‟ 

     read *,N1 

     L=N1**2 

     NL=2*N+L 

     print*,‟Enter time-step dt:‟ 

     read*,dt 

     tau=0.25d0 

 

     pi=4d0*datan(1d0) 

     alpha=1d0 

 

     d1=1d0/dfloat(N0) 

 

     do 10 i=1,N0 

     xb(i)=dfloat(i-1)*d1 

     yb(i)=0d0 

     xb(N0+i)=1d0 

     yb(N0+i)=xb(i) 

     xb(2*N0+i)=1d0-xb(i) 

     yb(2*N0+i)=1d0 

     xb(3*N0+i)=0d0 

     yb(3*N0+i)=xb(2*N0+i) 

 

10 continue 

 

     xb(N+1)=xb(1) 
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     yb(N+1)=yb(1) 

 

     do 20 i=1,N 

     xm(i)=xb(i)+tau*(xb(i+1)-xb(i)) 

     ym(i)=yb(i)+tau*(yb(i+1)-yb(i)) 

     xm(N+i)=xb(i)+(1d0-tau)*(xb(i+1)-xb(i)) 

     ym(N+i)=yb(i)+(1d0-tau)*(yb(i+1)-yb(i)) 

     1g(i)=dsqrt((xb(i+1)-xb(i))**2d0+(yb(i+1)-yb(i))**2d0) 

     nx(i)=(yb(i+1)-yb(i))/1g(i) 

     nx(i)=(xb(i)-xb(i+1))/1g(i) 

20 continue 

 

     d1=1d0/dfloat(N1+1) 

 

     i=2*N 

 

     do 25 j=1,N1 

     do25 k=1,N1 

     i=i+1 

     xm(i)=dfloat(j)*d1 

     ym(i)=dfloat(k)*d1 

25 continue 

 

     do 26 i=1,N 

     if ((i.le.N0).or.((i.gt(2*N0)).and.(i.le.(3*N0)))) then 

     BCT(i)=1 

     else 

     BCT(i)=0 

     endif 

26 continue 

 

     do 27 i=1,NL 

     phi(i)=1d0+dcos(0,25d0*pi*xm(i))*dsin(0.25d0*pi*ym(i)) 

27 continue  

 

     ti=-0,5d0*dt 

     1du=1 

 

28 ti=ti+dt 

     tir=ti+0.5d0*dt 

 

     do 30 i=1,N 
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     if (i.le.N0) then 

     BCV(i)=-0.25d0*pi*dexp(-pi*pi*0.125d0*ti) 

     & *dcos(0.25d0*pi*xm(i)) 

     BCV(N=i)=-0.25d0*pi*dexp(-pi*pi*0.125d0*ti) 

     & *dcos(0,25d0*pi*xm(N+i)) 

     else if (i.le.(2*N0)) then 

     BCV(i)=1d0+dexp(-pi*pi*0.125d0*tir) 

     & dsin(0,25d0*pi*ym(i))/dsqrt(2d0) 

     BCV(N+i)=1d0+dexp(-pi*pi*0.125d0tir) 

     & dsin(0,25d0*pi*ym(N+i))/dsqrt(2d0) 

     else if (i.le(3*N0)) then 

     BCV(i)=0.25d0*pi*dexp(-pi*pi*0.125d0ti) 

     & dcos(0,25d0*pi*xm(i))/dsqrt(2d0) 

     BCV(N+i)=0.25d0*pi*dexp(-pi*pi*0.125d0tir) 

     & *dcos(0.25d0*pi*xm(N+i))/dsqrt(2d0) 

     else 

     BCV(i)=1d0+dexp(-pi*pi*0.125d0tir) 

     & dsin(0,25d0*pi*ym(i)) 

     BCV(N+i)=1d0+dexp(-pi*pi*0.125d0tir) 

     & dsin(0,25d0*pi*ym(N+i)) 

     endif 

30 continue 

 

     call DLEDIFF(1ud,N,L,tau,alpa,xm,ym, 

     & xb,yb,nx,ny,lg,BCT,BCV,dt,phi) 

 

     print*,‟Time=‟,tir 

     print*,‟ x y Numerical Exact‟ 

 

     do 50 i=2*N+1,2*N+L 

     write (*,60) xm(i) , ym(i) ,phi(i) ,  

     & 1d0+dexp(-pi*pi*0.125d0*tir) 

     & *dcos(0.25d0*pi*xm(i))*dsin(0.25d0*pi*ym(i)) 

50 continue  

 

60 format (4F14.6) 

 

     print*,‟To continue with the next time level enter 1:‟ 

     read*, ians 

     1ud=0 

     if (ians.eq.1) goto 28 

 

     end 
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MAIN PROGRAM 

 

       VARIABLES 

           

T: 

Q: 

BC 

HB 

KB 

 

 

 

X,Y: 

XI,YI: 

E,F: 

C: 

NE: 

NI: 

NS: 

X1,Y1: 

X2,Y2: 

X3,Y3: 

XP,YP: 

  TEMPERTAURE ARRAY 

  HEAT FLUX ARRAY 

  BOUNDARY CONDITION ARRAY 

  BOUNADRY FILM COEFFICIENT ARRAY 

  BOUNDARY CONDITION CODE ARRAY 

  (1) –FIRST KIND (TEMPERATURE 

  (2) –SECOND KIND (HEST FLUX) 

  (3) _THRD KIND (CONVECTION) 

  BOUNDARY ELEMENT NODAL COORDINATES ARRAY 

  INTERNAL POINT COORDINATE ARRAY 

  INFLUENCE COEFFICIENT MATRICES 

  THERMAL CONDUCTIVITY COEFFICIENT ARRAY 

  NUMBER OF BOUNDARY ELEMENTS 

  NUMBER OF INTERNAL POINTS 

  NUMBER OF SAMBLE POINTS FOR K 

 

 

CURRENT ELEMENT NODAL POINT COORDINATES 

CURRENT COLLOCAYION POINT 

 

       IMPLICIT DOBLE PRECISION (A-H,O-Z) 

 

       INCLUDE „Bem2D parameters. for‟ 

 

       REAL*8 T(NEMAX+NIMAX),Q(NEMAX) 

       REAL*8 BC(NEMAX),HB(NEMAX) 

       REAL*8 X(NEMAX,3),Y(NEMAX,3) 

       REAL*8 XI(NEMAX),YI(NEMAX)      

       REAL*8 E(NEMAX+NIMAX, NEMAX+NIMAX) 

       REAL*8 F(NEMAX+NIMAX, NEMAX+NIMAX) 

       REAL*8 BM(NEMAX+NIMAX) 

       REAL*8 W(NEMAX+NIMAX) 

       REAL*8 XS(NSMAX),YS(NSMAX),KS(NSMAX,3) 

       REAL*8 KXMAX,KYMAX 

       INTEGER KB(NEMAX) 

       INTEGER NS 

       INTEGER KCONST,KORTHO 

       INTEGER INDX (NEMAX+NIMAX) 

       CHARACTER*40 FILEIN 

       CHARACTER*80 TITLE 

 

       COMMON/CONDUC/(6,3) 

       COMMON/INFORM/NE,NI  

       COMMON/COEFFI/X1,X2,X3,Y1,Y2,Y3,XP,YP,PI 

 

       INPUT DATA FILE AND INITIAL PARAMETERS 

 

       WRITE(*,*) 

       WRITE(*,*) „WAIT WHILE BEM DATA IS BEING PROCESSED…‟ 

       WRITE(*,*) 

 

       WRITE (*,101) 

       READ (*,'(A)') FILEIN 

       OPEN (15,FILE=FILEIN,STATUS='OLD') 

101 FORMAT(1X,'ENTERTHE PATH AND NAME OF THE BEM I/O FILE:..') 

       WRITE (*,001) 

001FORMAT(//2X, 'READING PROBLEM INFORMATION FROM FILE…………') 

       READ (15,*) NB 

       READ (15,*) NB 

       READ (15, '(A)') TITEL 

       READ (15,*) NE,NI,NS 
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       READ (15,*) NB 

 

       CALL CONDUCTIVITY DISTRIBUTION SUBROTIN 

 

       WRITE (*,003) 

003 FORMAT (2X, 'EXPANDING CONDUCTIVITY SAMPLES INTO A FUNCTION........ ' )  

       CALL CONDUCTIVITY (XS,YS, KS, NS, KCONST, KORTHO) 

      

       CALL DATA INPUT SUBROUTINE 

 

       WRITE(*,004) 

004 FORMAT(2X, 'READING PROBLEM BEM DATA FROM FILE…............................…..' ) 

       CALL INPUT (X, Y,XI, YI, BC, KB, HB, W) 

 

       CALL DATA TRANSFORM SUBROUTINE 

 

       IF (KORTHO. EQ.1) THEN 

       WRITE(*,006) 

     006 FORMAT(2X, 'TRANSFORMING BEM DATAACCORDING TO ORTHOTROPY...' ) 

       CALL TRANSFORMING (X, Y,XI, YI, BC, KB, HB, KXMAX, KYMAX) 

       END IF 

 

       CALL COMPUTATION OF EPSILON COEFFICIENTS SUBROUTINE 

 

       IF (KCONST.EQ.0) THEN 

   

       WRITE(*,007) 

007 FORMAT (2X, 'COMPUTING SIFTING ERROR CORRECTION …...........................…' ) 

       CALL EPSILONCOEFF (X, Y, XI, YI, W, E, F, BM, INDX) 

       END IF 

 

       CALL INFLUENCE COEFFICIENTS COMPUTATION SUBROUTINE 

   

       WRITE(*,008) 

008 FORMAT (2X, 'GENERATING INFLUENCE COEFFICIENT MATRICES…................' ) 

       CALL COMPUTING (X,Y, XI,YI, E, F,W) 

 

       CALL ALGEBRAIC SETUP SUBROUTINE 

 

       WRITE(*,010) 

010 FORMAT (2X, 'ARRANGING AND SOLVING ALGEBRAIC SYSTEM…................…' ) 

       CALL ALGEBRA (E, F, BC, KB, HB, BM, INDX, T, Q) 

 

       CALL DATA BACK-TRANSFORM SUBROUTINE 

 

       IF (KORTHO.EQ,1) THEN 

       WRITE(*,011) 

011 FORMAT (2X, 'BACKTRANSFORMING DATA ACCORDING TO ORTHOTROPY... ' ) 

       CALL BACKTRANSFORM (X, Y, XI, YI, Q, KB, BC, HB, KXMAX, KYMAX) 

       END IF 

 

     CALL DATA OUTPUT SUBROUTINE  

 

     WRITE(*,013) 

013 FORMAT (2X, 'OUTPUTTING BEM RESULTS TO BEM I/O FILE …......................…' ) 

     CALL OUTPUT (T,Q) 

 

     CLOSE (15) 

 

     WRITE (*,*) 

     WRITE (*,*) '…BEM ANALYSIS COMPLETED SUCCESSFULY' 

     WRITE (*,*) 

     WRITE (*,*) 'PRESS <ENTER> TO END PROGRAM' 

     READ (*,*) 

 

     END 
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